
Dheeraj Peri, Jhalak Patel, Josh Park

DEPLOYING QUANTIZATION-AWARE
TRAINED NETWORKS USING TENSORRT

2

QUANTIZATION IN NEURAL NETWORKS

Post Training Quantization (PTQ)
Quantization Aware Training (QAT)

DESIGNING QUANTIZED NETWORKS

Train QAT network in Tensorflow
Transforming QAT network to ONNX

ACCELERATE QUANTIZED NETWORKS WITH TENSORRT

Optimize QAT networks with TensorRT
Inference and evaluation

AGENDA

3

INTRODUCTION

State of the art neural networks have seen tremendous success on computer vision, natural language processing,
robotics tasks.

With millions of floating-point operations, deployment of AI models in real time is challenging.

Some of the techniques for making neural networks faster and lighter

1) Architectural improvements

2) Designing new and efficient layers which can replace traditional layers

3) Neural network pruning which removes unimportant weights

4) Software and hardware optimizations

5) Quantization techniques

4

QUANTIZATION IN NEURAL NETWORKS

Quantization is the process of converting continuous values to discrete set of values using linear/non-linear scaling

techniques.

Dequantized FP32 tensors should not deviate too much from the pre-quantized FP32 tensor.

Quantization parameters are essential for minimizing information loss when converting from higher precision to

lower precision values.

0.34 3.75 5.64

1.12 2.7 -0.9

-4.7 0.68 1.43

64 134 217

76 119 21

3 81 99

quantize

FP32
(pre-quantized)

INT8
(quantized)

0.41 3.62 5.29

1.3 2.8 -0.92

-4.5 0.71 1.39

dequantize

FP32
(dequantized)

5

QUANTIZATION SCHEMES

Floating point tensors can be converted to lower precision tensors using a variety of quantization schemes.

e.g., R = s(Q – z) where R is the real number, Q is the quantized value

s and z are scale and zero point which are the quantization parameters (q-params) to be determined.

For symmetric quantization, zero point is set to 0. This indicates the real value of 0.0 is equivalent to a quantized

value of 0.

q-params can be determined from either post training quantization or quantization aware training schemes.

6

POST TRAINING QUANTIZATION (PTQ)

Start with a pre-trained model and evaluate it on a calibration dataset.

Calibration data is used to calibrate the model. It can be a subset of training

data.

Calculate dynamic ranges of weights and activations in the network to compute

quantization parameters (q-params).

Quantize the network using q-params and run inference.

Pre-trained

model

Gather layer

statistics

Quantize model

Calibration data

Compute

q-params

7

QUANTIZATION AWARE TRAINING (QAT)

Start with a pre-trained model and introduce quantization ops at

various layers.

Finetune it for a small number of epochs.

Simulates the quantization process that occurs during inference.

The goal is to learn the q-params which can help to reduce the

accuracy drop between the quantized model and pre-trained model.

Add QAT ops

Finetune with

QAT ops

Quantize model

for inference

Pre-trained

model

Store q-params

8

PTQ VS QAT

PTQ QAT

Usually fast Slow

No re-training of the model Model needs to be trained/finetuned

Plug and play of quantization

schemes

Plug and play of quantization

schemes (requires re-training)

Less control over final accuracy of

the model

More control over final accuracy

since q-params are learned during
training.

9

QAT IN TENSORFLOW

TF has a quantization API which automatically adds
quantization ops to a given graph.

tf.contrib.quantize.create_training_graph()
tf.contrib.quantize.create_eval_graph()

Provides tools to rewrite the original graph and adds
quantization ops for weights and activations.

Additional arguments need to be provided for configuring the
type of quantization.

We use tf.quantization.quantize_and_dequantize (QDQ)
operation for symmetric quantization.
Output = round(input *scale) * inverse_scale

10

TOOLKIT

Deep Learning examples toolkit open sourced by
NVIDIA.

NGC container support with latest features from
different frameworks.

End-End Workflow for deploying Resnet-50 with
QAT in TensorRT

1) Finetuning RN-50 QAT

2) Post processing

3) Exporting frozen graph

4) TF2ONNX conversion

5) TensorRT Inference

11

STEP 1: FINETUNING RN50 WITH QAT

tf.contrib.quantize.create_training_graph adds quantization nodes in the RN50 graph.

Quantization nodes are added at weights (conv/FC layers) and activation layers in the network.

Load the pre-trained weights, finetune the QAT model and save the new weights.

RN-50 graph
tf.contrib.quantize.

create_training_graph
Finetuning

Pretrained

Weights

New weights

12

STEP 2: POST PROCESSING

This step is required to ensure TensorRT builds successfully on RN50 QAT graph.

After finetuning, convert the final fully connected (FC) layer into a 1x1 convolution layer preserving the same
weights.

RN-50 QAT FC layer 1000 class
classification

Replace with 1x1 conv

13

STEP 3: EXPORTING FROZEN GRAPHS

Generate a frozen graph using the RN-50 QAT graph and the new weights from finetuning stage.

