

UUsseerr GGuuiiddee

NNVVIIDDIIAA PPeerrffKKiitt

NNVVIIDDIIAA PPeerrffoorrmmaannccee TToooollkkiitt

DA-01800-001_v04 i
April 2013

Table of Contents

Introduction ... 2

System Requirements.. 3

PerfKit Getting Started .. 4

Installing PerfKit .. 4

Using PerfAPI ... 4

Simplified Experiments (SimExp) ... 6

Appendix A. Frequently Asked Questions .. 9

Appendix B. Counters Reference ... 10

Direct3D Counters ... 11

OpenGL Counters .. 12

GPU Counters .. 13

Simplified Experiments (SimExp) ... 23

Appendix C. PerfAPI Specification ... 31

DA-01800-001_v04 2
June 2012

 Introduction

Please read this entire document before you get started with PerfKit. Several
important issues are covered in this document that will help get things running
smoothly.

PerfKit gives every graphics application developer access to low-level
performance counters inside the driver and hardware counters inside the GPU
itself. NVIDIA® Nsight™ Visual Studio Edition is written on top of the same
technology, so the same real-time and profiling capabilities available in Nsight
are available for any application.

The performance counters are available using the PerfAPI. The counters can be
used to determine exactly how your application is using the GPU, identify
performance issues, and confirm that performance problems have been
resolved.

PerfKit consists of the following components:

 NVIDIA PerfAPI libraries and include files

 Sample code

 Driver Instrumentation Tray Application, which you can use to enable
and disable driver instrumentation.

 PerfKit

DA-01800-001_v04 3
April 2013

The diagram below shows how the various components of PerfKit fit together.

System Requirements

 NVIDIA Display Driver

 PerfKit signals are available on all NVIDIA GPUs listed below:

 GeForce 6XX (Kepler Family)

 GeForce 4XX and 5XX Series (Fermi Family)

 GeForce 2XX, 9, and 8 Series

PerfKit signals may or may not be available on other NVIDIA GPUs.

 PerfKit

DA-01800-001_v04 4
April 2013

PerfKit
Getting Started

Installing PerfKit

Follow the instructions below to install the instrumented driver and get started
using PerfKit.

1. The PerfKit is distributed as a single zip file. Unzip the PerfKit , preserving
the directory structure, to somewhere on your hard drive or other storage
system.

2. Start the Driver Instrumentation Tray application (called NVInstEnabler.exe)
which is contained in the root directory of the PerfKit

3. Right-click the tray icon in your system tray and make sure that the Driver
Instrumentation menu item is checked. Since this will add some CPU
overhead to the Driver, only leave this enabled when you are using the
PerfKit.

Using PerfAPI

The PerfAPI implementation is provided via the NvPmApi.h and
NvPmApi.Manager.h files included in the PerfKit distribution. This API provides
the developer with greater access to the capabilities of the GPU and driver
counters, as well as providing an interface to Simplified Experiments (SimExp),
which give even more detailed yet easy to use information about GPU
performance.

Setting up the PerfAPI is demonstrated by the sample code in the
Samples\Direct3DSample and Samples\OpenGLSample directories. Start by
placing the following code somewhere near the top of one of your cpp files:

 PerfKit

DA-01800-001_v04 5
April 2013

// **
// Set up NVPMAPI
#define NVPM_INITGUID
#include "NvPmApi.Manager.h"

// Simple singleton implementation for grabbing the NvPmApi
static NvPmApiManager S_NVPMManager;
extern NvPmApiManager *GetNvPmApiManager() {return &S_NVPMManager;}

const NvPmApi *GetNvPmApi() {return S_NVPMManager.Api();}

This code sets up the PerfAPI manager which, once initialized, gives you access
to the functions provided in the API. Next, you need to add the following code
to a place in your application that will be called one time (since you want the
PerfAPI only initialized once):

if(GetNvPmApiManager()->Construct(PATH_TO_NVPMAPI_CORE) != S_OK)
{
 return false; // This is an error condition
}

NVPMRESULT nvResult;
if((nvResult = GetNvPmApi()->Init()) != NVPM_OK)
{
 return false; // This is an error condition
}

This block will initialize the PerfAPI. The value PATH_TO_NVPMAPI_CORE
should be set to the location where NvPmApi.Core.dll is located on your system.
The PerfKit dlls are in the bin subdirectory where you unzipped the PerfKit files.
Make sure to use the path appropriate for your application (win7_x86 for 32 bit,
win7_x64 for 64 bit).

The next step is to tell the PerfAPI about your device or context. To do this, you
simply call:

 PerfKit

DA-01800-001_v04 6
April 2013

NVPMContext hNVPMContext(0);

if((nvResult = GetNvPmApi()->CreateContextFromD3D9Device(pd3dDevice, &hNVPMContext)) !=
NVPM_OK)
{
 return false; // This is an error condition
}

This will create an NVPMContext from the device you are using. There are
similar calls for CreateContextFromD3D10Device,
CreateContextFromD3D11Device and CreateContextFromOGLContext

The typical application that wants to sample GPU and driver counters requires
just a few source code changes. To add a counter, simply call:

GetNvPmApi()->AddCounterByName(hNVPMContext, “gpu_idle”);

Substitute the counter of interest for “gpu_idle” in this example. Finally, once
per frame, call:

GetNvPmApi()->Sample(hNVPMContext, NULL, &nCount);

to sample the currently active counter(s) and

GetNvPmApi()->GetCounterValueByName(hNVPMContext,
“gpu_idle”, 0, &value, &cycle);

to retrieve the resulting counter value. Any number of driver counters can be
enabled concurrently and will be updated every frame. GPU counters, however,
are a more limited resource, and can only sample a certain number of counters
per frame. The counter values can always be queried, but they will be refreshed
in a round robin fashion as they are sampled.

