

User’s Guide

FX Composer 2
Beta

May 2007
DU-02761-001_v01

DU-002761-001_v01 ii
April 2007

Table of Contents

Quick Tutorial ..1
Overview ... 1
Creating an Effect... 1
Importing Geometry ... 3
Applying Materials to Geometry ... 4
Modifying Material Parameters... 4
Assigning Textures ... 5
Binding a Light to a Material .. 7
Shader Library.. 7
Editing Shaders .. 8

Overview..11
What Is FX Composer 2?... 11

Support for Standard Development Features ..11
Visual Debugging and Performance Tuning ..12
Mental Mill Artist Edition..12

The Basics ..13
Layout... 13
Start Page.. 14

Working with Shaders ...17
Authoring Shaders .. 17
Shader Library Panel... 17

Shader Library Preferences ..17
Properties Panel ... 18
Code Editor.. 20

Code Editor Settings...22
Mental Mill Artist Edition.. 22
Material Panel .. 23
Texture Viewer... 29
Creating a COLLADA FX Common Profile... 30
Creating Various Types of Shaders... 33

DU-002761-001_v01 iii
April 2007

Creating a COLLADA FX Cg Effect ..34
Creating a Fullscene COLLADA FX Effect ..38
COLLADA FX Authoring ..43
CgFX and .fx Authoring ..50
Vertex Stream Remapper ...50
Converting CgFX Effects to COLLADA FX Effect ...53
Editing COLLADA FX Cg Shaders ..54
Converting .fx to CgFX ...55

The Render Panel...57
The Render Panel ... 57

Toolbar..57
Manipulating the Camera ...58
Applying Materials ..58
Viewports..59
Scene Options..59
Tips for Working with Complex Scenes ...59

Animation Panel ... 60
Analyzing Shader Performance..63

The ... 63
ShaderPerf Panel .. 63

ShaderPerf Panel Interface ..65
ShaderPerf Panel Settings ... 67

Working with Projects ...68
Project Structure .. 68
Project Explorer.. 69

Documents and Assets...69
Active Documents ..69
Physical Documents ...69
Virtual Documents..70

COLLADA Documents.. 70
Sample COLLADA Files ...70

Project Configurations... 70
Assets Panel... 71

Common Options ...73
Types of Assets..73

DU-002761-001_v01 iv
April 2007

Asset Location Resolution.. 77
Environment and Project Settings .. 78
Sample Project ... 79

Customizing FX Composer ...80
Working with Layouts ... 80

Changing Layouts..80
Customizing Toolbars.. 81
General Preferences.. 81
FX Composer SDK .. 82

Geometry File Importer...82
Image File Importer..82
Scripting Commands ..83
Semantic and Annotation Remapper Plug-ins..83

Advanced Asset Creation ...84

Materials .. 84

Images .. 84

Geometry ... 85

Deformers ... 85

Lights .. 86

Cameras .. 86
Working with Materials and Effects... 87

Creating Asset Libraries ...87
Scene Object Binding ...87
Asset Management ..87
File Importers ..88

Scripting...95
Introduction... 95
Fxc* APIs .. 95
Namespaces .. 96
Properties .. 97
Services... 97
Using the Scripting – Example Walkthrough .. 98

Create a Scene ..98

DU-002761-001_v01 v
April 2007

1. Testing Undo/Redo ..99
Manipulating the RenderPorts ..99
2. Creating Some Geometry .. 100
3. Adding Geometry to the Scene .. 101
4. Creating a material .. 102

Semantic and Annotation Remapping ..103
Syntax..103
List of Operators ...105

MatrixMultiply .. 105
MatrixAdd ... 106
MatrixSubstract... 107
MatrixInverse .. 108
MatrixTranspose... 109
MatrixTransposeConditional.. 110
MatrixScale .. 111
MatrixOrthonormalize .. 112
MatrixSelect... 113
VectorMultiply.. 114
VectorAdd ... 115
VectorSubtract .. 116
VectorLength/VectorLengthSq... 117
VectorNornalize ... 118
CrossProduct .. 119
DotProduct ... 120
Cast ... 121
TransformCoordinate.. 122
TransformNormal.. 123
VectorSetValue ... 124
Swizzle.. 125
Demux.. 126
Mux... 127
Cosine/ACosine/Sine/ASine/Tangent/ATangent ... 128
Log.. 129
Pow... 130
Add/Substract/Multiply/Divide/Modulus ... 131

DU-002761-001_v01 vi
April 2007

Floor ... 132
Ceiling .. 133
Input (input).. 134

Programming Your Own Operator Nodes ...135
Integration into FX Composer .. 135
Naming Convention .. 135
Complete Examples... 139

Scripting ...141
List of Commands.. 141

Scripting Toolbars..142
Sample Scripts... 142

FX Composer 2 in Your Production Pipeline ..143
FX Composer 2–Centric..143
Effect Library Creator...144
Engine..144
Shader Library...145

Release Notes ..147
Detailed Tutorial ..149

Coding Conventions ...149
Naming .. 149
Other Coding Conventions .. 151

A Sample Shader ...152
Appendix ..163

Glossary of Terms..163

DU-002761-001_v01 vii
April 2007

 List of Figures

Figure 1. Exporting a Shader from Mental Mill Artist Edition to FX Composer 2................................12
Figure 2. Layout of FX Composer 2 ...13
Figure 3. Docking Layout Control ..14
Figure 4. FX Composer's Start Page ...15
Figure 5. The NVIDIA Shader Library in FX Composer ...18
Figure 6. Properties Panel ...19
Figure 7. FX Composer’s HDR Color Picker ...20
Figure 8. The Code Editor..21
Figure 9. Exporting a Shader from Mental Mill Artist Edition to FX Composer 2................................22
Figure 10: Toolbar of advanced display controls and options of the Texture section of the Material

panel ..25
Figure 11: Texture Panel with the alpha channel turned off and on..25
Figure 12. HDR Controls for an OpenEXR texture (Low exposure on the left versus high exposure

on the right)..26
Figure 13. HDR Controls for a .HDR (RGBE) texture (Low exposure on the left versus high

exposure on the right) ..27
Figure 14: Filter menu for displaying certain types of textures or textures from the current scene or

selection ..28
Figure 15. Texture Viewer...29
Figure 16. The Texture Viewer’s Advanced View ..30
Figure 17: New COLLADA FX Common profile effect with Phong lighting model31
Figure 18. Configuration of a COMMON Profile parameter to be Constant ...33
Figure 19: Default COLLADA FX Cg profile effect ...34
Figure 20: Test scene with Goochy_gloss.cgfx effect applied ..39
Figure 21: Layout of a COLLADA FX Cg profile effect ..44
Figure 22. The Vertex Stream Remapper ...52
Figure 23. Converting a CgFX Effect to a COLLADA FX Effect ...54
Figure 24. The Animation Panel ..60
Figure 25: Animation Slider with a sub-range selection...60
Figure 26. The ShaderPerf Panel ...63
Figure 27. Analyzing a Shader ..65

DU-002761-001_v01 viii
April 2007

Figure 28. The ShaderPerf Panel's Table View ...66
Figure 29. The ShaderPerf Panel's Graph View..66
Figure 30. Task List..67
Figure 31. New Project Dialog...68
Figure 32. Project Explorer ..69
Figure 33. Assets Panel..72
Figure 34. Right-Clicking on a Divider ...73
Figure 35. Environment and Project Settings Dialog...78
Figure 36. The Layouts Sub-Menu ..80
Figure 37. The Layout Toolbar ..80
Figure 38. The Manage Toolbars Dialog Box ...81
Figure 39: A typical COLLADA database organization ..88
Figure 40: OBJ file format import options ..89
Figure 41. FX Composer-Centric Workflow .. 143
Figure 42. Workflow for Effect Library Creation.. 144
Figure 43. Workflow for Engine Integration.. 145
Figure 44. Unedited Sample Shader ... 153
Figure 45. Source Code Loaded in Editor... 154
Figure 46. Still Not Blue... 159
Figure 47. After Making the Material Blue.. 160
Figure 48. Adding a Colored Highlight.. 161

List of Tables

Table 1. Vertex Stream Mapping Used by FX Composer ...53
Table 2. Supported Image Formats and Origin Conventions ...85

DU-002761-001_v01 1
April 2007

Quick Tutorial

Overview
This chapter presents a very short FX Composer 2 tutorial to quickly introduce you
to several convenient and powerful new features. Even if you’ve used FX
Composer 1.8, we highly recommend that you read through this tutorial because so
many things have been improved in FX Composer 2.

