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CUDNN: GPU ACCELERATED DEEP LEARNING

Co-designed with each architecture generation (e.g. Volta Tensor Cores)

Simple API to integrate into any machine learning framework or toolkit 

Over two million downloads, available in every cloud, data center, embedded and graphics 

New releases approximately monthly
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RETROSPECTIVE ON CUDNN V7: LIMITATIONS  

● Rigid Functional APIs

○ In the past, each new DL operation required a brand new API 

● Rigid performance selection 

○ The algorithm concept does not address new advances in software and hardware 

● Numerical properties, alignment, layouts and type-conversion are not easily communicated  

● Large library size a burden on distribution and memory usage 
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INTRODUCING CUDNN V8

● New low-level backend API 

○ Provides flexibility in performance tuning and performance selection 

● New high level C++ API for ease of use, released as open source

● Backward compatibility layer -- no code changes wrt to cuDNN 7.6 to use cuDNN v8

● Performance improvements on Volta and Turing with new kernels and pre-trained heuristics

● Bug fixes and API cleanup, support cuda-graph capture and a new deprecation policy

● Address Library size by splitting library based on usage

● New runtime fusion capabilities to adapt quickly to new functionalities 



CUDNN V8 SOFTWARE ARCHITECTURE BLOCK DIAGRAM



NEW AND IMPROVED CONCEPTS IN CUDNN V8

○ Tensor -- Support graphs, more shapes , and 64 bit addressing 

○ Operation -- Describes a computation node  

○ Graphs -- a DAG of operations connected by tensors to express computations 

○ Engines and Knobs -- Abstractions of kernels and performance options 

○ Attributes -- Queryable properties of engines (e.g. numerical and alignment properties)

○ Non-eager execution -- Separate constructions and validation of computation from the execution  



IMPROVED TENSOR DESCRIPTOR 

TensorDesc:
● UID = ‘X’
● isVirtual = false
● dataType = CUDNN_DATA_HALF
● alignment = 16B
● dim = {32, 64, 56, 56}
● stride = {200704, 1, 3584, 64}

● New in v8
○ Support 64 bit addressing 
○ Convolution groups dimension 

● Support Fusion Graphs 
○ Encode symbolic mathematical relationship between 

tensors in each operation node
○ “UID” use to uniquely identify a tensor
○ “isVirtual” use to indicate whether the tensor exists in 

memory or needs to be written out to memory



NEW CONCEPT: OPERATION DESCRIPTOR

● Operation
○ Elementary unit to express a computation
○ Each node in the computation graph is an operation  

● Each operation node contains information about:
○ I/O: input/output tensors’ size, datatype, layout, 

UID
○ Parameters and settings that determine the 

mathematical behavior
● Example operations:  

○ convolution, bias , activation
● Support 12 operations today

○ More to come in future releases

ConvOp:
• In: ‘X’, ‘W’
• Out: ‘Y’
• Math operation:

Tensor: UID=‘X’

Tensor: UID=‘W’

Tensor: UID=‘Y’
convDesc:
• mode = …
• accumulationType=...
• padding = {...}
• convStride={...}
• dilation={...}



NEW CONCEPT: OPERATION GRAPHS

opGraph:
ConvOp:
• In: ‘X’, ‘W’
• Out: ‘T’
• Math operator:

Tensor: UID = ‘X’
             isVirtual = false

Tensor: UID = ‘W’
             isVirtual = false

Tensor: UID = ‘T’
             isVirtual = true

convDesc:
• mode = …
• accumulationType=...
• padding = {...}
• convStride={...}
• dilation={...}

ActivationOp:
• In: ‘T’
• Out: ‘Y’
• Math operator:

Tensor: UID = ‘T’
             isVirtual = true

Tensor: UID = ‘Y’
             isVirtual = false

activationDesc:
• mode = …
• NaN_propagation=...