Simplified Experiments (SimExp)

One of more powerful features provided by PerfKit is the ability to run directed
experiments on the individual units of the GPU and gather performance
characteristics, called Simplified Experiments. For 8 locations in the GPU
pipeline, SimExp provides a “Speed of Light” (SOL) and a “Bottleneck” value.
The speed of light of a unit can be thought of as a utilization measurement. The
“value” returned percentage of time, during the experiment, the unit was
active, and the “cycle” returned gives the amount of time the experiment took
to run. Similarly, when running a Bottleneck experiment, the value represents
the percentage of time this unit was a bottleneck and the cycles is the
experiment duration.

Finally, there is an additional counter that will run all of the experiments needed
to determine what unit in the GPU is the bottleneck. It runs all of the speed of

 PerfKit

DA-01800-001_v04 7
April 2013

light and bottleneck experiments, passes the results through an expert system,
and returns an ordinal value for the unit that is the bottleneck. You can
translate that into a string name using

GetNvPmApi()->GetGPUBottleneckName(hNVPMContext, value,
name).

Since the Simplified Experiments require collecting data from multiple counters
in the GPU, they require multiple passes across the same scene data (as if the
game and all animations were paused) to complete the experiment. From a
paused frame in the application, this is accomplished using the
BeginExperiment(…)/EndExperiment(…) mechanism, detailed below.
As always, you still setup PerfAPI and enable the counter of interest using

GetNvPmApi()->AddCounterByName(hNVPMContext, ”GPU
Bottleneck”)

 PerfKit

DA-01800-001_v04 8
April 2013

Then, inside of your drawing loop, you would do the following:

 GetNvPmApi()->BeginExperiment(hNVPMContext, &nCount);
 for(i = 0; i < nCount; i++) {
 GetNvPmApi()->BeginPass(g_hNVPMContext, i);

 // For each draw call
 GetNvPmApi()->BeginObject(n);
 // Draw
 FlushGPU();
 GetNVPmApi()->EndObject(n);

 // … all of the draw calls and Present/Swap

 GetNvPmApi()->EndPass(i);
 }
 GetNvPmApi()->EndExperiment();

The FlushGPU() call is a call to make sure that the current draw call has
completed. In Direct3D you can use event queries and in OpenGL you can use
glFinish().

Once this is completed, you can query

GetNvPmApi()->GetCounterValueByName(hNVPMContext, “GPU
Bottleneck”, 0, &value, &cycles)

to determine which unit is the bottleneck. Because all of the underlying speed
of light experiments and bottleneck experiments are run in order to determine
this value, you can also query those values when the experiment is over. You
can determine the names of those individual counters by enumerating them
using this call:

GetNvPmApi()->EnumCountersByContext(hContext, EnumFunc)

 PerfKit

DA-01800-001_v04 9
April 2013

Appendix A.
Frequently Asked Questions

What does this error message mean, “HW necessary for GPU counters is
unavailable, HW counters are disabled.”

 Not all GPUs have the features necessary to provide the GPU counter
data. PerfKit signals are available on all NVIDIA GPUs listed under
System Requirements. PerfKit signals may or may not be available on
other GPUs.

I don’t seem to be getting good data from the PerfKit when running my
OpenGL application with more than 1 NVIDIA GPU installed

 This is a known issue with this release. Currently the OpenGL
implementation only supports a single GPU system. This will be fixed
in a future release.

I have discovered a problem that is not listed above. Who should I call?

 We want to make sure PerKit is a useful tool for developers analyzing
their applications. Please let us know if you encounter any problems
or think of additional features that would be helpful while using
PerfKit.

Contact us at: PerfKit@nvidia.com

mailto:PerfKit@nvidia.com

DA-01800-001_v04 10
June 2012

Appendix B.
Counters Reference

There are three types of counters available through PerfKit. Hardware counters
provide data directly from various points inside the GPU, while the software
counters, both OpenGL and Direct3D, give insight into the state and
performance of the driver. Simplified Experiments are multi-pass experiments
that give detailed information about the state of the GPU. All of the GPU
counters give results accumulated from the previous time the GPU was
sampled. For instance, the triangle_count gives the number of triangles
rendered since the last sample was taken. Once you integrate the counters into
your own application, you can sample on a per frame basis and correlate the
data to a given frame.

All of the software/driver counters represent a per frame accounting. These
counters are accumulated and updated in the driver per frame, so even if you
sample at a sub-frame rate frequency, the software counters will hold the same
data (from the previous frame) until the end of the current frame.

Counter data is provided as either raw values or as a percentage. Raw counters
count events (triangles, pixels, milliseconds, etc.) since the last call. Percentage
counters are event counts based on the clock rate where the event count is
divided by the number of cycles. For example, gpu_idle counts the number of
clock ticks that the GPU was idle since the last call. This value is automatically
divided by the total number of clock ticks to give the percentage of time that
the GPU was idle.