This step converts the variables in the graph to constants by using the weights in the checkpoints.

Both data formats (NCHW and NHWC) can be used, although NCHW is recommended for the final graph.

RN-50 QAT

graph

Convert variables

to constants
Frozen TF graph

New weights

14

STEP 4: TF2ONNX CONVERSION

QuantizeAndDequantize

Quantize Linear

Dequantize

Linear

tf2onnx

TensorFlow ONNX

TF2ONNX converter (https://github.com/onnx/tensorflow-onnx) transforms a TensorFlow pb file to ONNX.
It has conversion support for all common deep learning layers.

Support for QDQ layers in TF2ONNX converter has been added for the following conversion.

QDQ ops store information about dynamic ranges of the tensors. This is converted as scale and zero-point
parameters during ONNX conversion.

Support for QDQ: https://github.com/jhalakpatel/tensorflow-onnx/tree/fake_quant_ops_rewriter/tf2onnx

https://github.com/onnx/tensorflow-onnx
https://github.com/jhalakpatel/tensorflow-onnx/tree/fake_quant_ops_rewriter/tf2onnx​

15

Generated ONNX graph with QuantizeLinear and DequantizeLinear ops is parsed using ONNX parser available
in TensorRT.

TensorRT performs several optimizations on this graph and builds an optimized engine for the specific GPU.

STEP 5: TENSORRT INFERENCE

ONNX graph
ONNX

Parser

TensorRT

Graph

Optimizer

QAT

Optimizations

Build

Engine
Execute

Builder (Offline) Runtime

16

TENSORRT INFERENCE ACCELERATOR

17

QUANTIZATION

Op
fp32

Op
fp32

WxX

fp32 fp32

X

Y

fp32

Z

Non-Quantized

Op(Si, So)

fp32 / int8

Op(Si, Sw, So)

fp32 / int8

WxX

int8 int8

X

Y

int8

Y

Quantized Op

𝑄 𝑥, 𝑠𝑐𝑎𝑙𝑒, 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑(
𝑥

𝑠𝑐𝑎𝑙𝑒
+ 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡) - affine

𝑄 𝑥, 𝑠𝑐𝑎𝑙𝑒 = 𝑟𝑜𝑢𝑛𝑑(
𝑥

𝑠𝑐𝑎𝑙𝑒
) - symmetric*

* TensorRT only supports symmetric quantization

18

TensorRT

PTQ MODEL INFERENCE

• Computes:

• Per-tensor activation scale
• Per-channel weight scale

• Quantizes:
• Activation tensors

• Weights

Calibration

Calibration

data
Engine with both

quantized/non-

quantized ops

FP32 Model

Model trained without QAT

No control over which ops
are quantized

19

PTQ LIMITATIONS

X

A

Y

B

Quantized GEMM followed

by high precision activation
for accuracy eg. LSTM

Expect B
to execute in FP32

Expect A
to execute in INT8

X

C

Y

D

Quantized GEMM followed

by low precision activation
for speed eg. Image
classification

Expect D
to execute in INT8

Expect C
to execute in INT8

For best results, the network must:

• specify where quantization and dequantization take place.
• learn the best quantization scales .

20

QAT MODEL INFERENCE

X

A

B

Quantized GEMM followed

by high precision activation
for accuracy eg. LSTM

Expect B
to execute in FP32

Expect A
to execute in INT8

Quantized GEMM followed

by low precision activation
for speed eg. Image
classification

Y

Q

DQ

X

C

DQ

Expect D
to execute in INT8

Expect C
to execute in INT8

Y

Q

D

Quantize scale

Dequantize scale

Dequantize scale

Quantize scale

fp32

fp32
fp32

int8

int8

int8

int8

int8

fp32
fp32

21

Zero point must be 0. Symmetric scaling.

Per-tensor scaling.

Per-channel scaling with arbitrary scaling axis (k).

QUANTIZATION OPS

X

Q

Y

fp32

int8

Y

DQ

X

int8

fp32

ONNX::QuantizeLinear ONNX::DequantizeLinear

𝑦 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒(𝑟𝑜𝑢𝑛𝑑(
𝑥

𝑠𝑐𝑎𝑙𝑒𝑘
+ 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡𝑘) 𝑥 = 𝑦 − 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡𝑘 ∗ 𝑠𝑐𝑎𝑙𝑒𝑘

22

Recommend QDQ ops insertion at Inputs of quantizable ops

Matches QLinear/QConv semantics i.e. low precision input, high precision output.

No complexity in deciding whether to quantize output or not. Just Don't.

Let the ops decide what precision input they want.

QDQ OPS INSERTIONS: RECOMMENDATION

23

QDQ OPS INSERTIONS: RECOMMENDATION

Inserting QDQ ops at inputs (recommended)

Makes life easy for frameworks quantization tools

No special logic for Conv-BN or Conv-ReLU

Just insert QDQ in front of quantizable ops. Leave the rest to the back end (TensorRT).

Makes life easy for back end optimizers (TensorRT)

• Explicit quantization. No implicit rule eg. "Quantize operator input if output is quantized”.