1: 2:

● An array of operation nodes representing a computation graph 
● Uses Tensor UIDs to deduce the data-flow of the computation graph
● Once user expresses the computation as a graph, cuDNN can optimize it under the hood
● cuDNN can continue to optimize in future releases without changes to user code 
● Easier to extend optimizations (E.g. conv+relu vs. conv+gelu)



Internal Fusion Graph:

ConvOp:
• In: ‘X’, ‘W’
• Out: ‘T’
• Math operator:

Tensor: UID = ‘X’
             isVirtual = false

Tensor: UID = ‘W’
             isVirtual = false

convDesc:
• mode = …
• accumulationType=...
• padding = {...}
• convStride={...}
• dilation={...}

ActivationOp:
• In: ‘T’
• Out: ‘Y’
• Math operator:

Tensor: UID = ‘Y’
             isVirtual = false

activationDesc:
• mode = …
• NaN_propagation=...

operationSet:
ConvOp:
• In: ‘X’, ‘W’
• Out: ‘T’
• Math operator:

Tensor: UID = ‘X’
             isVirtual = false

Tensor: UID = ‘W’
             isVirtual = false

Tensor: UID = ‘T’
             isVirtual = true

convDesc:
• mode = …
• accumulationType=...
• padding = {...}
• convStride={...}
• dilation={...}

ActivationOp:
• In: ‘T’
• Out: ‘Y’
• Math operator:

Tensor: UID = ‘T’
             isVirtual = true

Tensor: UID = ‘Y’
             isVirtual = false

activationDesc:
• mode = …
• NaN_propagation=...

1: 2:

Tensor load from memory

Tensor load from memory

Tensor store to memory

Fused

No memory I/O

Tensor being virtual 
means user doesn’t 
need this temp result 
tensor written out

OPERATION GRAPH FUSION EXAMPLE: CONV+RELU FUSION



operationGraph:

ADVANCED USAGE:  CONVOLUTION + BATCH NORMALIZATION

‘S’, non-virtual ElemOp
Per-ch scale

‘X’, non-virtual
‘T1’, virtual

‘W’, non-virtual ConvOp
‘T3’, virtual

‘Y’, non-virtual

‘B’, non-virtual ElemOp
Per-ch bias

‘T1’, virtual
‘T2’, virtual

ActivationOp
‘T2’, virtual ‘T3’, virtual

genStatsOp
Per-ch mean & std

‘Y’, non-virtual
‘mean’, non-virtual

‘std’, non-virtual

Internal Fusion Graph:

‘S’, non-virtual
ElemOp
Per-ch scale

‘X’, non-virtual

‘W’, non-virtual

ConvOpActivationOp genStatsOp
Per-ch mean & std

‘mean’, non-virtual

‘std’, non-virtual

‘B’, non-virtual

ElemOp
Per-ch bias

‘Y’, non-virtual



cuDNN v7.6 ALGORITHMS
Blue are visible to user in cuDNN v7.6 API
Green are chosen under the hood in cuDNN v7.6 API

Compute Case

Algo 0 (Implicit) Algo 2 (Winograd)

Tile Size 0 Tile Size 1

Tile Size 0 Tile Size 1

Algo 1 (Precomp)

Not Tensor 
Core

Tensor 
Core

Under The Hood



Computational Options

DATABASE OF KERNELS
Compute Case: A mathematical problem to solve; e.g. Convolution.
Computational Option: A method able to compute a given compute case; e.g. a kernel.

Compute Case
(Operation Graph)

...96 7 843 5 101 20

Implicit Precomputed Winograd

Tile 0 Tile 1 Tensor Core 
(TC)

Not 
TC

Tile 0 Tile 1

Other Options...



GROUPING COMPUTATIONAL OPTIONS
Problem: 

● Flat array of options is unmanageable
● “Algorithm” buckets aren’t scale-able

Solution:
● Define Attributes for each compute option:

○ Numerics (Determinism, Winograd, …)
○ Data Alignment Requirement

● Group options with common attributes together
○ ex: “Implicit” group

● Provide selector for options available within group
○ ex: “Select this Tile Size Option”



NEW CONCEPT: ENGINES 
● Group of Computational Options: Engine

○ Combines several computational options with identical attributes

● Option Selector Within Engine: Knob

○ Allows users to select a specific option available in a given Engine

○ ex: “Select Tile Size Option=0”

● Benefits
○ Computational options are visible and selectable by the user
○ Finer control of performance selection 
○ Programmatic visibility and control of numerics and alignment  



CUDNN V8 ENGINES

Compute Case
(Operation Graph)

Engine 0 Engine 3

Tile Size 
Option 0

Tile Size 
Option 1

Tile Size 
Option 0

Tile Size 
Option 1

Engine 1 Engine 2

Blue are visible to user in cuDNN v7.6 API
Green are chosen under the hood in cuDNN v7.6 API



EXAMPLE ENGINE ATTRIBUTES

Numerical Note: Notable numerical difference in computed results; such as non-determinism & 
Winograd computations. These can increase performance at the cost of non-ideal numerical results.