In contrast, sampling the GPU counters with the PerfAPI always returns raw
numbers for the value and cycle counts. Counting experiments (triangle_count,
vertex_count, etc.) return the same number for value and cycles, representing
the number of items encountered during the experiment (triangles, vertices,
etc.). Other experiments, like gpu_idle, rop_busy, etc. return the number of
clock cycles the GPU was signaling that state as the value, and the number of
cycles the experiment ran in cycles. You can query the attribute
NVPMA_COUNTER_DISPLAY_HINT to programmatically determine if a counter
should be displayed as a raw value (like triangle_count for instance), or as a
percentage (like gpu_idle). To display a percentage, simply divide the value by
the cycle count to calculate the appropriate percentage.

The Simplified Experiments report the results in a hybrid fashion. The event is
the integer percentage of the counter (XXX SOL, XXX Bottleneck) representing
percentage utilization and percent of the time the unit was a bottleneck,
respectively. The cycle count is the number of picoseconds that the experiment

 PerfKit

DA-01800-001_v04 11
April 2013

was run. Finally, the result of GPU Bottleneck is an integer in the event count
that is the unit that is determined to be the system bottleneck.

Table 1 shows a description of the available software and hardware counters. A
next a counter denotes a raw counter and % denotes a percentage counter.

Direct3D Counters

Table 1. Direct3D Counters

Direct3D Counter Description Official Name

FPS (#) D3D FPS

Frame Time (1/FPS) (#) in mSec D3D frame time

Driver Time (#) in mSec D3D time in driver

Driver Sleep Time (all reasons) (#) in mSec D3D driver sleeping

Triangle Count (#) D3D triangle count

Triangle Count Instanced (#) D3D triangle count instanced

Batch Count (#) D3D batch count

Locked Render Targets Count (#) D3D Locked Render Targets

AGP/PCIE Memory Used in Integer MB (#) D3D agpmem MB

AGP/PCIE Memory Used in Bytes (#) D3D agpmem bytes

Video Memory Used in Integer MB (#) D3D vidmem MB

Video Memory Used in Bytes (#) D3D vidmem bytes

Total video memory available in bytes (#) D3D vidmem total bytes

Total video memory available in integer MB (#) D3D vidmem total MB

Total Number of GPU to GPU Transfers (#) D3D SLI P2P transfers

Total Byte Count for GPU to GPU Transfers (#) D3D SLI P2P Bytes

Number of IB/VB GPU to GPU Transfers (#) D3D SLI Linear Buffer Syncs

Byte Count of IB/VB GPU to GPU Transfers (#) D3D SLI Linear Buffer Sync Bytes

Number of Render Target Syncs (#) D3D SLI Render Target Syncs

Byte Count of Render Target Syncs (#) D3D SLI Render Target Sync Bytes

Number of Texture Syncs (#) D3D SLI Texture Syncs

Byte Count of Texture Syncs (#) D3D SLI Texture Sync Bytes

Note that “D3D triangle count” will return the total number of primitives,
summed up from the primitive count sent in the DrawPrimitive call, not taking
into account instancing. “D3D triangle count instanced” takes into account the
frequency divider and returns the total number of triangles sent to the GPU.

 PerfKit

DA-01800-001_v04 12
April 2013

OpenGL Counters

Table 2. OpenGL Counters

OpenGL Counter Description Official Name

FPS (#) OGL FPS

Frame Time (1/FPS) (#) in mSec OGL frame time

Driver Sleep Time (waits for GPU) (#) in mSec OGL driver sleeping

% of the Frame Time driver is waiting (%) OGL % driver waiting

AGP/PCIE Memory Used in Integer MB (#) OGL AGP/PCI-E usage (MB)

AGP/PCIE Memory Used in bytes (#) OGL AGP/PCI-E usage (bytes)

Video Memory Used in Integer MB (#) OGL vidmem usage (MB)

Video Memory Used in bytes (#) OGL vidmem usage (bytes)

Total amount of video memory in bytes OGL vidmem total bytes

Total amount of video memory in integer MB OGL vidmem total MB

Number of batches in the frame OGL Frame Batch Count

Number of vertices in the frame OGL Frame Vertex Count

Number of primitives in the frame OGL Frame Primitive Count

 PerfKit

DA-01800-001_v04 13
April 2013

GPU Counters – GeForce 8, 9, and 2XX

The following diagram shows the various parts of the GeForce 8, 9, and 2XX
series GPUs and what signals correspond to each hardware unit.

 PerfKit

DA-01800-001_v04 14
April 2013

GPU Counters – Fermi and Kepler Families

The following diagram shows the various parts of the Fermi and Kepler families
of GPUs and what signals correspond to each hardware unit.

 PerfKit

DA-01800-001_v04 15
April 2013

GPU Graphics Counter Definitions

Many of these experiments are collected per SM and are appended by “_vsmN”,
with stands for “virtual SM”. The SMs are treated as discreet units in spite of
possible topology groupings as it makes addressing them easier for the user.
Also note that the Kepler SM counters also have a “_qM” field which allows
selection of which quadrant of the SM to collect the data from. Some of the
memory counters have “_fbN” appended to them in order to collect the data
from a given frame buffer unit. Finally, there are other counters that specify
which frame buffer slice (“sliceX”) or texture unit (texX) to sample from, which
are sub units of the frame buffer and TPC respectively. To determine the exact
count of these units you can enumerate the counters and determine the
bounds.

Table 3. Graphics Counters

Signal Name Definition GeForce
8/9/2XX

Fermi Kepler

gpu_idle / gpu_busy The % of time the GPU is idle/busy
since the last call. Having the GPU
idle at all is a waste of valuable
resources. You want to balance the
GPU and CPU workloads so that no
one processor is starved for work.
Time management or using
multithreading in your application
can help balance CPU based tasks
(world management, etc.) with the
rendering pipeline.