Creating an Effect
When you first run FX Composer 2, you’ll see its Start Page. This page gives you
convenient access to several commonly-used commands and resources.

Let’s create a new effect. Select New Effect under the Tasks portion of the Start
Page.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 2
April 2007

A short wizard will pop up, guiding you through the creation of your new effect.

The wizard will prompt you for the types of shaders you want to add. Select .fx and
.cgfx. Also, set the Effect Name as “Phong_Bump_Effect”, and set the Material
Name to “Phong_Bump_ Material”.

You may be wondering what the difference is between a material and an effect. An
“effect” is a shader—for example, marble. A “material” is an instance of an effect
with specific properties settings—for example, green marble. Materials are what you
actually apply to objects in your scene.

The advantage of having effects and materials is that you can modify the underlying
shader code of several materials at once if they are based on the same effect, simply
by modifying the effect. Without a materials system, you would have to create
separate shaders for each material variant and modify all of these shaders
individually to achieve the same result.

Click Next. You’ll now get a chance to pick from a variety of shader templates for
the .fx shader effect.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 3
April 2007

Choose Phong Bump Reflect and click Next. Then choose Phong Bump
Reflect for the .cgfx file, and click Finish.

You’ll now see a sphere in the Materials panel, shaded using your new effect.

Importing Geometry
The next step is to create some geometry. On the Start Page, click on Open
COLLADA Document. (Alternatively, you could go to the Project menu and
choose Import to load other formats such as .fbx, .3ds, .obj, or .x.

In the file dialog box, choose:
FX Composer 2/MEDIA/COLLADA/tire_big.dae

You’ll now see a black tire in the Render panel. Use Alt + Leftmouse in the
Render panel to get a better vantage point by rotating the view. Shift + Leftmouse
zooms in and out, and Ctrl + Leftmouse pans.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 4
April 2007

Let’s also create a sphere by clicking on the Create Sphere icon on the upper
toolbar. The sphere will appear at the world’s origin, so it happens to fit
conveniently inside the tire. Make sure the Render panel’s Direct3D tab is active.

Applying Materials to Geometry
Now it’s time to apply our material to our geometry. To do this, simply drag-and-
drop the Phong Bump Reflect material sphere from the Materials panel onto
the tire, and then repeat the process for the sphere.

Modifying Material Parameters
Click on the Phong Bump Reflect material sphere in the Materials panel. This will
show the material’s properties in the Properties panel.

Scroll down in the Properties panel until you see the Specular Power parameter.
Click on its value and change it to 7 either by using a slider or by typing in the value
directly. You should see the Render panel updating dynamically as you change the
parameter.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 5
April 2007

Do the same for the Ambient Light parameter. This is a color, so you’ll use FX
Composer’s HDR color picker to pick a new color. In the color picker, dragging
sliders with the left mouse button will change their base (mantissa) values. Dragging
slides with the right mouse button changes their exponent. Make sure to use the left
mouse button and drag the brightness slider (to the right of the color gamut)
upwards. Again, the Render panel will show all your changes applied to the scene
in real-time.

Assigning Textures
If you look through the list of parameters in the Properties panel, you’ll notice
several textures: Diffuse Texture, Normal-Map Texture, and Environment. Let’s
change the diffuse texture.

FX Composer has a Textures panel specifically for working with 2D, 3D, and cube
map textures. View that panel by selecting Textures from the View menu.

Now click on the Texture Panel’s toolbar’s button to add new images. It is worth
noting that you can also drag and drop image files from Windows Explorer directly
into the Texture Panel).

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 6
April 2007

In the file dialog box, choose:
FX Composer 2/MEDIA/textures/2D/rockwall.jpg

You’ll now see rockwall.jpg in the list of textures. Double-click on your texture to
see detailed information about it.

Drag-and-drop the rockwall.jpg texture thumbnail onto the tire. You’ll now be
prompted for which of the Phong Bump Reflect material’s textures to replace.
Choose Diffuse Texture. Note that both the tire and the sphere change because
they use the same material.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 7
April 2007

Binding a Light to a Material
Now let’s bind a light to your material. This means that when you move the light,
you’ll see the material’s shading change. (Where there are no lights in the scene, FX
Composer searches through your material for the first light object it can find, and it
uses the default positions specified there.)

Click on the Add Spotlight button on the main toolbar to add a spotlight to
your scene. The spotlight is created at the world origin, so it’s obscured by the
sphere.

Click on the Translate Object icon in the Render panel. Now you’ll see a set of
axes at the origin for the light. Clicking and dragging on any individual axis will
allow you to move the light along just that axis. For free movement, click on the
grey circle at the intersection of the axes.

Move the light to a reasonable location above the tire and sphere.

Now click on the Select Object icon in the Render panel. Click on the light to
select it. Click-and-drag the light onto the tire. This will automatically bind the light
to the tire’s material. (If a material has several light inputs, you will be prompted for
which one to use.)

Your light is now bound to the material. If you switch to Translate Object
again and move the light around, you’ll see the lighting on the tire respond to the
light position. (But notice that the sphere, which isn’t bound to the light, doesn’t
change its appearance as the light moves.)

Shader Library
The NVIDIA Shader Library, which is tightly integrated with FX Composer, offers
a vast collection of great shaders for both inspiration and extension. You can drag-
and-drop shaders from the Shader Library onto objects in your scene.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 8
April 2007

To do this:

Click on the Shader Library tab in FX Composer’s central panel. Click-and-drag
“velvety” onto the tire. (Optionally, you can re-associate the light with the tire by
dragging-and-dropping it again.)

Editing Shaders
You can quickly access a material or effect shader source code by bringing its
context menu in the Material Panel and selecting the View Code menu item.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 9
April 2007

At this point though, you have noticed that dragging-and-dropping velvety.fx from
the Shader Library onto the scene has automatically opened velvety.fx in FX
Composer’s editor. (You can change this default behavior via the Settings… option
of the Tools menu.)

Press Ctrl+F and search for the word “result”.

Let’s modify the shader by changing the result expression to:
half3 result = diffContrib – specContrib;

Press Ctrl+F7 to recompile the shader. The Render panel will update to reflect the
new shader as well.

DU-002761-001_v01 11
April 2007

Overview

What Is FX Composer 2?
The NVIDIA® FX Composer™ 2 software package is an integrated development
environment for modern shader development in both OpenGL and DirectX with
support for multiple shading languages. FX Composer empowers developers to
create high-performance shaders with real-time preview and optimization features
available only from NVIDIA.

Designed to make shader development and optimization easier for programmers,
FX Composer offers an intuitive user interface for artists customizing shaders in a
particular scene.

In addition, FX Composer is bundled with Mental Mill Artist Edition, a free visual
shader authoring tool from mental images that allows developers to rapidly
prototype shaders by connecting blocks.

Support for Standard Development Features
FX Composer supports all the standard features you would expect in an integrated
development environment for high-performance shaders, such as the following:

 Start Page to guide users getting started with common tasks. This allows users
to create new shaders and projects from a set of templates.

 Offers sophisticated text editing with syntax highlighting.
 Works directly with COLLADA FX, CgFX, and HLSL.FX files to create

multiple techniques and passes. Lets you use the files you create with FX
Composer 2 directly in your application.

 Supports the authoring of complex full scene effects such as shadow mapping
or depth of field.

 Features convenient, artist-friendly graphical editing of shader properties and
certain attributes, with undo/redo.

 Offers scene manipulation and object creation functionality, including undo/redo.
 Supports Microsoft DirectX 9.0 standard HLSL semantics and annotations.
 Allows the use of custom semantics and annotations and vertex stream packing

to facilitate shader integration into real-world production pipelines.
 Provides a complete plug-in architecture that allows arbitrary extensibility,

including important custom scene data, support for additional shading
languages, and user interfaces.

 Supports Python scripting to automated common production tasks like material
parameter binding to scene objects.