Engine Index Numerical Notes Knob Choices Alignment

0 Tile Size Options   
(0 & 1) sizeof(elem)

1 sizeof(elem)

2 Tensor Core Tile Size Options   
(0 & 1) 16B

3 Winograd sizeof(elem)



NEW CONCEPT: ENGINE CONFIG

Engine Config

Engine & Knob 
Selection
Engine 2

● Tile Size 0

Operation Graph

Activation Operation

Convolution 
Operation

convX W T

Engine Config: Descriptor containing an Operation Graph, Engine Index and Knob Choices. Fully 
describes a computation in cuDNN v8.



NEW HEURISTIC API
● Motivation:

○ For a given compute case, there are many compute options to choose from

○ Some users need determinism, some can’t spare any workspace memory  

● New Heuristic API:

○ Returns list of EngineConfig sorted by expected performance

○ Guaranteed to contain a deterministic non-workspace EngineConfig

● Benefits: 

○ Users can query Numerics, Knob Choices, Alignment from the EngineConfig

○ Users can override chosen Engine & Knobs

○ Users can auto-tune across all returned EngineConfigs



NEW CONCEPT: NON-EAGER EXECUTION 

● Execution Plan

○ A container for executing a computation graph on the GPU

○ Includes graph and engine configs 

○ Separate APIs for build and execute stages

● Build (cudnnBackendFinalize)

○ Search for engine that supports the computation

○ Query Heuristics for best performance 

○ Calculate work-space 

● Execute 

○ Executes the computation graph on the GPU

● Benefits: 

○ Amortise CPU overhead  -- runtime compilation, querying heuristics, etc. 

○ Reduce CPU time to launch kernels to couple of microseconds 

○ Create once use multiple times 

CuDNN Handle



VARIANT PACK
● Lightweight container for data and workspace pointers

● Can change with each iteration of an Execution Plan

● Binds to the execution plan at execution time

● The pointer bindings are done through tensor descriptors’ UID

● Benefits:

○ Allows re-use of execution plan without the need to copy or double buffer inter training iteration 

○ Allows users to economize on execution plans by re-using same execution plan for different layers 



EXECUTE

● Execute the plan 

○ Using the engine and performance options from the execution plan

○ Using pointers from the variant pack

○ On the GPU and stream specified by the handle

CuDNN Handle



Execution Plan Construction

RUN TIME OP FUSION 

● CuDNN op fusion: enabled by an internal Fusible Ops framework built on cutlass
● CuDNN Graph is translated into internal Fusible Operations, which then generate a kernel 
● The fused kernel is compiled (via NVRTC), and run, on-the-fly

CuDNN 
Graph

Fusion
Kernel

Graph
Translation

Device 
Assembly

NVRTC
PTXAS

Fusible 
Ops

Code
Generation

Kernel run time (relative) GPU memory I/O (relative)
Use case
(half in/out, float accumulation)

Legacy API Graph API Legacy API Graph API

conv(FWD) + bias + relu 1 0.31 1 0.33
conv(FWD) + bias + tanh 1.02 0.32 1 0.33

measured on RTX 2080 Ti



LIBRARY SPLIT
● Split the library into multiple sub-libraries based use-cases 

● A cross product of training vs. inference and cnn (convolutional neural network) vs. advanced 

use-cases 

● File size for distribution and host/gpu memory utilization in mind 

● Compile time linking or lazy loading use-cases are supported 

● Benefits:

○ For embedded applications one can use only the sub-components that the application requires and 

reduce file size and memory consumption 

○ For frameworks lazy loading would allow applications using the framework to reduce memory footprint 

based on what the application actually uses. 