Y Y Y

input_assembler_busy The % of time the input assembler
unit is busy. This is mainly impacted
by both the number of vertices
processed as well as the size of the
attributes on those vertices. You
can optimize this by reducing vertex
size as much as possible and using
indexed primitives to take
advantage of the vertex cache.

Y N N

input_assembler_waits_for_fb This is the amount of time the input
assembler unit was waiting for data
from the frame buffer unit.

Y N N

 PerfKit

DA-01800-001_v04 16
April 2013

vertex_attribute_count The number of vertex attributes
that are fetched and passed to the
geometry unit is returned in this
counter. A large the number of
attributes (or unaligned vertices)
can hurt vertex cache performance
and reduce the overall vertex
processing capabilities of the
pipeline.

Y N N

geom_busy This measures the traffic from the
unit that distributes vertex and
geometry work to the shader units
for transforming the vertices. Draw
calls with large numbers of
primitives (or many draw calls with
small numbers of primitives) can
potentially cause this unit to
become a bottleneck.

Y N N

geom_waits_for_shader The amount of time the geom unit
spent waiting for the shader unit to
be ready to accept work.

Y N N

geom_vertex_in_count The number of vertices input to the
geom unit

Y N N

geom_primitive_in_count The number of primitives input to
the geom unit

Y N N

vertex_shader_busy This is the % of time that shader
unit 0 was busy scaled by the ratio
of vertex shader instructions to all
shader type instructions (or
vertex_shader_instruction_rate). If
this value is high but, for instance,
pixel_shader_busy is low, it is an
indication that you may be
vertex/geometry bound. This can
be from geometry that is too
detailed or even from vertex
programs that are overly complex
and need to be simplified. In
addition, taking advantage of the
post T&L cache (by reducing vertex
size and using indexed primitives)

Y N N

 PerfKit

DA-01800-001_v04 17
April 2013

can prevent processing the same
vertices multiple times.

vertex_shader_instruction_rate The % of all shader instructions
seen on the first SM unit that were
executing vertex shaders

Y Y Y

sm_instruction_count_vertex_vsmN The number of vertex shader
instructions executed on the given
SM

N Y Y

hull_shader_instruction_rate The % of all shader instructions
seen on the first SM unit that were
executing hull shaders

N Y Y

sm_instruction_count_hull_vsmN The number of hull shader
instructions executed on the given
SM

N Y Y

domain_shader_instruction_rate The % of all shader instructions
seen on the first SM unit that were
executing domain shaders

N Y Y

sm_instruction_count_domain_vsmN The number of domain shader
instructions executed on the given
SM

N Y Y

geometry_shader_busy This is the % of time that shader
unit 0 was busy scaled by the ratio
of geometry shader instructions to
all shader type instructions (or
geometry_shader_instruction_rate).

Y N N

geometry_shader_instruction_rate The % of all shader instructions
seen on the first SM unit that were
executing geometry shaders

Y Y Y

sm_instruction_count_geometry_vsmN The number of geometry shader
instructions executed on the given
SM

N Y Y

geom_vertex_out_count The number of vertices coming out
of the geom unit after any
geometry shader expansion

Y N N

geom_primitive_out_count The number of primitives coming
out of the geom unit after any

Y N N

 PerfKit

DA-01800-001_v04 18
April 2013

 geometry shader expansion

stream_out_busy This unit manages the writing of
vertices to the frame buffer when
using stream out. If a significant
number of vertices are written, this
can become a bottleneck.

Y N N

setup_primitive_culled_count Returns the number of primitives
culled in primitive setup. If you are
performing viewport culling, this
gives you an indication of the
accuracy of the algorithm being
used, and can give you an idea if
you need to improve this culling.
This includes primitives culled when
using backface culling. Drawing a
fully visible sphere on the screen
should cull half of the triangles if
backface culling is turned on and all
the triangles are ordered
consistently (CW or CCW).

Y N N

primitive_count /
setup_primitive_count

Returns the number of primitives
processed in the geometry
subsystem. This experiment counts
points, lines, and triangles. To count
only triangles, use the
triangle_count counter. Balance
these counts with the number of
pixels being drawn to see if you
could simplify your geometry and
use bump/displacement maps, for
example.

Y Y Y

triangle_count / setup_triangle_count Returns the number of triangles
processed in the geometry
subsystem

Y N N

setup_point_count The number of points seen by the
primitive setup unit (just before
rasterization)

Y N N

setup_line_count The number of lines seen by the
primitive setup unit (just before
rasterization)

Y N N

 PerfKit

DA-01800-001_v04 19
April 2013

shaded_pixel_count Counts the number of pixels
generated by the rasterizer and sent
to the pixel shader units.

Y Y Y

rasterizer_pixels_killed_zcull_count The number of pixels killed by the
zcull unit in the rasterizer

Y N N

pixel_shader_busy This is the % of time that shader
unit 0 was busy scaled by the ratio
of pixel shader instructions to all
shader type instructions (or
pixel_shader_instruction_rate).
This can give you an indication of if
you are pixel bound, which can
happen in high resolution settings
or when pixel programs are very
complex.

Y N N

pixel_shader_instruction_rate The % of all shader instructions
seen on the first SM unit that were
executing pixel shaders

Y Y Y

sm_instruction_count_pixel_vsmN The number of pixel shader
instructions executed on the given
SM

N Y Y

shader_busy This measures the how active the
unified shader unit is running any
type of shader. If you couple this
information with the various
shader_instruction_rate values you
can get an idea for the workload the
shader unit has and which shader
types to tune if the shader unit
becomes a bottleneck.