 Predefined and Custom layouts for more comfort dealing with certain authoring
and editing tasks.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 12
April 2007

Visual Debugging and Performance Tuning
FX Composer 2 provides developers with visual debugging and advanced
performance tuning features, such as:

 Practical SDK that enables custom importers, exporters, and scene modifiers.
 Visible preview of intermediate (generated) textures and render targets.
 Capture of pre-calculated functions to texture look-up tables and save render

ports to disk.
 Interactive compiler that shows where the problems are—it jumps directly to

problems in your source code.
 Handles minimal recompilation of dependencies with shader include files, per

effect compilation options and directives, and custom build configurations.
 Simulated performance results for the entire family of NVIDIA GPUs through

NVIDIA ShaderPerf 2 integration.
 Empirical performance metrics such as GPU cycle count, temporary register

usage, and vertex and pixel throughput.
 Support for industry standard 3d file formats: COLLADA, OBJ, X, 3DS and

FBX.

Mental Mill Artist Edition
Bundled with FX Composer 2, Mental Mill Artist Edition offers a convenient visual
shader authoring system. In Mental Mill Artist Edition, you can quickly connect
different modules to create new shaders – an ideal approach for artists and technical
directors who may not want to work directly with shader code.

Shaders can then be exported to CgFX or HLSL, and then loaded in FX
Composer’s production-friendly development environment as shown in Figure 1.

For more information, please visit
http://www.mentalimages.com/2_4_mentalmill/index.html.

Figure 1. Exporting a Shader from Mental Mill Artist Edition to
FX Composer 2

http://www.mentalimages.com/2_4_mentalmill/index.html

DU-002761-001_v01 13
April 2007

The Basics

Layout
FX Composer is made up of several panels that present a wide range of
information, such as available materials, properties, shader code, rendered output,
and more. Together, they create a comprehensive environment for shader
authoring. A typical FX Composer 2 screenshot is shown in Figure 2.

 Figure 2. Layout of FX Composer 2

FX Composer 2 consists of several panels that can be docked in the main window
or arranged outside the main window to more convenient locations. To move a
panel to a different location, click and drag the panel’s title bar.

Note: When you dock a panel, you will see an outline of where the panel would
dock. This docking location is determined by the location of the mouse
pointer.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 14
April 2007

If a panel contains several sub-panels, you can control docking by clicking and
dragging a sub-panel’s tab. While you’re dragging the tab, you will see a docking
layout control at the center of the panel (Figure 3) that shows possible docking
locations. Move the mouse pointer over the control to preview what the docking
would look like. When you are satisfied with the preview, release the mouse button
to dock the window.

Figure 3. Docking Layout Control

Before you start working with FX Composer, it’s important to understand what the
various panels do. The following list briefly describes the panels and their functions:

 Start Page. Several shortcuts for common tasks.
 Code Editor. Edit shader source code.
 Properties Panel. View and modify shader properties.
 Shader Library Panel. Download shaders from the NVIDIA Shader Library.
 Texture Viewer. View and manage textures.
 The Render Panel. View a 3D rendering of your scene.
 ShaderPerf Panel. Analyze and tune shader performance.
 Assets Panel. See all the assets in your project, organized by asset.
 Project Explorer. Organize assets across multiple COLLADA documents.
 Task List. See compilation errors and warning messages.
 Output Panel. Displays any output from FX Composer.
 Scripting. Access powerful scripting features via a console.
 Plug-in Explorer. Manage FX Composer’s plug-ins.

Start Page
The Start Page (see Figure 4) is the first panel you’ll see when you start FX
Composer. It will help you quickly start on several typical tasks, such as:

 Creating a new project
 Opening an existing project
 Creating a new effect
 Opening an existing effect
 Importing COLLADA documents
 Viewing this Getting Started Guide

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 15
April 2007

 Visiting the NVIDIA Developer Web Site
In addition to this, the Start Page contains an RSS feed of the NVIDIA developer
news which allows you to be kept up to date on the last developer technologies and
materials at NVIDIA.

Figure 4. FX Composer's Start Page

DU-002761-001_v01 17
April 2007

Working with Shaders

Authoring Shaders
Authoring shaders is arguably FX Composer’s primary function. FX Composer 2
provides many ways to do this depending on your needs and level of expertise:

 Drag-and-drop from Shader Library
 Shader Wizard
 Code Editor
 Mental Mill Artist Edition

Shader Library Panel
The fastest way to author a shader is to use the NVIDIA Shader Library, which is
integrated into FX Composer (see Figure 5). Each shader in the library is complete
with a screenshot, summary, category, and versions in various languages. To apply a
shader to an object in your scene, simply drag-and-drop the shader onto the object
in the Render panel. FX Composer will automatically create a new material for you
using that shader. You can also drag-and-drop shaders onto the Materials panel if
you don’t want to immediately apply them to objects.

If you would like to share your own shaders with other developers, please submit it
to the Shader Library by following the directions given here:

http://developer.nvidia.com/object/shader_submission_guidelines.html

Shader Library Preferences
You can set various options for the Shader Library via the Settings… option in the
Tools menu. In the Settings dialog box, click on Environment -> Preferences ->
Shader Library and you will see several options for the shader library:

 Add to current project on download. Any downloaded shader will
automatically be added to the current project. Otherwise, the shader will only
be stored on the hard disk.

 Load in editor on download. Any downloaded shader will automatically be
opened in the code editor.

 Show download dialog boxes. Displays a confirmation dialog box (showing
the location of the file on the hard disk) whenever a download completes.

http://developer.nvidia.com/object/shader_submission_guidelines.html

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 18
April 2007

Figure 5. The NVIDIA Shader Library in FX Composer

Properties Panel
Use the Properties panel (Figure 6) to view and change object properties—
primarily material properties. For example, you can use Color Picker (Figure 7) to
adjust a Phong material’s diffuse color, specular color, or specular exponent, or you
can modify other values via sliders or keyboard entry. Pressing the left and right
arrow keys while modifying a slider will increment or decrement the current value
by one step. The step size is specified in the UIStep shader annotation for that
parameter.

Note: Vector and matrix values are separated by spaces.

The Properties panel can also be used to view/change shapes (for procedural shapes
such as teapots), textures, and other items in the scene graph such as lights (colors,
positions, spotlight cutoff, and other properties).

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 19
April 2007

Figure 6. Properties Panel

Material Scene Bindings
In FX Composer, properties can be bound to elements of the scene—for example,
the light color inputs of a Phong material could be tied to a light in the scene. This is
called “material scene binding.” In these cases, those properties will be inaccessible
through the material because they are tied to the light. If you want to modify them,
you must do so by editing the light’s properties. Any bound objects will be listed in
the Material Scene Bindings portion of the Properties panel.

You can also assign scene bindings at an even finer grain—the material instance
level. For example, you can have two objects that share the same material, but you
can bind each material to a different light.

To change scene bindings at the material instance level, expand the “Scenes”
portion of the Assets Panel until you see the material instance you want to work on.
You can then change the scene binding for that material instance in the Properties
panel.

In particular, if you want to bind a light to a particular material, simply drag-and-
drop the light onto the material in the Render panel.

Color Picker
FX Composer’s Color Picker supports high-dynamic range and allows you access to
the full range of floating point values. The Color Picker shows individual color
channels, as well as an overall exponent (represented by the vertical slider on the
right of the Color Picker).

Adjust the value of any slider by left-clicking or right-clicking on it. Left-clicking
changes the mantissa value (indicated by a black arrow), while right-clicking changes
the exponent value (indicated by a gray arrow).

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 20
April 2007

Figure 7. FX Composer’s HDR Color Picker

Code Editor
The Code Editor (Figure 8) lets you view and modify shader source code. The
editor features all the standard editing functionality you would expect, such as:

 Load/save files
 Cut/copy/paste text
 Find/replace in text and in files
 Undo/redo
 Code folding for functions, techniques, and passes
 Compile effects
 Display tab stops
 Line numbers
 Monitor external file modifications
 Highlight errors for source code and included source code
 Jump to errors by double-clicking

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 21
April 2007

Figure 8. The Code Editor

FX Composer allows you to right-click on files referenced by “#include” statements
to jump directly to their source code according to the source include path
configuration.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 22
April 2007

You can open multiple files simultaneously in Code Editor:
 Each file appears in a separate tab. You can toggle between the tabs with

CTRL+TAB key combinations
 Read-only files are indicated by a lock icon.
 Modified and unsaved files have an asterisk suffixed to their names.

The Build menu is contextual, reflecting the current shader file, and it also includes a
Rebuild All option to recompile all shaders in the current project.

In addition, the Tool menu includes an option to “Analyze Shader Performance,”
which runs NVIDIA ShaderPerf on the current shader. For more details, refer to
“Shader Performance Panel” further on in this document.