Static Loading with Dynamic Linkage

LIBRARY SPLIT -- use case illustration   
 

cudnn_ops_infer

cudnn_ops_train

cudnn_cnn_infer

cudnn_cnn_train

cudnn_adv_infer

cudnn_adv_train

Dynamic Lazy Loading

cudnn

cudnn_ops_infer

cudnn_ops_train

cudnn_cnn_infer

cudnn_cnn_train

cudnn_adv_infer

cudnn_adv_train

● No change in compilation command line
● First-time library load might be slower

● CNN Inference use case
● CNN Training use case 
● Advanced Inference use case (e.g. RNNs)
● Advanced Training use case 



Improvements of cudnn v8 on Volta and Turing
● Optimized grouped convolutions and 3D convolutions on Turing and Volta with added new 

kernels 

● Better heuristic selection improves performance across all 2D, 3D and grouped convolutions

● Addressed several long standing bug fixes  

● Some notable performance improvements : 

○ 3D convs  

○ Grouped convs 



Call to action 

● API Compatibility with 7.6 allows you to drop v8 in your favorite framework and benefit from the 

performance gains without changing your code

● We urge you to provide feedback as soon as you can

● Using the new API will allow you to tune for performance in your application , we would like to hear 

your experience with this new approach

● The graph API and runtime fusion capabilities are new features, we want to work with you on 

improvements on these fronts

● Library split is an acknowledgement that the library size is a concerns , it's not the end of the road , 

provide us with feedback for future improvements. 



Backup



IMPROVED TENSOR DESCRIPTOR 

Code Sample:

cudnnBackendCreateDescriptor(CUDNN_BACKEND_TENSOR_DESCRIPTOR, &Bdesc);

// set type and alignment
cudnnBackendSetAttribute(Bdesc, CUDNN_ATTR_TENSOR_DATA_TYPE,      CUDNN_TYPE_DATA_TYPE, 1, &dataType);
cudnnBackendSetAttribute(Bdesc, CUDNN_ATTR_TENSOR_BYTE_ALIGNMENT, CUDNN_TYPE_INT64,     1, &alignment);

// set dims and strides
cudnnBackendSetAttribute(Bdesc, CUDNN_ATTR_TENSOR_DIMENSIONS, CUDNN_TYPE_INT64, nbDims, dimA);
cudnnBackendSetAttribute(Bdesc, CUDNN_ATTR_TENSOR_STRIDES,    CUDNN_TYPE_INT64, nbDims, strA);

// set UID and whether it’s virtual
cudnnBackendSetAttribute(Bdesc, CUDNN_ATTR_TENSOR_IS_VIRTUAL, CUDNN_TYPE_BOOLEAN, 1, &isVirtual);
cudnnBackendSetAttribute(Bdesc, CUDNN_ATTR_TENSOR_UNIQUE_ID,  CUDNN_TYPE_INT64,   1, &uid);

cudnnBackendFinalize(Bdesc);

TensorDesc:
● UID = ‘X’
● isVirtual = false
● dataType = CUDNN_DATA_HALF
● alignment = 16B
● dim = {32, 64, 56, 56}
● stride = {200704, 1, 3584, 64}

● Goal: Encode symbolic mathematical relationship between tensors in each 
operation node

● “UID”: use to uniquely identify a tensor
● “isVirtual”: use to indicate whether the tensor exists in memory or needs to 

be written out to memory



NEW CONCEPT: OPERATION DESCRIPTOR
● Operation descriptor is the elementary unit that is used to 

express a computation in cuDNN v8 
● The basic element for the DAG of a fusion graph 
● Each operation node contains information about:

○ I/O: input/output tensors’ size, datatype, layout, UID
○ Math: parameters and settings that determine the math equations

● Example operations:   convolution, bias , activation. 
○ Support for N operators today, more to come in future releases.