Y Y Y

shader_waits_for_texture This is the amount of time that the
pixel shader unit was stalled waiting
for a texture fetch. Texture stalls
usually happen if textures don’t
have mipmaps, if a high level of
anisotropic filtering is used, or if
there is poor coherency in accessing
textures.

Y N N

 PerfKit

DA-01800-001_v04 20
April 2013

shader_waits_for_geom This is the amount of time the
shader unit spent waiting for the
geom unit to send work.

Y N N

shader_waits_for_rop This is the % of time that the pixel
shader is stalled by the raster
operations unit (ROP), waiting to
blend a pixel and write it to the
frame buffer. If the application is
performing a lot of alpha blending,
or even if the application has a lot
of overdraw (the same pixel being
written multiple times, unblended)
this can be a performance
bottleneck.

Y N N

texture_busy This is a measurement of how busy
the texture unit is. This covers both
time spent sampling values from the
frame buffer (through the texture
cache) and the time spent
computing any filtering that is
enabled (like bilinear or anisotropic).
Reducing both the number of taps
and the filtering level will help to
reduce any bottleneck in the texture
unit.

Y Y Y

texture_waits_for_fb This is the amount of time the
texture unit spent waiting on
samples to return from the frame
buffer unit. It is a potential
indication of poor texture cache
utilization.

Y N N

texture_waits_for_shader This is the amount of time the
texture unit spent waiting to send
results to the shader unit. If the
queue between those units gets too
full (because the shader unit isn’t
ready to receive those values), this
can become a bottleneck.

Y N N

texture_sample_base_level_rate The percentage of texture samples
which read from the base texture
level. This can be useful to

Y N N

 PerfKit

DA-01800-001_v04 21
April 2013

determine if your base texture level
is too large and can be reduced to
the next mipmap level.

texture_sample_average_level The average LOD sourced across all
texture reads.

Y N N

rop_busy % of time that the ROP unit is
actively doing work. This can be
high if alpha blending is turned on,
of overdraw is high, etc.

Y Y Y

rop_waits_for_fb The amount of time the blending
unit spent waiting for data from the
frame buffer unit. If blending is
enabled and there is a lot of traffic
here (since this is a
read/modify/write operation) this
can become a bottleneck.

Y N N

rop_waits_for_shader This is a measurement of how often
the blending unit was waiting on
new work (fragments to be placed
into the render target). If the pixel
shaders are particularly expensive,
the ROP unit could be starved
waiting for results.

Y N N

rop_pixels_killed_earlyz_count This returns the number of pixels
that were killed in the earlyZ
hardware. This signal will give you
an idea of, for instance, a Z only
pass was successful in setting up the
depth buffer.

Y N N

rop_pixels_killed_latez_count This returns the number of pixels
that were killed after the pixel
shader ran. This can happen if the
early Z is unable cull the pixel
because of an API setup issue like
changing the Z direction or
modifying Z in the pixel shader.

Y N N

fb_subpN_read_sectors_fbN The number of sectors read from
the given sub partition on the
specified frame buffer unit

N Y Y

 PerfKit

DA-01800-001_v04 22
April 2013

fb_subpN_write_sectors_fbN The number of sectors written to
the given sub partition on the
specified frame buffer unit

N Y Y

tex0_cache_sector_misses_fbN The number of texture cache misses
from unit X for the specified GPC
and TPC

N Y Y

tex0_cache_sector_queries_fbN The number of texture cache
queries from unit X for the specified
GPC and TPC

N Y Y

tex0_bank_conflicts_fbN The number of texture cache
conflicts from unit X for the
specified GPC and TPC

N Y Y

 PerfKit

DA-01800-001_v04 23
April 2013

GPU Compute Counter Definitions

This is the table of counters available for compute programs (DirectCompute).
These are only available on the Fermi and Kepler families of chips. See the note
on the graphics counters for information on the unit specifiers.

Table 4. Compute Counters

Signal Name Definition Fermi Kepler

fb_subpM_read_sectors_fbN The number of 32 byte sectors
read from the given sub partition
on the specified frame buffer unit

Y Y

fb_subpM_write_sectors_fbN The number of 32 byte sectors
written to the given sub partition
on the specified frame buffer unit

Y Y

texX_cache_sector_misses_gpcN_tpcM The number of texture 32 byte
cache misses from unit X for the
specified GPC and TPC

Y Y

texX_cache_sector_queries_gpcN_tpcM The number of texture 32 byte
cache queries from unit X for the
specified GPC and TPC

Y Y

texX_bank_conflicts_gpcN_tpcM The number of texture cache
conflicts from unit X for the
specified GPC and TPC

Y Y

cta_launched_vsmN The number of CTAs launched by
this SM

Y Y

warps_launched_vsmN /
warps_launched_qM_vsmN

The number of warps launched on
this SM (or the quadrant of the SM
on Kepler).

Y Y

threads_launched_vsmN /
threads_launched_qM_vsmN

The number of threads launched
on this SM (or the quadrant of the
SM on Kepler).

Y Y

active_warps_vsmN / active_warps_qM_vsmN This counter increments by 0-48
each cycle for the number of
warps that are currently active on
the SM (or by increments of 0-16

Y Y

 PerfKit

DA-01800-001_v04 24
April 2013

for a quadrant of an SM on
Kepler).

active_cycles_vsmN / active_cycles_qM_vsmN The number of cycles the SM (or
the quadrant of the SM on Kepler)
had at least one active warp.