Code Editor Settings
Code Editor Settings can be configured in the Settings dialog that can be accessed
via the main menu->Tool->Settings. The Preference section has a sub-section
dedicated to the Code Editor. Code folding can be toggled on/off by setting the
EnableCodeFolding property accordingly.

Mental Mill Artist Edition
Bundled with FX Composer 2, Mental Mill Artist Edition offers a convenient visual
shader authoring system. In Mental Mill Artist Edition, you can quickly connect
different modules to create new shaders – an ideal approach for artists and technical
directors who may not want to work directly with shader code.

Shaders can then be exported to CgFX or HLSL, and then loaded in FX
Composer’s production-friendly development environment as shown in Figure 1.

For more information, please visit
http://www.mentalimages.com/2_4_mentalmill/index.html.

Figure 9. Exporting a Shader from Mental Mill Artist Edition to
FX Composer 2

http://www.mentalimages.com/2_4_mentalmill/index.html

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 23
April 2007

Material Panel
FX Composer provides the user with a Material Panel for visualizing them before
they are applied to 3D objects.

The Material panel tab contains two sections. The top section lists all the materials
and effects, and the bottom section lists all the Textures referenced by the materials.

Each Material swath lives in a device-specific tab that shows shader balls with the
material applied to it and its name underneath it. The Panels can be detached or

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 24
April 2007

tiled to allow for a side by side comparison as to how certain device-specific
implementations may differ.

The Material panel offers a set of controls that allows the user to interact with the
swaths:

 Left Mouse click to select a Material/Effect
 Left Mouse + ALT (just like the scene panel) to rotate the shader balls.
 Mouse Wheel + CTRL on an item to vary the size of the swatches.

In addition to these controls, you can toggle the preview of Materials versus Effects
by clicking Material and Effect buttons respectively, on the Pane’s toolbar.

Each Material swath behaves just like a Material or an Effect node from the Assets
Panel. This means that right-click on the selected swath will bring up the usual menu
of operations (Apply To Selection, Assign Effect, rename, delete, clone, etc…).
Furthermore, you can drag and drop the selection onto any geometric object in the
3D scene panel to assign the selected material or effect.

Finally, selecting a swath will bring its properties in the Properties panel as one
would expect.

The Texture section displays all the textures used in the currently selected material,
including procedurally generated textures and render targets. The Texture section
also enables visualization of cube maps and normal maps. You can use the
mousewheel to scroll, and CTRL + mousewheel to zoom in and out of textures.
Left-clicking on a texture will display the texture’s information in the Properties
panel.

More advanced controls are available to allow shader writers to investigate shading
problems that could be caused by texturing issues. All these controls are available on
the Texture section’s toolbar.

The Texture panel provides you with a color picker mode that allows you to inspect
the texel value of the texture. If the texture is much bigger that the size of its
rendering in the Texture Panel, you can use the “Show Items Actual Size” in order
to force the rendering of the texture to their original size. This will effectively force
a 1 to 1 mapping of pixels and texels.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 25
April 2007

Figure 10: Toolbar of advanced display controls and options of
the Texture section of the Material panel

You can toggle on and off each color channel. By default, the alpha channel is used
to blend the texture onto a checker pattern. Toggling off the alpha channel button
on the toolbar will draw the texture RGB values only. Compare the rendering of the
textures in Error! Reference source not found. to see the effect of toggling alpha
on or off.

Figure 11: Texture Panel with the alpha channel turned off
and on

The same controls are available for the red, green, and blue color channels. In
addition to these toggles, you can display the mipmap hierarchy of the textures. This
is useful to see how certain filtering modes or effects based texture LOD bias end
up being affected by certain mipmap levels.

FX Composer supports high dynamic range image file formats like .hrd and .exr. In
order to help you manipulate these images more comfortably, the Texture Panel has
a set of advanced HDR controls located in the HDR toolbar.

When the HDR toolbar is displayed, the controls will be activated upon the selection
of an HDR texture.

Show RGBA channels

Display MipMap pyramid

Display HDR
Options toolbar Display textures at their original image size

 Select Mode

Color Picker Mode

Save selected texture

Save all the textures

Filter Options to only display
textures of certain types or contexts

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 26
April 2007

The figure below shows an example of an OpenEXR (.exr) image with a 16-bit float
RGBA format. You will notice that when the Tonemapping Preview is enabled, you
can tweak the exposure by moving the Target Luminance slider.

Figure 12. HDR Controls for an OpenEXR texture (Low
exposure on the left versus high exposure on the
right)

Another common format for HDR images is RGBE. This formats store a common
exponent to the RGB values such that final HDR RGB values can be evaluated in
the shader code. The HDR toolbar has a Decode RGBE toggle that will convert the
RGBA textures to RGBE.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 27
April 2007

 Figure 13. HDR Controls for a .HDR (RGBE) texture (Low
exposure on the left versus high exposure on the
right)

Finally, the Texture Panel allows you to restrict the list of textures being displayed.
You can either specify that you want see all the textures within the current scene or
only the textures within the current material selection. This allows the user to focus
on the textures of interest. Furthermore, you can restrict the display of textures in
the texture panel by enabling certain types of textures:

 Textures
 Render Targets
 Framebuffer

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 28
April 2007

Figure 14: Filter menu for displaying certain types of textures
or textures from the current scene or selection

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 29
April 2007

Texture Viewer
FX Composer’s handy Texture Viewer helps you navigate through the images in
your project (Figure 15). By default, Texture Viewer arranges thumbnails of all your
images neatly in rows. Each thumbnail is accompanied by the image’s file name and
resolution.

The Texture Viewer has a regular expression filter box that allows you to narrow
down the textures displayed. This feature makes it easy to find specific textures of
specific filename or sizes.

Figure 15. Texture Viewer
You can drag-and-drop any image onto a texture reference in the Properties panel.
While dragging you’ll see a small preview of your texture, and the field that you are
dropping to will be highlighted. You can also right-click on any image to bring up a
context menu with several options for adding new images, adjusting thumbnail size,
choosing among layouts, and viewing/editing images in external applications.

In addition, you can drag-and-drop any image onto an object in the Render panel. If
that object’s material can accept textures, you’ll be prompted for the texture to
replace.

The Texture Viewer toolbar allows you to add/remove textures to the project and
toggle between the thumbnail and advanced views. The advanced view (Figure 16)
gives an in-depth view of your image, including mipmap information, number of
faces, and texture format. By checking the “Original Size” check box, you can see

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 30
April 2007

your image at its original resolution (and pan around the image if it is larger then the
viewing area). You can also view color and alpha channels individually and set the
background color for images with transparency.

Right-clicking on an image will show a context menu with the following self-
explanatory options:

 Reset Panning

 View in Associated Program…

 Edit Image…

You can specify the external image viewer and editor via the Settings… option the
Tools menu. The options are listed in the Utilities subsection under Environment.

Figure 16. The Texture Viewer’s Advanced View

Creating a COLLADA FX
Common Profile

This section describes in great details how to create a new COLLADA FX Common
profile effect in FX Composer. The authoring happens in the Assets Panel.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 31
April 2007

 In the Effects section, right-click on the divider ->Create Effect…
This will create a new empty Effect called “Effect1”

 Right-click on the new node named Effect1, navigate the context menu
hierarchy to “Add Profile->Common->Phong” and select the Phong
menu item.
This will create a COLLADA FX Common profile effect with a Phong lighting
model. The Effect layout should look like Figure 17.

Figure 17: New COLLADA FX Common profile effect with
Phong lighting model

 Click on the effect profile node named “Common” to see its properties
definition in the Properties Panel.
The Effect tree control in the Assets Panel shows the profile parameters under
the “Profile Parameters” node. Selecting the Effect Profile node allows you to
configure the type of the Common profile parameters.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 32
April 2007

The Common Profile properties of the effect are separated in two groups:

 Constants. These values are only visible at the effect level. Changing a constant
value in an effect will affect all materials based on this effect, even those already
created.
These values are not visible at the material level.

 Parameters. These values are visible at both the effect and the material level.
Changing an effect parameter will not affect already created materials. Only
materials that will be created after the change will be affected.
These values are visible at the material level.