● Example attributes: blah, blah 

Code Sample:

cudnnBackendCreateDescriptor(CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR, &opDesc);

// operator math config
cudnnBackendSetAttribute(opDesc, CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_CONV_DESC, CUDNN_TYPE_BACKEND_DESCRIPTOR, 1, convDesc);

// I/O descriptors
cudnnBackendSetAttribute(opDesc, CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_X, CUDNN_TYPE_BACKEND_DESCRIPTOR, 1, XTensorDesc));
cudnnBackendSetAttribute(opDesc, CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_W, CUDNN_TYPE_BACKEND_DESCRIPTOR, 1, WTensorDesc);
cudnnBackendSetAttribute(opDesc, CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_Y, CUDNN_TYPE_BACKEND_DESCRIPTOR, 1, YTensorDesc);

// blending coefficients
cudnnBackendSetAttribute(opDesc, CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_ALPHA, CUDNN_TYPE_DOUBLE, 1, &alpha);
cudnnBackendSetAttribute(opDesc, CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_BETA,  CUDNN_TYPE_DOUBLE, 1, &beta );
       
cudnnBackendFinalize(opDesc);

ConvOp:
• In: ‘X’, ‘W’
• Out: ‘Y’
• Math operator:

Tensor: UID=‘X’

Tensor: UID=‘W’

Tensor: UID=‘Y’
convDesc:
• mode = …
• accumulationType=...
• padding = {...}
• convStride={...}
• dilation={...}



NEW CONCEPT: OPERATION GRAPHS

Code Sample:

cudnnBackendCreateDescriptor(CUDNN_BACKEND_OPERATION_SET_DESCRIPTOR, &opSetDesc);

cudnnBackendSetAttribute(opSetDesc, CUDNN_ATTR_OPERATION_SET_HANDLE, CUDNN_TYPE_HANDLE, 1, &handle);
cudnnBackendSetAttribute(opSetDesc, CUDNN_ATTR_OPERATION_SET_OPS, CUDNN_TYPE_OPERATION, numOps, ops);

cudnnBackendFinalize(opSetDesc);

opGraph:
ConvOp:
• In: ‘X’, ‘W’
• Out: ‘T’
• Math operator:

Tensor: UID = ‘X’
             isVirtual = false

Tensor: UID = ‘W’
             isVirtual = false

Tensor: UID = ‘T’
             isVirtual = true

convDesc:
• mode = …
• accumulationType=...
• padding = {...}
• convStride={...}
• dilation={...}

ActivationOp:
• In: ‘T’
• Out: ‘Y’
• Math operator:

Tensor: UID = ‘T’
             isVirtual = true

Tensor: UID = ‘Y’
             isVirtual = false

activationDesc:
• mode = …
• NaN_propagation=...

1: 2:

● An array of operation nodes representing a computation sub-graph 
● Uses Tensor UIDs to deduce the data-flow of the computation sub-graph

Validation and graph construction



QUERYABLE ENGINE ATTRIBUTES

Code Sample
// Query For Numerical Notes From Engine
cudnnBackendNumericalNote_t notes[10];

cudnnBackendGetAttribute(engine, CUDNN_ATTR_ENGINE_NUMERICAL_NOTE, CUDNN_TYPE_NUMERICAL_NOTE, 10, &noteCount, &numNotes);

// Check For Non-Deteriminism Note

for(int noteIdx = 0; noteIdx < noteCount; noteIdx++) {

    if(numNotes[noteIdx] == CUDNN_NUMERICAL_NOTE_NONDETERMINISTIC) {

        // Engine will be non-deterministic

    }

}

cuDNN v7.6 allows users to query determinism for a given algorithm.
cuDNN v8.0 allows users to query all numerical notes, knobs and other attributes for a given 
EngineConfig.

Benefit: Users are able to query potentially important information which was previously hidden. 



NEW HEURISTIC API

Code Sample
// Create & Initialize EngineHeuristics Descriptor
cudnnBackendCreateDescriptor(CUDNN_BACKEND_ENGINEHEUR_DESCRIPTOR, &engHeur);

cudnnBackendSetAttribute(engHeur, CUDNN_ATTR_ENGINEHEUR_OPERATION_SET, CUDNN_TYPE_BACKEND_DESCRIPTOR, 1, opSetDesc);

cudnnBackendSetAttribute(engHeur, CUDNN_ATTR_ENGINEHEUR_MODE, CUDNN_TYPE_HEUR_MODE, 1, &heurMode);

cudnnBackendFinalize(engHeur);