Y Y

branches_vsmN / branches_qM_vsmN The number of branches
instructions executed by threads
running on this SM (or the
quadrant of the SM on Kepler)

Y Y

divergent_branches_vsmN /
divergent_branches_qM_vsmN

The number of divergent branches
(conditional evaluated differently
across the warp) taken by threads
running on this SM (or the
quadrant of the SM on Kepler)

Y Y

inst_issued_vsmN / inst_issued_qM_vsmN The number of instructions issued,
including replays, on this SM (or
this quadrant of the SM on Kepler).

Y Y

inst_executed_vsmN /
inst_executed_qM_vsmN

The number of instructions
executed, not including replays, on
this SM (or this quadrant of the SM
on Kepler)

Y Y

inst_executed_red_vsmN The number of reduction
instructions (RED) executed by this
SM

Y N

inst_executed_atom_cas_vsmN /
inst_executed_atom_cas_qM_vsmN

The number of atomic compare-
and-swap insreuctions (CAS)
executed on this SM (or this
quadrant of the SM on Kepler)

Y Y

inst_executed_atom_vsmN /

inst_executed_atom_qM_vsmN

The number of atomic instructions,
including compare-and-swap
instructions (CAS) executed on this
SM (or this quadrant of the SM on
Kepler)

Y Y

inst_executed_shared_loads_vsmN The number of load instructions
from shared memory executed on
this SM

Y Y

 PerfKit

DA-01800-001_v04 25
April 2013

inst_executed_shared_stores_vsmN The number of store instructions to
shared memory executed on this
SM

Y Y

inst_executed_global_loads_vsmN The number of load instructions
from global memory executed on
this SM

Y N

inst_executed_global_loads_uncached_vsmN The number of uncached load
instructions from global memory
executed on this SM

Y N

inst_executed_global_stores_vsmN The number of store instructions to
global memory executed on this
SM

Y N

inst_executed_local_loads_vsmN The number of load instructions
from local memory executed on
this SM

Y N

inst_executed_local_stores_vsmN The number of store instructions to
local memory executed on this SM

Y N

inst_executed_generic_loads_vsmN The number of generic load
instructions to global, local, or
shared memory executed on this
SM.

N Y

inst_executed_generic_loads_uncached_vsmN The number of uncached generic
load instructions to global, local, or
shared memory executed on this
SM

N Y

inst_executed_generic_stores_vsmN The number of generic store
instructions to global, local, or
shared memory executed on this
SM

N Y

thread_inst_executed_even_vsmN The number of instructions
executed on this pipeline of the
SM. Incremented by the number
of active threads executing the
instruction.

Y N

thread_inst_executed_odd_vsmN The number of instructions
executed on this pipeline of the

Y N

 PerfKit

DA-01800-001_v04 26
April 2013

SM. Incremented by the number
of active threads executing the
instruction.

thread_inst_executed_qN_vsmN The number of instructions
executed on this quadrant of the
SM. Increments by the number of
active threads executing the
instruction.

N Y

pm_event_0X / pm_event_0X_qN The number of __prof_trigger(0X)
instructions executed on this SM
(or this quadrant of the SM on
Kepler)

Y Y

l1_local_load_transactions_hit_vsmN The number of 128 byte local load
hits on the L1 cache

Y Y

l1_local_load_transactions_miss_vsmN The number of 128 byte local load
misses on the L1 cache

Y Y

l1_local_store_transactions_hit_vsmN The number of 128 byte local store
hits on the L1 cache

Y Y

l1_local_store_transactions_miss_vsmN The number of 128 byte local store
misses on the L1 cache

Y Y

l1_local_shared_load_transactions_vsmN The number of 128 byte shared
loads on the L1 cache

Y Y

l1_local_shared_store_transactions_vsmN The number of 128 byte shared
stores on the L1 cache

Y Y

l1_global_store_transactions_vsmN Total number of 128 byte global
store transactions on the L1 cache

Y Y

l1_shared_bank_conflicts_vsmN Total number of shared memory
conflicts on the L1 cache

Y N

l1_ global_load_transactions_hit_vsmN The number of 128 byte global
load hits on the L1 cache

Y Y

l1_ global_load_transactions_miss_vsmN The number of 128 byte global
load stores on the L1 cache

Y Y

l2_sliceX_read_sectors_fbN The number of 32 byte sectors Y Y

 PerfKit

DA-01800-001_v04 27
April 2013

read from the given L2 cache

l2_sliceX_read_sectors_atomic_fbN The number of 32 byte sectors
read for atomic operations from
the given L2 cache

Y Y

l2_sliceX_read_sectors_l1_fbN The number of 32 byte sectors
read by an L1 cache from the given
L2 cache

Y Y

l2_sliceX_read_sectors_tex_fbN The number of 32 byte sectors
read by a texture unit from the
given L2 cache

Y Y

l2_sliceX_read_ sysmem_sectors_fbN The number of 32 byte sectors
read when accessing system
memory from the given L2 cache

Y Y

l2_sliceX_read_ vidmem_sectors_fbN The number of 32 byte sectors
read when accessing video
memory from the given L2 cache

Y Y

l2_sliceX_read_hit_sectors_fbN The number of 32 byte sector
reads that hit from the given L2
cache

Y Y

l2_sliceX_read_hit_sectors_atomic_fbN The number of 32 byte sector
reads that hit for atomic
operations from the given L2 cache

Y Y

l2_sliceX_read_hit_sectors_l1_fbN The number of 32 byte sector
reads that hit by an L1 cache from
the given L2 cache