Properties can be configured to be Constant or Parameter. They can be toggled by
clicking on “Toggle Parameter” menu option from the property’s drop down menu
in the Properties Panel.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 33
April 2007

Figure 18. Configuration of a COMMON Profile parameter to
be Constant

 Changing the type of a COMMON Profile parameter

Some common profile parameters can be configured to be either a texture or a
color. To change their type, bring up the property’s drop down menu in the
Properties Panel and click on “Set Map” or “Set Color”.

 Editing a COMMON Profile parameter’s default value

To edit the Default value, click on “Edit Value” menu item of the property’s drop
down menu in the Properties Panel. This action will display an Image Selector
window or a Color Picker, depending on the type of parameter.

 Modifying a Material based on a Common Profile Effect.

Once a material is assigned a common profile effect, it has a set of visible
parameters based on the effect parameters. To change their values, click on the
arrow next to each parameter.

Note: Note that it is not possible to change the type of a
parameter at the material level.

Creating Various Types of
Shaders

This section describes how to create shaders in various programming languages.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 34
April 2007

Creating a COLLADA FX Cg Effect
This section describes how to create a new COLLADA FX Cg profile effect in FX
Composer. The authoring process starts in the Assets Panel.

 In the Effects section, right-click on the divider ->Create Effect…
This will create a new empty Effect called “Effect1”

 Right-click on the new node named Effect1, navigate the context menu
hierarchy to “Add Profile->Cg” and select the “Cg” menu item.
This will create a default COLLADA FX Cg profile effect that does vertex
diffuse lighting modulated by a diffuse texture. The Effect layout should look
like Figure 19.

Figure 19: Default COLLADA FX Cg profile effect

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 35
April 2007

In this tutorial, we want to modify the default COLLADA FX Cg effect to turn it
into a per-pixel Phong lit effect.

Before we get started, let’s create a helper mesh object to apply our effect onto so
that that we can visualize the different steps of writing our improved shader. Go to
the Main menu -> Library -> Add Geometry->Add Teapot to create a new teapot.
Next, drag and drop Effect1 on to the teapot in the 3D scene panel. Now we can
start improving the default shader.

So the first step is to move the diffuse lighting from the vertex stage to the fragment
stage:

 We need to pass the surface normal to the fragment shader stage. This requires
modification of the vertexOutput connector to pass through the vertex normal
to the fragment shader. Add the following member to the vertexOuput
structure:
 float3 Normal : TEXCOORD1;

 Next, remove the diffCol member from the vertexOuput connector and add the
following statement at the end of the MainVS function:
 OUT.Normal = IN.Normal;
 return OUT;

 Finally, the line of Cg code used to compute diffCol in MainVS needs to be
taken out.

 Now the fragment shader is set to access the surface normal. You can visualize

the vertex normals, interpolated across the triangles by making the MainFS
function return the following:
 return float4(IN.Normal,0);

 Hit Ctrl+F7 and you should see something like this:

Now that we have the surface normal at the fragment stage, we can compute the
diffuse lighting term per pixel.

 Delete the following line of code in MainFS:

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 36
April 2007

 Return IN.diffCol * tex2D(TexSampler, IN.Tex);

 Or, if you have visualized the normals previously
 return float4(IN.Normal,0);

 And type the following:
 Float4 diffCol = dot(IN.Normal, float3(0.0,0.0,1.0)).xxxx;
 Return diffCol * tex2D(TexSampler, IN.Tex);

 This essentially computes an N dot L term where the light vector is fixed as +Z.
(We probably should renormalize the normal per pixel to get a normal vector of
unit 1…but we don’t have to.)

Now, we need to add a specular term. In order to do so, we need to compute the

reflection vector per pixel. Therefore, we need to pass the eye vector and the
light vector in the same space. Instead of pass the normal vector in object space,
we will transform it into World space and do all the diffuse and specular lighting
computation in World space. So first, let’s add a matrix to transform our normal
into World Space, by adding the following statement at the top of the source
code:
float4x4 WorldITXf;

Next, we need to transform the normal with this matrix in the vertex shader by
replacing this statement
 OUT.Normal = IN.Normal;

by:
 OUT.Normal = mul(WorldITXf, float4(IN.Normal,0)).xyz;

If you compile the shader, you will get a black image…this is normal. The reason
why is that you need define to COLLADA FX Cg what WorldITXf means. For
this, you need to create a shader binding and a profile parameter with the
correct semantic.

Go to the vertex program of the ShaderPipeline of Effect1/Technique1/Pass1, and

right-click on the Bindings folder -> Add -> WorldITXf.
Next, create a profile parameter by right-click on the Profile Parameters under the

Cg profile node and select Float4x4. This will create a new profile parameter of
type float4x4 named MyFloat4x4. Select the node and press F2 to rename the
node to: WorldITXf.

Lastly, you need to type in the semantic of the matrix – select the WorldITXf profile
parameter and edit its Semantic in the Properties Panel by typing:
WorldInverseTranspose. After you hit enter, you should see the teapot lit again.

Next we need to do a similar operation to transform the vertices into World space

in order to compute a view direction vector in World space. We will add a
WorldXf matrix and set its semantic to World. Once this is done, we can add
the following code statement in MainVS:
float3 Pw = mul(WorldXf, float4(IN.Position.xyz,1)).xyz;
OUT.WorldView = normalize(ViewITXf[3].xyz – Pw);

Let’s not forget to add the following new member to the vertexOutput connector:
float3 WorldView : TEXCOORD2;

We are now finally ready to tackle the phong lighting computation per-fragment.
Replace the code of the MainFS function with the following Cg code:

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 37
April 2007

float3 Nn = normalize(IN.Normal);
float3 Ln = float3(0,0,1);
float ldn = dot(Ln,Nn);
float3 Vn = normalize(IN.WorldView);
float3 Hn = normalize(Vn + Ln);
float hdn = dot(Hn,Nn);
float4 litV = lit(ldn,hdn,12);//SpecExpon
ldn = litV.y;
hdn = ldn * litV.z;
float4 SurfColor = tex2D(TexSampler, IN.Tex);
float3 result = ((ldn * SurfColor.xyz) + hdn);
return float4(result.xyz,1.0);

This code basically implements the basic Phong lighting model by normalizing the
Normal (define in World space), assigning the light direction vector (Ln) to a
constant value of +Z, doing a dot product of the light vector and the surface
normal in WorldSpace to compute the diffuse term in ldn. It then normalizes the
view direction vector (Vn), compute the half-angle vector hdn and use it with the
diffuse term ldn to use the Lit function to store the result of the lighting. The
diffuse term is then modulated with a surface color texture and the specular term is
added. You should see the following image in FX composer 2:

As a final improvement to our shader, we are going to enable the light direction to
be bind able to a real light object from a scene.

Let’s add a new uniform variable to the shader at the top of the Cg code:
float3 LightDir;

And replace our +Z constant light direction computation with the following
expression

float3 Nn = -normalize(LightDir);

Next, we need to bind this variable to a profile parameter. Let’s create the Fragment
Program binding by right-clicking on the Bindings folder of the FragmentProgram
node and select Add -> LightDir. This will create the LightDir binding. Next, you
need to create the float3 profile parameter and rename it LightDir. In order to allow
for FX Composer 2 to feed the proper data to the LightDir variable, we need to add
a Direction semantic to let it know that it needs to compute Direction vector and a
set of annotation to qualify what Cartesian space the direction vector has to be

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 38
April 2007

computed. In order to achieve this, you need to add a String annotation of name
Space and set its value to World.

You can also add a UIName string annotation to display a more artist friendly text
in the Properties panel when artist would be using the shader.

Creating a Fullscene COLLADA FX Effect
This section describes how to create a new Fullscene COLLADA FX Cg profile
effect and apply it within a simple scene. The goal of our composition is to apply an
EdgeDetect filter onto a Layer of the scene and composite it with another Layer
that does have any fullscene effect.

Before we get started with the creation of the effect, we need to create a simple
scene to visualize our work. For this, create a teapot and a torus using the Library ->
Geometry menu after having created a new project.

Next, create a new Effect by importing a .CgFX like Goochy_gloss.cgfx. Apply this
effect to the objects in the scene by drag and dropping the effect onto the 3d object
in the scene panel. At this point, the test scene should look like Figure 20.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 39
April 2007

Figure 20: Test scene with Goochy_gloss.cgfx effect applied
Next, we want to leverage the Layer system to separate these two objects and allow
us to apply the fullscene effect only to one object and not the other. For this, select
the teapot and go the Assets Panel-> Scene control to select its node. Go to the
Properties Panel and type in the Layers parameter: EffectLayer. Do the same with
the torus node and type in NoEffectLayer.