Inserting QDQ ops at outputs (not recommended, but supported)

Some frameworks quantization tools have this behavior by default.

Sub-optimal performance when network is "partial quantization" i.e. not all ops are quantized.

Optimal performance when network is "fully quantized" i.e. all ops in network are quantized.

24

Some ops require high precision input form QConv/QLinear.

Don't insert QDQ at inputs.

Eg. LayerNorm (BERT), Sigmoid, TanH (LSTM), Swish (EfficientNet)

Some ops can handle low precision input without accuracy drop.

• Insert QDQ at inputs.

• Eg. GeLU (BERT), Softmax (BERT).

QDQ OPS INSERTIONS: AT INPUTS

Ops with quantized input F1

Baseline: Linear, MM, BMM 90.66

BaseLine + GeLU 90.28

BaseLine + LayerNorm after Linear 5.98

BERT large finetuned for squad v1.1 (91.01 F1 in fp32)

Ops with quantized input Top-1

Conv 80.28

Conv + Swish 78.37

EfficientNet b3 (81.61 top-1 in fp32)

25

QDQ OPS INSERTIONS: EXAMPLE

X

Linear*

Y

QDQ

Norm

fp32

fp32

fp32

fp32

X

QLinear

Y

Q

Norm

Quantizes
Linear

fp32

int8

fp32

fp32

X

Linear*

Y

QDQ

GeLU

fp32

fp32

fp32

fp32

Quantizes
Linear

QDQ

fp32

Quantizes
GeLU

X

QLinear

Y

Q

int8

int8

fp32

QGeLU
fp32

* Omitting weights QDQ for Linear op for simplifying diagram

Can be
fused

QAT Model Quantized

Inference
Model QAT Model

Quantized

Inference
Model

26

EXAMPLE: QAT MODEL INFERENCE

WX

X Conv Relu Conv

WY

Model trained without QAT

fp32 fp32

fp32 fp32fp32

27

FINE-TUNED TF GRAPH: WITH FAKE QUANT OPS

WX

X

FQ

FQ Conv Relu Conv

WY

FQ

FQ

Weight quantization can

be per-tensor or per-
channel

Activation

quantization is per-
tensor

Fake Quant ops are inserted before quantizable ops

fp32

fp32

fp32

fp32

fp32 fp32 fp32fp32fp32

WLOG FQ can be FakeQuant*, QDQV2, QDQV3

28

FINE-TUNED ONNX GRAPH: WITH QDQ OPS

WX

X

Q

Q Conv Relu ConvQDQ

DQ

WY

Q

DQ

DQ
Int8fp32 fp32 fp32 fp32 int8 fp32

Int8

fp32fp32

fp32

int8

fp32

QDQ rewriter in TF2ONNX converter replaces Fake Quant ops with QDQ pairs

fp32

29

QDQ GRAPH OPTIMIZER: FOLD CONSTANTS

WX’

X Q Conv Relu ConvQDQ

DQ DQ

DQ
Int8fp32 fp32 fp32 fp32 int8 fp32

Int8 Int8

fp32fp32

Note: QDQ graph optimizer is part of generic TensorRT graph optimizer

fp32

WY’

30

QDQ GRAPH OPTIMIZER: MATCH QUANTIZED OP AND FUSE

X Q Conv Relu ConvQDQ

DQ DQ

DQ
int8fp32 fp32 fp32 fp32 int8 fp32

fp32fp32

If there is no Q op available for

epilog fusion, this will fuse into
QConv with FP32 output

fp32

We fuse DQ ops with Conv, Conv

with Relu, and Q op with
ConvRelu to create QConvRelu
with INT8 inputs and INT8

output

WX’

Int8

WY’

Int8

31

QDQ GRAPH OPTIMIZER: QUANTIZED INFERENCE GRAPH

X Q QConvRelu
int8fp32

int8 QConv fp32

WX’
Int8

WY’
Int8

32

INFERENCE PIPELINE

Create network with kEXPLICIT_PRECISION flag.

Set trt.Builderflag.INT8 to enable INT8 precision.

Parse Resnet-50 ONNX graph using ONNX parser

available in TensorRT and build TensorRT engine.

Setup the test data pipeline and perform input pre-

processing and resizing operations.

Run the engine on the input data. Copy the outputs of

the model back to the host.

33

EVALUATION OF RESNET-50 QAT NETWORK

• The evaluation has been performed on RTX

2080 Ti GPU and Tensorflow 1.15.

• TF network is running in FP32 whereas TensorRT

inference is in INT8 precision.

Slight drop in accuracy (0.15 %).

Preprocessing of input images influences the final

accuracy.

Runtime is significantly improved by TensorRT.

Around 12x speed up.

34

CONCLUSION

Quantization aware training provides a new alternative to deploy networks in lower precision.

Since quantization scales are computed during training, QAT models might be less prone to accuracy drop during

inference compared to PTQ networks in some cases.

We have demonstrated an end to end workflow of Resnet-50 QAT model and show that the INT8 accuracy is close

to FP32 model.