Y Y

l2_sliceX_read_hit_sectors_tex_fbN The number of 32 byte sector
reads that hit by a texture unit
from the given L2 cache

Y Y

l2_sliceX_read_hit_sysmem_sectors_fbN The number of 32 byte sector
reads that hit when accessing
system memory from the given L2
cache

Y Y

l2_sliceX_read_hit_vidmem_sectors_fbN The number of 32 byte sectors
read when accessing video
memory from the given L2 cache

Y Y

 PerfKit

DA-01800-001_v04 28
April 2013

l2_sliceX_write_sectors_fbN The number of 32 byte sectors
written to through the given L2
cache

Y Y

l2_sliceX_write_atomic_fbN The number of 32 byte sectors
written by atomic operations
through the given L2 cache

Y Y

l2_sliceX_write_l1_fbN The number of 32 byte sectors
written by L1 caches through the
given L2 cache

Y Y

l2_sliceX_write_tex_fbN The number of 32 byte sectors
written by a texture unit through
the given L2 cache

Y Y

l2_sliceX_write_sysmem_sectors_fbN The number of 32 byte system
memory sectors written through
the given L2 cache

Y Y

l2_sliceX_write_vidmem_sectors_fbN The number of 32 byte video
memory sectors written through
the given L2 cache

Y Y

 PerfKit

DA-01800-001_v04 29
April 2013

Simplified Experiments (SimExp)

Table 5 lists the Simplified Experiments. Each unit has 2 experiments that can
be run, the Bottleneck and the SOL experiment. For a Bottleneck experiment,
the value represents the percentage of time that the unit was a bottleneck and
the cycles returned is the amount of time, in CPU clock cycles, that the
experiment was run. A bottleneck is basically defined as the amount of time the
given unit prevented units downstream from doing work minus the amount of
time the unit upstream prevented this unit from doing any work. You typically
want these numbers to be low and note that a unit doesn’t have to be a
bottleneck 100% of the time (or even 50%) to be a candidate for optimization.
Any amount of time that a unit prevents work from flowing translates directly to
overall draw call time and will contribute to frame time depending on the
surrounding workloads.

For the SOL experiment, the value is a percentage measurement of how much
work the unit did, versus how much could have been done, for the duration of
the experiment, and the cycles is again the number of cycles the experiment
ran. You typically want this to be as high as possible and it give you an idea of
how much head room you might have in the GPU. For instance, if you are
seeing a high shader bottleneck with a low texture bottleneck and
utilization/SOL, you might consider taking some calculations and prebaking
them into a texture to be sampled instead.

Note that the NVIDIA Nsight™ Visual Studio Edition, the SOL experiment results
are displayed as “Utilization”.

Table 5. Simplified Experiments

SimExp Name Definition GeForce
8/9/2XX

Fermi Kepler

IDX Bottleneck &
SOL

IDX is the unit on early GPUs that
handles vertex attribute assembly.

Y N N

IA Bottleneck & SOL IA is the unit on Fermi and Kepler
GPUs that handles vertex attribute
assembly.

N Y Y

GEOM Bottleneck &
SOL

GEOM is the unit on early GPUs
that handles scheduling vertex
and geometry work to the shader
units.

Y N N

Primitive Setup
Bottleneck & SOL

Primitive setup happens right
before rasterization and handles
jobs like edge equation

Y Y Y

 PerfKit

DA-01800-001_v04 30
April 2013

calculations.

SHD Bottleneck &
SOL

SHD is the unified shader unit and
handles processing of all shader
types on various inputs.

Y Y Y

ZCULL Bottleneck &
SOL

ZCull happens before the
fragment shader is run and is able
to discard fragments because they
won’t pass the z-test.

N Y Y

TEX Bottleneck &
SOL

The TEX unit is responsible for
reading samples from the frame
buffer and calculating the texel
value based on the current
filtering mode.

Y Y Y

ROP Bottleneck &
SOL

ROP is the blending unit and
handles both color blending and
Z/stencil buffer handling.

Y Y Y

Rasterization
Bottleneck & SOL

Rasterization is when the
primitives are split up into
individual fragments to be shaded.

Y Y Y

FB Bottleneck & SOL The FB or frame buffer unit
handles all request for reading
memory that missed any possible
L1/L2 caches.

Y Y Y

DA-01800-001_v04 31
June 2012

Appendix C.
PerfAPI Specification

All functions return NVPM_OK if everything worked out just fine. They can also
return NVPM_ERROR_INTERNAL for internal errors. If this happens, please send
email to PerfKit@nvidia.com with details about the API usage. Please note that
all of the NVPM_WARNING_* messages have not been implemented yet, and
will be supported in a future release.

Enumerate available counters:

The callback function will continue to be called until all of the counters are
enumerated or until anything but NVPM_OK is returned.

typedef NVPMRESULT (*NVPMEnumFunc)(NVPMCounterID unCounterID, char
*pcCounterName);

NVPMRESULT EnumCountersByContext(NVPMContext

hContext, NVPMEnumFunc pEnumFunction);

Error return values:

NVPM_ERROR_BAD_ENUMERATOR: A bad/NULL pointer was sent for the
enumerator function

NVPM_WARNING_ENDED_EARLY: Enumeration was stopped before the end of
the counter list was reached

Get various counter information:

Passing NULL for pcString and a valid pointer for punLen will return the length of
the name in punLen. Passing a pointer in pcString and a buffer size in punLen
will attempt to write the name (\0 term) to pcString. If the buffer is too small,
nothing is written and punLen is set to the string length needed.