We now have a scene with two objects that belong to two different layers. We are
ready to create the fullscene effect.

Create a new empty effect in the Assets Panel and add a COLLADA FX Cg profile.
Lets rename the Effect: “ColladaFS Effect”. Let’s also create a new material in the
Assets Panel, named “ColladaFS Material” and have it reference “ColladaFS
Effect”.

Now, we need to go back to the Effect and start adding the necessary pieces to
create our Fullscene COLLADA FX Cg.

We have to add the following profile parameters:

• Surface for the render target

• Sampler for the sampling states of the render target

• Depth surface for the Z and Stencil buffer of the render target

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 40
April 2007

• 2D vector to hold the dimensions of the rendertarget

• Scalar parameter for setting up the anti-aliasing of the outline of the edge detection
effect

• Scalar parameter for setting up the threshold level to detect an edge.

The following section will detail how to create these parameters:

1. Rendertarget Surface
- Right-click on the profile parameter folder and select create ->
Surface.
- Rename “MySurface” to “SceneTexture” (Press F2 on the node)
- In the properties panel, set the SurfaceUsage to ColorTarget,
IsViewportRatio to TRUE and Format to A8R8G8B8.
These settings tell the engine that the surface has to be treated as a
rendertarget with a texture format of A8R8G8B8 and should inherit its
viewport ratio.

2. Sampler of the Rendertarget Surface
- Right-click on the profile parameter folder and select create ->
Sampler.
- Rename “MySampler” to “SceneTextureSampler”
- In the properties panel, set the SamplerType to Sampler2D and
Texture to “SceneTexture”.

3. Depth surface of the rendertarget
- Right-click on the profile parameter and select create -> Surface.
- Rename “MySurface” to “DepthSurface”
- In the properties Panel, set the Surface Usage to DepthTarget, the
DepthFormat to D24S8, the SurfaceType to Surface2D and the
IsViewportRatio to TRUE.

4. 2D vector for holding viewport size
- Right-click on the profile parameter and select create -> float2x1.
- Rename MyFloat2x1 by “QuadScreenSize”
- In the Properties Panel, set the Semantic to VIEWPORTPIXELSIZE
This will basically allow FX Composer engine to feed the float 2 vector
with the dimensions of the viewport.

5. Scalar control for Anti-aliasing
- Right-click on the profile parameter and select create -> float
- Rename the “MyFloat” to “NPixels”.
- In the properties panel, set its default value to 1.2

6. Scalar Control for Edgedetect threshold
- Right-click on the profile parameter and select create -> float
- Rename the “MyFloat” to “Threshold”.
- In the properties panel, set its default value to .5

Now that we have all the profile parameters in place, we can implement our 2-pass
setup. Our first pass will clear the color and z buffers and draw the scene onto it.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 41
April 2007

The second pass will source the color buffer and apply an edge detect filter that will
be used to draw a full scene quad.

Lets start to implement the edge detect code by filling the Default Shader code node
with the following code:

float NPixels = 1.5f;
float Threshhold = .2f;
float2 QuadScreenSize;

sampler SceneTextureSampler = sampler_state {
 MagFilter = Nearest;
 MinFilter = Nearest;
};

float getGray(float4 c)
{
 return(dot(c.rgb,((0.33333).xxx)));
}

struct QuadVertexOutput {
 float4 Position : POSITION;
 float2 UV : TEXCOORD0;
};

QuadVertexOutput ScreenQuadVS(
 float3 Position : POSITION,
 float3 TexCoord : TEXCOORD0)
{
 QuadVertexOutput OUT;
 OUT.Position = float4(Position, 1);
 OUT.UV = TexCoord.xy;
 return OUT;
}

float4 edgeDetectPS(QuadVertexOutput IN) : COLOR {
 float2 ox = float2(NPixels/QuadScreenSize.x,0.0);
 float2 oy = float2(0.0,NPixels/QuadScreenSize.y);
 float2 PP = IN.UV.xy - oy;
 float4 CC = tex2D(SceneTextureSampler,PP-ox);
 float g00 = getGray(CC);
 CC = tex2D(SceneTextureSampler,PP);
 float g01 = getGray(CC);
 CC = tex2D(SceneTextureSampler,PP+ox);
 float g02 = getGray(CC);
 PP = IN.UV.xy;
 CC = tex2D(SceneTextureSampler,PP-ox);
 float g10 = getGray(CC);
 CC = tex2D(SceneTextureSampler,PP);
 float g11 = getGray(CC);
 CC = tex2D(SceneTextureSampler,PP+ox);
 float g12 = getGray(CC);
 PP = IN.UV.xy + oy;
 CC = tex2D(SceneTextureSampler,PP-ox);
 float g20 = getGray(CC);
 CC = tex2D(SceneTextureSampler,PP);
 float g21 = getGray(CC);
 CC = tex2D(SceneTextureSampler,PP+ox);
 float g22 = getGray(CC);
 float K00 = -1;
 float K01 = -2;
 float K02 = -1;
 float K10 = 0;
 float K11 = 0;
 float K12 = 0;
 float K20 = 1;
 float K21 = 2;

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 42
April 2007

 float K22 = 1;
 float sx = 0;
 float sy = 0;
 sx += g00 * K00;
 sx += g01 * K01;
 sx += g02 * K02;
 sx += g10 * K10;
 sx += g11 * K11;
 sx += g12 * K12;
 sx += g20 * K20;
 sx += g21 * K21;
 sx += g22 * K22;
 sy += g00 * K00;
 sy += g01 * K10;
 sy += g02 * K20;
 sy += g10 * K01;
 sy += g11 * K11;
 sy += g12 * K21;
 sy += g20 * K02;
 sy += g21 * K12;
 sy += g22 * K22;
 float dist = sqrt(sx*sx+sy*sy);
 float result = 1;
 if (dist>Threshhold) { result = 0; }
 return result.xxxx;
}

Next, we need to set the Draw Commands of Pass1.

- Right-Click on the Draw Commands folder and a ClearColor, ClearDepth,
ColorTarget and DepthTarget. The ColorTarget and DepthTarget’s surface
parameters need to be set to SceneTexture and DepthSurface respectively.

- Right-click on the Draw Type node of the Drawing Command and set it to
SCENE_IMAGE

This pass is all set to render the scene in the rendertarget.

Now, we need to set up the second pass that will draw the fullscene quad. Right-
click on technique1 and select Add Pass. Right-click on the Draw Type node of
Draw Commands folder and set it to SCENE_SCREEN_QUAD.

We then need to rig the shader entry points to the vertex and fragment program.
Select the vertexProgram folder and go to the Properties Panel to set the EntryPoint
to “ScreenQuadVS”, the Compiler Target to “arbvp1” and the Source to “default”.
Similarly, select the FragmentProgram folder and go to the Properties Panel to set
the EntryPoint to “edgeDetectPS”, the Compiler Target to “arbfp1” and the Source
to “default”.

At last, the FragmentProgram necessary fragment program bindings need to be
done. Right-click on the Bindings folder of the FragmentProgram node and Add
NPixels, QuadScreenSize, SceneTextureSize and Threshhold to be bound to
NPixels, QuadScreenSize, SceneTextureSize and Threshold, respectively, in the
properties panel.

The work is done. We just need to set the scene to be rendered with this fullscene
material. Go to the scene section of the Assets Panel and select the scene root node.
Right-click and select Add Evaluate Scene. Next, select the new EvaluateScene node
and right-click to select Add Render. Right Click on the Render node and select Add
Layer. Rename the Layer to “EffectLayer”. Finally, right-click on the Render node
and select Assign Material ->FullScene_Material.

You should see the following.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 43
April 2007

Toggling on and off the check box off of the the EvaluateScene node will disable
the fullscene effect or not.

COLLADA FX Authoring
Collada FX authoring can be achieved in the Assets Panel panel of FX Composer.
Under the effects section of the tree, it’s possible to author Collada FX using several
different ‘profiles’. Additionally, the material section enables connection of the
effects to objects in the scene, and the scene section allows creation of full screen
effects via ‘evaluate scene’ tree nodes.

Here we’ll discuss the various elements in the effect tree, and how to create/edit
them. Later we’ll cover using the evaluate scene elements.

