Chapter 1.
Quick Tutorial

Overview

This chapter presents a short PerfHUD 5 tutorial to quickly introduce you to several
convenient and powerful new features. Even if you’ve used previous versions of
PerfHUD, we highly recommend that you read through this tutorial because so
much is new in PerfHUD 5.

Launching PerfHUD

DA-01231-001_v07
October 2006

By default, the PerfHUD installer will place a shortcut to the PerfHUD Launcher
on your desktop. To analyze an application, simply drag its icon onto the PerfHUD
launcher. Keep in mind that the application needs to opt-in for PerfHUD analysis,
to prevent unauthorized patties from analyzing your application.

Let’s analyze the sample DirectX 10 application that ships with PerfHUD, Sparkles.
(This sample is taken from the NVIDIA Direct3D 10 SDK, and includes the opt-in
modification.) For this particular application, you can use the “Sparkles Sample”
shortcut in the PerfHUD group in the Start menu.

If this is the first time you’re running PerfHUD, you’ll see a configuration dialog
box. The main thing you have to do here is to choose a shortcut key. Pick Ctrl+Z.

Once you click OK, Sparkles will start, and PerfHUD will be running on it, as
shown below.

Note that any keyboard or mouse input will still go the Sparkles application, and not
to PerfHUD, until you activate PerfHUD using your hotkey (Ctrl+Z). PerfHUD
reminds you of your hotkey with a message at the bottom of the screen: “Press
Ctrl+Z to activate PerfHUD”.

Before activating PerfHUD, press F9 and F10 to hide the user interface of Sparkles,
reducing clutter. (Remember, these are hotkeys of Sparkles — once PerfHUD is
active, F9 and F10 will perform different functions.)

NVIDIA PerfHUD User Guide

S0 (e] Tl AR Teem B5 Spemt 1 Shmbers Used kbl 175 o] ki)

Activating PerfHUD

Activate PerfHUD by pressing Ctrl+Z. You’ll see the status line at the bottom of
the screen change to four buttons, one for each mode of PerfHUD:

R = S— ! ! P —

Now, any keyboard or mouse input you make will affect PerfHUD. You can toggle
between PerfHUD and your application at any time. For example, you may want to
navigate to a different part of the scene to analyze it, and then re-enable PerfHUD
when you’re done.

Help Screen

At any time while you’re running PerfHUD, you can press F1 to view the Help
window. This window also has options for getting System Information as well as
setting various PerfHUD options.

Performance Dashboard

PerfHUD starts in the Performance Dashboard. This mode displays many useful
data values, such as per-unit GPU utilization, driver time, memory usage, and more.
New in PerfHUD 5 is the ability to completely customize the Performance
Dashboard’s layout.

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

Creating

a New Batch Size Graph

Let’s start by creating a new Batch Size graph. This graph displays batches and
sizes, allowing you to easily understand the batching characteristics of your
application.

To add a new graph, right-click on the background and choose New Batch Size
Graph.

Mewe GPUIDriver Graph

Mew: Batch Size Graph I
Mewe Unified Shader GraphbT
Mewe Memory Reqguest Graph
Mewy Chiect Creation LED

Graphs Locked

Remove All Graphs
Restore Layout
Default Layvaut
Save Layout

A new Batch Size graph will now appear with its default settings:

(A

g
5

o

_ ,
_ |
_ :
— i’
2400 aq00 B g

Every graph in the Performance Dashboard is customizable. To do this, simply
hover your mouse anywhere on the graph. You'll see three boxes appear: blue and
red boxes at the upper right of the graph, and a green box on the lower right:

0 Clicking on the blue box brings up a configuration dialog.

U Clicking on the red box closes the current graph.

0 Clicking and dragging on the green box resizes the current graph.

Let’s customize the Batch Size Graph. First, resize it using the green box. Then
click on the blue box and you’ll see the Graph Configuration Dialog.

Set the Maximum Batch Size to 100. Then click OK. The graph will now show
more bars.

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

itz e fle i) Bzl

fuliry Elaich Sive
flins Elzier Sizs

Ejcisa coun s 100)

Cancel

Adding Signals

The most common type of graph in PerfHUD is the GPU/Driver Graph. Each
GPU/Driver graph can display up to 4 signals simultaneously. PerfHUD 5 allows
you to choose from a huge list of both GPU and driver signals, allowing you to
monitor virtually any aspect of your application’s graphics performance.