// Create EngineConfig Descriptor
cudnnBackendCreateDescriptor(CUDNN_BACKEND_ENGINE_CONFIG_DESCRIPTOR, &engConfig));

// Retrieve Optimal EngineConfig Descriptor From Heuristic
//  *Users can change “1” to any number of results they would like to retrieve

cudnnBackendGetAttribute(engHeur, CUDNN_ATTR_ENGINEHEUR_RESULTS, CUDNN_TYPE_BACKEND_DESCRIPTOR, 1, &returnedCount, 

engConfig);

cuDNN v7.6 heuristics map a given Computation Case to an ideal algorithm. 
cuDNN v8.0 heuristics map a given Computation Case to an ideal EngineConfig. 

Benefit: Users can query Numerics, Knob Choices, Alignment from the EngineConfig.

Many kernels to choose from.  Ranks engines according to performance.  Can override. 



NEW CONCEPT: NON-EAGER EXECUTION 

Code Sample:

// create execution plan

cudnnBackendCreateDescriptor(CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR, &execPlan);

// set handle and engine config

cudnnBackendSetAttribute(execPlan, CUDNN_ATTR_EXECUTION_PLAN_HANDLE, CUDNN_TYPE_HANDLE, 1, &handle);

cudnnBackendSetAttribute(execPlan, CUDNN_ATTR_EXECUTION_PLAN_ENGINE_CONFIG, CUDNN_TYPE_BACKEND_DESCRIPTOR, 1, engConfig);

// execution plan validation

cudnnBackendFinalize(execPlan);

Separate APIs for build and execute stages

Amortise CPU overhead  -- runtime compilation, querying 
heuristics, searching kernel data-base, etc. 

Create once use multiple times 

CuDNN Handle



MAKE VARIANT PACK
● Lightweight container for data and workspace pointers for an 

Execution Plan
● May change every iteration, binds to the execution plan at 

execution time
● The pointer bindings are done through tensor descriptors’ UID

Code Sample:

// create the variant pack descriptor
cudnnBackendCreateDescriptor(CUDNN_BACKEND_VARIANT_PACK_DESCRIPTOR, &varPack);

// gather device UIDs and pointers
int64_t uids[]  = {xTensor.getUid(),    wTensor.getUid(),    yTensor.getUid()};
void *devPtrs[] = {xTensor.getDevPtr(), wTensor.getDevPtr(), yTensor.getDevPtr()};

// fill up the variant pack
cudnnBackendSetAttribute(varPack, CUDNN_ATTR_VARIANT_PACK_UNIQUE_IDS,    CUDNN_TYPE_INT64,    COUNTOF(uids),    uids);
cudnnBackendSetAttribute(varPack, CUDNN_ATTR_VARIANT_PACK_DATA_POINTERS, CUDNN_TYPE_VOID_PTR, COUNTOF(devPtrs), devPtrs);
cudnnBackendSetAttribute(varPack, CUDNN_ATTR_VARIANT_PACK_WORKSPACE,     CUDNN_TYPE_VOID_PTR, 1,                workspace);

// variant pack validation
cudnnBackendFinalize(varPack);



EXECUTE

● Execute the plan 
○ Using the engine and performance options from the execution plan
○ Using pointers from the variant pack
○ On the GPU and stream specified by the handle

CuDNN Handle



Execution Plan Construction

RUN TIME OP FUSION 

● CuDNN op fusion: enabled by an internal Fusible Ops API, built on cutlass
● CuDNN Graph is translated into Fusible Ops, which then generate Cutlass fusion kernel
● Today’s demo shows various fusions; basically five variations of conv-bias-activation fusion (bias/no 

bias, activation/no activation, using either relu or tanh activation)
● The various fusions are generated, compiled (via NVRTC), and run, on-the-fly (note the generated 

cutlass code)
● Note that the runs pass functionally, and perf is on par with well optimized off-line compiled 

convolution kernels.
● Today’s runs are all in fp32 compute with fp16 I/O, utilizing Tensor Cores on Turing architecture

CuDNN 
Graph

Fusion
Kernel

Graph
Translation

Device 
Assembly

NVRTC
PTXAS

Fusible 
Ops

Code
Generation