Assets Panel
To save repetition, it should be noted that most elements in the Assets Panel can be
created by right-clicking the folder above the desired location, and choosing ‘Create-
>’, followed by the list of options that are possible. Additionally, most elements can
be removed by right-clicking them and choosing ‘Delete’. If an element can be
renamed, there will also be a right-click menu, or the standard shortcut, function key
F2, or an additional click with the mouse on the tree node will achieve the same
thing

All operations in the Assets Panel (as in the rest of FX Composer) can be undone,
by the use of the CTRL+Z keyboard shortcut, or redone using CTRL+Y. This
option is also available under the edit menu.

Where this document refers to adding, removing or renaming elements, the above
description should be kept in mind.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 44
April 2007

Figure 21: Layout of a COLLADA FX Cg profile effect

Effects
The Figure 21 shows the layout of a default Collada FX, using a Cg profile. The
first thing to notice is that an effect named ‘Effect1’ has been added to the tree.
Effects represent the collection of state required to achieve a particular visual effect
on screen. They are the ‘template’ for how the graphics chip should be set up. An
effect might be designed to make something look like metal, or wood, or fur, etc.
Effects are added to the current scene via materials, which reference an effect, and
apply modifications to the effect setup to change its behavior. For example,
materials might be created for ‘red metal’ and ‘blue metal’, but both materials use
the same ‘metal’ effect; they just modify the colors it uses. There is usually a many-
to-one relationship between materials and effects for a given visual look. Effect
authors determine how effects will behave, and material authors determine how they
will appear in a given scene.

Effect
Profile
Parameters

Techniques

Source Code

Effect Parameters

Passes

Shader Pipeline Stages

Render States

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 45
April 2007

Effects typically contain shader code and render states for the GPU. They are
usually authored by a programmer or a technical director with intimate knowledge
of a given 3D API. Materials typically contain parameters for control of the shader,
and are thus usually tweaked by the artist. The tree approach to authoring Collada
FX helps to blur this boundary somewhat, since it is much easier to author effects
when selecting from options; but knowledge of shaders and rendering state are still
required to author effects well.

Profiles
Profiles describe different ways to realize the same effect. When a device back-end
is rendering an effect, it may support one or more profiles with which to draw that
effect. There are broadly 2 types of profile – API specific profiles, and the
‘Common’ profile.

Common Profile
The ‘Common’ profile is designed to be the most basic shading effect, capable of
being rendered on most GPU/API combinations. As such, supplied back-end
devices in FX Composer all support the common profile. DCC applications
traditionally support this sort of profile as their default shading model. It can be a
good idea to add a common profile to an effect, to ensure that even back-ends
without profile support in the effect can render an approximation to the required
visual. The Common profile supports basic texturing and lighting, and comes in 4
flavors: Blinn, Phong, Lambertian, Constant. Only one common profile is allowed
in the effect, so only one of these shading models can be used in a given effect. Any
basic reference material on graphics will give details about these different shading
models. To add a common profile to an effect, right-click the effect icon and
choose ‘Add Profile->Common->…’. Once a common profile has been added, it
can be selected, and its parameters adjusted just like any other effect. Parameters
are covered later. The default parameters for a Blinn-based common profile are
shown below. Note that the common profile is indicated by the orange Collada
logo. Note also that the default common profile has used color values, but these
can be changed to be textures using the properties panel.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 46
April 2007

API specific profiles
Since there are many shading language options, and no easy way to create a
common ground between them, Collada supports API specific profiles. These
profiles are specified to closely match a given API/Shading language.

In Figure 21, a single profile has been added to ‘Effect1’ – it is called ‘Cg’, and
represents a Cg language-based shader. An effect can of course contain multiple
profiles, enabling it to run with a variety of shader effects. For example, if
supported, the user might add an OpenGL-ES specific profile.

For the purposes of explanation, this document describes Cg profile authoring, but
the procedure is similar for any given profile – though not necessarily identical. FX
Composer supports additional profiles through its plug-in architecture. Specific
profiles may add different user interface controls to enable more effective authoring
according to the profiles characteristics.

To create a Cg profile, simply right-click the effect and choose ‘Add Profile->Cg’.
FX Composer will fill in a typical set of state in order to get you started authoring a
Cg profile. The default state is sufficient to draw an object in the scene with a
texture.

If you need a different default effect, you can create your own by editing the
<shaders> section of the \Plugins\Scenes\Profiles\profiles.fxplug xml file.

Profile Parameters
Once a profile has been created, it is possible to add parameters to the profile using
the menu on the profile parameters folder. Only parameters that the profile
supports can be added, since they are profile specific. Note that an additional
‘global’ parameters location exists at the effects level, right under the effect; here a
common subset of parameters can be added and enable values to be shared across
different profiles. Wherever the parameters are declared, they are created in the
same way, via the menu. Parameters also have annotations. In the Assets Panel
diagram, the WVP matrix parameter can be seen to have a ‘UIWidget’ annotation
(which in this case is set to ‘none’ in the property panel to ensure that this matrix is
not visible to the user). Annotations are authored by right-clicking the annotation
folder and choosing ‘Create->’ in the same way as parameters. The subset of
annotations supported is determined by the profile, and the type of parameter.

One parameter type that is slightly different is the Sampler. Samplers have an
additional sub-folder called ‘Sampling States’, and this contains sampler-specific
settings, such as the texture filtering mode. The context menu on the sampling
states enables additional states to be added.

Adjusting parameters
To adjust any parameter, select it in the Assets Panel and the properties panel will
enable it to be changed. For example, if we select the WVP parameter, the
properties panel will show the current matrix value, and a push button will enable
the matrix editor to adjust it. If the parameter supports a semantic, this will also be
editable in the properties panel.

Parameter editors will vary depending on type. For example, a color parameter will
enable the color picker, but a matrix will show the matrix editor.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 47
April 2007

Techniques
A technique in an effect profile represents a chosen implementation of a given
effect. Techniques might be split by level of detail, or by implementation cost, or by
visual look – for example, a metal effect’s Cg profile might contain ‘distorted’,
‘polished’, and ‘scratched’ as technique options. Techniques are typically selected by
the runtime engine (for example – a game might choose a low detail technique when
objects are far away), or from the material; since in FX Composer you can choose
the technique at the material level.

Any number of techniques can be added to an effect. Techniques can also be given
a more meaningful name.

Passes
Under each technique lives a list of passes. Passes represent the rendering steps to
execute for evaluating the technique. Like techniques, any number of passes can be
applied to build up the effect. Passes are made up of Drawing commands,
Rendering state, and a shader pipeline.

Drawing Commands
Drawing commands tell the graphics engine how to draw a particular pass. The
default draw command is the ‘Draw Type’, and it is usually set to ‘GEOMETRY’,
indicating that this pass will simply draw the geometry that is assigned to it, using
the current pass state. The draw command is always present and can be changed by
right-clicking it and choosing a different type. The options are typically used with
full screen effects, and are:

GEOMETRY – Just draw geometry

SCENE_GEOMETRY – Draw all of the scene geometry, using this pass state.

SCENE_IMAGE –Draw the whole scene in to the current rendertarget.

SCENE_SCREEN_QUAD – Draw a quad over the whole viewport.

SCENE_SCREEN_QUAD_PLUS_HALF_PIXEL – Draw a quad over the whole
viewport, aligned at ½ pixel boundaries.

SCENE_GEOMETRY_NOOVERRIDE – Draw all the scene geometry, but don’t
override with the current pass state.

The remaining drawing commands can be added using the menu, and enable setting
of a different rendertarget surface, and causing a clear to occur before the pass is
drawn.

Rendertargets are editable in the properties panel, and the user sets the target index
(for MRT), and the surface ID, which is the name of the surface parameter in the
profile parameters.

Clear commands are also editable in the properties panel and clear color/depth
values can be adjusted, as well as the target index.

Render States
Rendering state represents GPU states which are fixed during the pass. Options
such as back face culling, or depth testing are rendering states. Right-clicking the
rendering states folder will enable creation of rendering states, and they are grouped

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 48
April 2007

into similar sections, such as ‘Framebuffer’, ‘Transform’, etc. Rendering state
options are different depending on the current device.

Shader Pipeline
The shader pipeline is the last part of the pass information, and describes the
shading stages present in the API of choice. In Cg, this is equivalent to Vertex &
Fragment programs; and in this case, you may only add these 2 types of stage.
Other API’s might use fixed function stages, or none at all – these are again specific
to the profile, and will show up differently.