Let’s add some signals to the GPU/Driver graph that displays the DrawPrimitive
Count and Average Batch by default. To do this, hover over the graph and click on
the blue square at the upper-right of the graph. A Graph Configuration Dialog will

pop up:

i e WS e e ik Bzl

| local_dpeount [v DrarvwPrim Count Rawy [V
Crzan local_zvg_batch_size [~ [y Batch Raw |w
Bluz Disabled e[] Rew v

el Disakled e[] Raw |~

Here, you can choose any signal you want for each line color, as well as descriptions
for each. You can also decide whether you want to graph the raw signal or a
percentage.

Choose D3D FPS for the blue line, and name it “FPS”.
Choose D3D vidmem MB for the yellow line, and name it “D3D Vid Mem (MB)”

Speeding Up and Slowing Down Time

By pressing the + and — keys, you can scale the passing of time from 0x faster than
normal down to 1/8 speed. Pressing the — key again when at 1/8 speed will freeze

DA-01231-001_v07
October 2006

Running

time completely. Controlling time is helpful when you want to find a particularly

troublesome set of frames.

Experiments

NVIDIA PerfHUD User Guide

You can also perform various useful experiments from the Performance Dashboard.

These are listed below along with their respective keyboard shortcuts.

Use 2x2 Textures

Set NULL Viewport

Wireframe

Ignore Draw Calls

Color Fixed Function Shaders Red
Color ps_1_1 Shaders Light Green
Color ps_1_3 Shaders Green
Color ps_1_4 Shaders Yellow
Color ps_2_0 Shaders Light blue
Color ps_2_a Shaders Blue

Color ps_3_0 Shaders Orange

Color ps_4_0 Shaders Red

Using the Frame Debugger

DA-01231-001_v07
October 2006

Ctrl+T

Ctrl+V

Ctrl+W

Ctrl+N

Ctrl+1

Ctrl+2

Ctrl+3

Ctrl+4

Ctrl+5

Ctrl+6

Ctrl+7

Ctrl+8

The Performance Dashboard is most useful for finding a troublesome spot in your
scene. Once you've found that spot, you will often want to freeze the frame, debug
its draw calls, and analyze its performance in detail.

Press F7 to switch to the Frame Debugger. The Frame Debugger will show you
just the first draw call in the scene, which in this case is the skybox:

10

NVIDIA PerfHUD User Guide

'ﬁs;:_wpmgyu Wirmes] TicFoams WG T 41875 Gpeel o Ghankers Used pekaiiia] I USed et Py
TeshwssMisnder Targets |

el - L. ﬂ, st Thages a0 w
Sihcs2 | 28000

[e[|

Scrubbing Through the Frame

Click and drag the slider at the bottom of the screen from side to side.

Performance Dashic

You'll see how the frame builds up with various draw calls.

The current draw call is highlighted with an orange wireframe.

You can use the up and down arrow keys to decrement or increment the current
draw call. Home jumps to the first draw call, and End jumps to the last draw call.
Page Up and Page Down decrement or increment the current draw call by larger
amounts.

Drag the slider to draw call 2. You should see the cat highlighted in orange
wireframe.

11

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

Viewing Textures and Render Targets

All the textures used by the current draw call are shown in the Textures panel on the
left of the screen. Click on the Textures panel (to get focus) and press + twice
to enlarge the textures. (Pressing - will reduce the textures.) Note that if you hover
over a texture, a tooltip will appear showing u-v coordinates and RGBA color
information.

= Type: 3D
G454
FORMAT_REGEEGAT_LIMORM
Miprs: 1

On the right is the list of Render Targets. You can perform the same operations in
that panel as in the Textures panel.

Changing the Viewing Mode

DA-01231-001_v07
October 2006

In addition to viewing the Frame Buffer as usual, you can also view Wireframe,
Depth Complexity, and Depth Buffer renderings for the current frame by
choosing options from the drop-down. These views are shown below.

Wireframe

12

NVIDIA PerfHUD User Guide

Frame Buffer

Using the Advanced State Inspectors

To analyze a particular draw call in depth, you can use PerfHUD’s Advanced State
Inspectors. Access these by clicking on the Advanced... button at the lower-right
of the screen.

Frame Buffer

ame Profiler

The Vertex Assembly State Inspector

You’ll first see the Vertex Assembly State Inspector. Here you can see the geometry
used in the current draw call. You can click and drag the mouse on the geometry to
rotate it. You can also view details about the geometry in the panel on the right.

13

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

PR TSy e)] Tils# s TS Teer TG Suamd <o Skt ki 15 Us el __- . [-

st

[Boundng bore
Mee (0 120501, 7 004385, 1 42483
b (.1 st 0 0RO, 1 RS07S)

Next, switch to the Vertex Shader state inspector by clicking on the red Vertex
Shader block at the top of the screen.