NVPMRESULT GetCounterName(NVPMCounterID unCounterID,

char *pcString, NVPMUINT *punLen);

NVPMRESULT GetCounterDescription(NVPMCounterID

unCounterID, char *pcString, NVPMUINT *punLen);

mailto:PerfKit@nvidia.com

 PerfKit

DA-01800-001_v04 32
April 2013

NVPMRESULT GetCounterAttribute(NVPMCounterID

unCounterID, NVPMUINT unAttribute, NVPMUINT

*punValue);

Error return values:

NVPM_ERROR_STRING_TOO_SMALL: pcString is too small based on size passed
in punLen

Enable a counter for sampling:

NVPMRESULT AddCounterByName(NVPMContext hContext,

char *pcName);

NVPMRESULT AddCounter(NVPMContext hContext,

NVPMCounterID unID);

NVPMRESULT AddCounters(NVPMContext hContext,

NVPMUINT unCount, NVPMCounterID *punIDs);

Error return values:

NVPM_ERROR_INVALID_COUNTER

Disable a counter(s):

NVPMRESULT RemoveCounterByName(NVPMContext hContext,

char *pcName);

NVPMRESULT RemoveCounter(NVPMContext hContext,

NVPMCounterID unID);

NVPMRESULT RemoveCounters(NVPMContext hContext,

NVPMUINT unCount, NVPMCoutnerID *punIDs);

NVPMRESULT RemoveAllCounters();

Error return values:

NVPM_ERROR_INVALID_COUNTER

NVPM_WARNING_COUNTER_NOT_ENABLED

NVPM_WARNING_NO_COUNTERS: No counters were enabled

Experiment interface:

Signals to NVPerfAPI that the user is ready to begin sampling. It returns in
pnNumPasses the number of passes it will take to provide data for all of the
enabled counters.

 PerfKit

DA-01800-001_v04 33
April 2013

NVPMRESULT BeginExperiment(NVPMContext hContext,

NVPMUINT *punNumPasses);

NVPMRESULT EndExperiment(NVPMContext hContext);

Error return values:

NVPM_ERROR_NO_COUNTERS: No counters are enabled

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment not called

NVPM_ERROR_EXPERIMENT_INCOMPLETE: Didn't call the correct number of
passes specified by BeginExperiment

Pass interface:

NVPMRESULT BeginPass(NVPMContext hContext, NVPMUINT

nPass);

NVPMRESULT EndPass(NVPMContext hContext, NVPMUINT

nPass);

Error return values:

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment() was not called

NVPM_ERROR_PASS_SKIPPED: Passes were not given in sequence

NVPM_ERROR_INVALID_PASS: An pass number not valid for the current
experiment was given

NVPM_WARNING_PASS_NOT_ENDED: Previous pass was not ended with
EndPass()

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment() was not called

NVPM_ERROR_NOT_IN_PASS: BeginPass wasn't called or was called with
another pass number

NVPM_WARNING_OBJECT_NOT_ENDED: The last EndObject was not called

NVPM_WARNING_PASS_INCOMPLETE: BeginObject()/EndObject() was not
called for all allocated objects

Object interface:

Allocate slots for counter data to be put into. If this isn't done, all data is put in
"slot 0". Up to NVPM_MAX_OBJECTS (currently 1024) objects are currently
supported.

 PerfKit

DA-01800-001_v04 34
April 2013

NVPMRESULT ReserveObjects(NVPMContext hContext,

NVPMUINT unNumObjects);

Error return values:

NVPM_OUT_OF_MEMORY: Too many objects are trying to be allocated.

NVPMRESULT BeginObject(NVPMContext hContext,

NVPMUINT unObjectID);

NVPM_ERROR_UNKNOWN_OBJECT: Object was not allocated with
AllocObjects()

NVPM_ERROR_NOT_IN_PASS: BeginPass was not called

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment was not called

NVPM_WARNING_OBJECT_NOT_ENDED:MEndObject wasn't called

NVPMRESULT EndObject(NVPMContext hContext, NVPMUINT

unObjectID);

NVPM_ERROR_UNKNOWN_OBJECT: Object was not allocated with
AllocObjects()

NVPM_ERROR_NOT_IN_PASS:MBeginPass was not called

NVPM_WARNING_DRAW_COUNT_CHANGED: The number of DPs for the
changed from one pass to the next

Retrieving results:

NVPMRESULT GetCounterValueByName(NVPMContext

hContext, char *pcName, NVPMUINT unObjectID,

NVPMUINT64 *pulValue, NVPMUINT64 *pulCycles);

NVPMRESULT GetCounterValue(NVPMContext hContext,

NVPMUINT unID, NVPMUINT unObjectID, NVPMUINT64

*pulValue, NVPMUINT64 *pulCycles);

NVPMRESULT GetGPUBottleneckName(NVPMContext

hContext,NVPMUINT ulValue, char *pcName);

NVPM_ERROR_COUNTER_NOT_ENABLED: Asked for a counter that isn't
currently sampling

NVPM_ERROR_EXPERIMENT_NOT_RUN: No data because a new experiment
needs to be run (usually happens when they run an exp, enable a counter, and
try and sample the previous experiments)

NVPM_ERROR_EXPERIMENT_RUNNING: Cannot sample while the experiment is
running

 PerfKit

DA-01800-001_v04 35
April 2013

Misc functions:

UINT GetExtendedError()

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2012-2013 NVIDIA Corporation. All rights reserved.