Vertex Shader State Inspector

The Vertex Shader State Inspector shows you any vertex shader code from the
current draw call, as well as any textures and shader constants that are used. In this
case, there are no textures, so the panel at the left of the screen is blank. You can
also edit the shader in real-time (we’ll cover that when we look at the pixel shader).

Click on the purple Geometry Shader block at the top of the screen.

P A LA et 20] Tafrne WO Twwe 30632 Soewd - hecees e furied] S SR ke

)

s tha rparkles be 24 scaled. Sizs mot changsd by parspsctive.
21 But you can try with perspective HBrPerspefalus (and increasing sasS? parssater to <Z.5b

14

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

Geometry Shader State Inspector

This state inspector is similar to the Vertex Shader state inspector, showing any

geometry shader code, textures, and constants.

Click on the green Pixel Shader block at the top of the screen.

Pixel Shader State Inspector

The Pixel Shader state inspector is similar to the Vertex Shader and Geometry
Shader state inspectors, showing any geometry shader code, textures, and constants.

AT (B e)] Gils# s ATV Teer IS Susmd <o Skt ki 15 UsR el

. ERrpsineRE0 1 1:

" || ez |
Tw 20 Fachniquelt Sparkles_And_Cardaint
L] A d
) FORMAT D3 ARG pass Colsrimapeh
i I !
. .. SAERLendState (BLend0RF, float4ll.0, 1.0, 1.0, L0} ,Oxffffeess);
Tal BStaramsas 1.
RO 2 depbnaidad, 0 b
LI
. -
| Ty 20
286

g 4 sabibightCeler, sus tlelerd 1 15

pars Sparicles

SarbeptnStenciiFiatel depebisabled, @ 3

The search field (shown in green above) allows you to quickly find a particular text
string. Type paintamp into the search field and press Enter. The shader editor

will jump to the first occurrence of paintamp.

15

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

Unknown

AL TELSEFITELSEFILLSLSETELILSEEER LS LT ES TS LLETELI LS ETEL LS EL IS LSS ETIA AL EEE S
/¢ PIMEL SHADERS PIXEL SHADERS PINEL SHADERS PIWEL SHADERS PIKEL SHADERS

AL TELSEFREELS LS ITLSLSETETILSETERILSELES TS LLETELI LS ET IS LS EL IS LIS IA SIS
Sparkles_P30ut P3Sparkles(Sparkles_GS0ut input)

{

Sparkles_PS0ut output;
output. color = input.alpha * (texture star.Bawple(sampler star, imput.tco).rrrr);//floacdi(0, 0.5,0.8,1);
Tehurn cubput;

3

AT A ESF ISR ET R ET T F LTI RSP TP TEF T F AT T F PSS F TSRS F TSI F ST A F AT riirs s
Y|r4 TECHNIQUES TECHNIQUES TECHNIQUES TECHNIQUES TECHNIQUES TECHNIQUES TECHNIQUES
AT AESF ISR FT S FFET T F TIPSR F TR T T F AT T F PSS F TSR F TSI d AT A F AT rrirs s

cechnicqueld Sparkles hnd_CarPaint
{

pass ColorNDepth
{

SecElenditate(blend0FF, float4(l.0, 1.0, 1.0, 1.00 ,Oxffffffff);
SetRasterizerState(RStateM3AA |;
SetDepthitencilState | depthinabled, 0 J;
SerVertexShader | CompileShader{ vs_4_0, carpaintV3{))),
SetGeometryfhader (NULL) ;
ZetPixelfhader| Compilefhader{ ps 4 0, carpaintPg|

i 0.

Now, replace paintamp with 0.5. Then right-click in the editing area and choose
Compile from the context menu. (You can also save and load your shaders using
the context menu.)

Your modified shader is now used by the application. Press F2 to hide PerfHUD’s
user interface, so you can see the modified rendering.

Revert the shader to its original form by right-clicking in the editing area and
choosing Revert to Original Shader.

Next, click on the blue Raster Operations block at the top of the screen.

Raster Operations State Inspector

The Raster Operations state inspector allows you to view and manipulate numerous
useful render states. Any changes you make here affect all draw calls in the scene.
(Future versions of PerfHUD will allow you to affect draw calls grouped by state
buckets.)

Select the first dropdown (for the Fillmode) and change it to Wireframe. Your
screen should now look like this:

16
DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

il 000000
Dmatenisdbastniies 0000000
Cestrviiptnatie: Trus
ScizsoiErabl Faize

’ Trwe
HismpheEnate Trum s
AaLwnatis Faice FORMAT R32 FLOAT

4 CeptivSiencd Sise e 1

Deptriratie: Tue True

Deptiabichlasic A8 a -
Deptrure: Lass Las
Sheeemeais Faits Fuse
Stencifesdaic (T [T
SlercitibeMaz: 0=FF [
SrnaoF i woefal Ko K
Slenciipfacell acaloptnd s Wasp e
SIENCHOpF I acePass: Heep Ketp v
SlencalpFionE sceFun:: Aways Hwrrs
Sk A ot ey e
Stenciollaci acalecthd ok Hasp Wowp
Slenchopack scefuss Hee Ketp
SlenciOpBisckF aceFune: Abwurs Herys
Seneaal, G000 [Cepocoomn |
P
AphaToCoverageinatie: Faise Fuze ~
EvenEnatiel Faise Fare
Btk Folse Faw
Fimxnating rin Fate
Pusrctirtia’ Frizn Fuse

DlenciEnatied: Fuize Fuize

Now right-click on that same drop-down and select Restore All States from the
resulting context menu. Note that you can restore states by category if you want to.

Frame Profiler

DA-01231-001_v07
October 2006

Press F8 to enter the Frame Profiler. You'll see PerfHUD quickly run a series of
tests on the current frame, giving you detailed statistics about draw call performance
and GPU usage. This is one of the uniquely powerful features of PerfHUD —
complete bottleneck analysis with just one key press.

The Frame Profiler offers several different visualizations, which are listed and
explained briefly below.

P A 8 TR 5 ot S U AR e ——
S bardkels
&) vwioe oo [rssname [o R] et i) L) e
[Tme v I Pees | et Marker]

1 0BIRs 1M

038 s T ©
" 01 e
e TS

nti ol I el Shats Enhat
[rd) Frima A Tiwe v
ER O

Pueks |
L

17

NVIDIA PerfHUD User Guide

Unit Utilization Bars. Shows how long each GPU unit was used for the selected
draw call, state bucket, and frame. You can define state bucket groupings using the
checkboxes at the top of the screen.

I R A v 0 W] DRI S T 44T TeEvE - Sk Ured kel ﬁ&iﬁu’;ﬂmg
—
Shate bkl

[i vmtee [st mtr [e [t] e s o] oo e
s I T " S

sl I et Shaks Bkt
ad | Prms | Pt

Fuoms Lotrgger

Unit Bottleneck Bars. Shows how long each GPU unit was the bottleneck for the
selected draw call, state bucket, and frame. You can define state bucket groupings
using the checkboxes at the top of the screen.

5 (Rl e 2] Wil s TR A0 SRt - Stk s e AT ﬁ&iﬁu’;ﬂmg
—

Shate barhals
[i vmtee [st mtr [e [t] e s o] oo e
s I T " S

Lty Cur Frome Uetrgger

Draw Call Duration. Shows how long each draw call in the frame took. (The
horizontal axis is draw call number.) You can click to jump to a draw call, and see
tooltips to get exact values.

18

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

P N (e e 0 o] Wil s (e AR Sl - Sk s U IR 2 e
Shube burieds
] vt stvni] et Smir
o]

Frorm Ustngger

Unit Utilization Graph. Shows how much each GPU unit was utilized for each
draw call in the frame. You can click to jump to a draw call, and see tooltips to get
exact values.

L R e e e e T e (e M T

et et
] vt stvni] et Smir
[Cats] T

Frorm Ustngger

Shaded Pixels. Shows how many pixels were drawn by each draw call, as well as
what percentage of the screen was covered by the draw call. You can click to jump
to a draw call, and see tooltips to get exact values.

19

DA-01231-001_v07
October 2006

NVIDIA PerfHUD User Guide

FES AR v S] Tiofine T ne 45630 TRl - Shiskes Vol ok

St npdts

[i vmtee [e smr [[t] s o o] e

[cobs [Temey I P

Frorm Ustngger

Primitives. Shows the number of primitives drawn by each draw call, along with
the percentage of the screen covered. You can click to jump to a draw call, and see
tooltips to get exact values.

R T A v S innws] Tifrone FROE T 46535 Tpeed - Shiske s s kel
e -

[i vmtee [e smr [[t] s o o] e

Frorm Ustngger

% Utilization. Shows how utilized each GPU unit was for each draw call. You can
click to jump to a draw call, and see tooltips to get exact values.

20

DA-01231-001_v07
October 2006