Clicking on the fragment program will show a list of settings for that program. In
the case of Cg, they are:

 Entry Point. The function to call in the shader code.
 Compiler Target. The compiler target, such as arbfp1.
 Compiler Options. Set the compiler options to be passed in to the command

line. It is combined with the compiler options from the technique and the
global compiler options of the settings window.

 SID. The ID of the shader code. This is shown in the “Shader Source Code”
folder, see later.

Once the source code references have been setup, the remaining item is to connect
parameters in the shader source code to values in the profile or effect parameters.
This is done using bindings. The bindings folder under the pipeline stage shows a
list of active bindings. Bindings can be added using the right-click context menu.
The name of the binding is the same as the name of the shader source code
parameter. The reference value (settable in the properties panel via a drop-down
list), refers to the given profile or effect parameter. If a binding is incorrect, this will
result in a compile error in the task list.

Shader Source Code
The pipeline stages, in the case of Cg at least, refer to source code that has been
written by the developer. The source code folder enables creation of new source
code elements, either from files on the disk, or as embedded shader files inside the
Collada file. The menu lets you reference existing files, create new ones, or create
embedded code. Embedded code elements are given a fixed name which cannot be
changed (and this is referenced in the pipeline stage SID). File based shaders gain
the name of their associated file.

The menu on a given shader can be used to switch it between an embedded
reference and a file based reference, for maximum flexibility.

Full Screen Collada FX
FX Composer enables authoring of effects that change the way the scene is drawn
at quite a high level. Examples of full screen effects are things such as ‘glow’, ‘blur’,
etc… Such visual effects typically modify the whole scene, or a part of it, by
building up their visual using offscreen buffers, and compositing techniques.

Full screen effects are authored using the effect system, and then hooked into a
given scene using ‘Evaluate Scene’ nodes. An example is shown below. In this
example, the scene is evaluated using 2 rendering steps. Each step consists of a list
of layers, a selected material, and a chosen camera. Any number of evaluate scene
nodes can be added to a scene, and each can be made up of any number of

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 49
April 2007

rendering steps. The example evaluate scene is built using a script, and can be
created using the following script commands in the python window:

import test_fscolladafx
test_fscolladafx.test()

The effect result is to draw 2 teapots in a scene, one of which is edge detected, the
other is not. This is achieved using a layer mask to select which objects are drawn
using the full screen effect. The screenshots below show the results.

Evaluate Scene
Each evaluate scene is enabled using a checkbox, as shown in the screenshot. Only
evaluate scenes that are selected will be enabled. It is possible to stack up multiple
evaluate scenes to composite scenes together.

Render
Each render call causes the engine to draw something. The render menu enables
layers to be added, and the material and camera nodes enable different assignments
of materials and cameras in the scene.

 Layers. Layers are simply selectors for geometry in the scene. If a layer is
specified, then the engine will only draw nodes that are present on that given
layer. Layers are identified simply by their names, which can be changed. Any
node can be assigned to the default layer by setting its layer string to empty, or
added to any number of layers by setting a list of comma separated layer names
to its node property (which is accessible from the properties page when a node
in the scene is selected). The first rendering pass here uses the layer called
‘EffectLayer’, and the teapot on the right has been added to this layer in the
scene. The second pass uses the ‘NoEffectLayer’ and the teapot on the right is
in this layer.

 Material. The material selects which material to draw this rendering pass with.
This in turn references a given effect, which contains additional Drawing
commands in the pass (see Drawing Commands, page 47). The material menu
gives a list of available materials to use.

 Camera. The camera is used to specify which scene camera point of view is
used. This camera will be used to look at the scene for all rendering in this pass.
If no camera is specified, then the current scene camera will be used.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 50
April 2007

CgFX and .fx Authoring
To author a CgFX or HLSL .fx file, right-click on a new or existing effect in the
“Effects” section of Project Explorer. The file’s context menu will include an option
for “New Effect File,” which will allow you to choose either an HLSL or a CgFX
file. FX Composer will prompt you for the file name and location of the file and
open the new file in Code Editor.

To help you get started, FX Composer populates this new file with a simple Phong
shader template. You can customize the template by modifying the default.cgfx and
default.fx files located in the data folder of the FX Composer installation.

Vertex Stream Remapper
Because different shaders expect common vertex attributes to appear in specific
vertex attribute slots, FX Composer 2 gives you full control over this mapping.

There are two levels of control where this can be done: at the Environment level
and at the material level.

Global Remapper:
The global Vertex Stream Remapper allows custom vertex attribute configurations
to be easily set without having to micro manage each shader assignment.
Since it has no information on the types and semantics, it is string based and
matches semantics and streams by name with a non case sensitive search.

You can set a global remapping for the vertex streams in the Development
Environment (Tools → Settings… → Environment → Vertex Stream Renapper)
that will take effect as the default mapping.

Two types of mapping are possible in these remappers:

 Stream remapping
Remaps an entire stream, for example, to feed a shader with an input semantic
of Position with data coming from the Normal stream in the geometry.

 Vertex Component Remapping
Remaps individual components of a stream allowing swizzling on the input
streams fed to the shader.

Example:

Shader Input Geometry Stream

Position.X Position.X

Position.Y Position.Z

Position.Z Position.Y

Position.W Normal.W

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 51
April 2007

To modify the global remappings, click on the “…” button on the
VertexStreamRemapping row.

It will display a window with a table with 6 columns:

 Shader Semantic: The shader semantic to remap.
 Type: The type of the data. Usually unknown for this mode since the global

remapper has no knowledge of the stream types.
 Stream Semantic: The type of data that the shader semantic will be remapped

to
 Component: The component of the stream. This field is not modifiable when

remapping entire streams.
 Inputset: The input set of the stream
 Negate: An optional negate option to the input component

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 52
April 2007

The figure below shows two examples of remappings:

Figure 22. The Vertex Stream Remapper
The first line is a stream remapping that will set the “Position” shader semantic to a
stream named “Pos” if it exists in the geometry.

The second line and 4 subsequent lines are the representation of the previous
example that swizzles individual components of a stream before it sets it to the
shader input.

Conversion from a Stream Remapping to Custom Remapping and vice versa can be
done by selecting a row and clicking on the “Convert to” button above the table.

Finer Remapping :
FX Composer provides the user with even finer control over the remapping to
enable easy handling of special cases. In order to support shaders that are not
sharing the same vertex stream configuration, you can override the default mapping
at the material level by left-clicking on an instanced material (that is, a material
attached to a piece of scene geometry) in the Assets Panel. The Properties panel will
then show you the current mappings in the Material Instance Vertex Binding
section.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 53
April 2007

Clicking on the arrow will show a dialog similar to the one used in the global vertex
remapper covered in the previous paragraph. Since the streams are known from the
program, the Shader and Stream Semantics can be selected in drop downs instead of
hand typed.

The first column contains the vertex streams that the shader expects (FX Composer
derives these by parsing the material’s source code). The second column shows the
type of the stream when it can be obtained from the material. The third column
contains the geometry streams that can be fed to the shader.

Similarly to the global remapper, a custom remapping of fields is possible by
selecting “Custom Remapping” in the Stream Semantic drop down of a row. The
line with expand in three sublines where a finer control of the input can be set.

By default, FX Composer uses the following vertex stream mapping:

Table 1. Vertex Stream Mapping Used by FX Composer

Register Name Type of Data

POSITION Vertex position

NORMAL Normal

TEXCOORD0 u-v texture coordinates

TEXCOORD5 Tangent

TEXCOORD6 Binormal

Converting CgFX Effects to COLLADA FX Effect
You can convert a CgFX effect to a COLLADA FX effect simply by right-clicking
on the corresponding CgFX profile in Project Explorer, and selecting “Convert to
COLLADA FX” from the context menu. (Figure 23). Once converted, the CgFX
profile will be replaced by a COLLADA FX profile.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 54
April 2007

Step 1. Select the CgFX
effect.

Step 2. Right-click and
select Convert to Collada
FX.

Result: Effect is successfully
converted.

Figure 23. Converting a CgFX Effect to a COLLADA FX Effect

FX Composer offers various customization options when you convert CgFX files to
COLLADA FX. These options are available through the Tools menu (Tools →
Settings → Environment → COLLADA Conversion) and are explained below:

 PreprocessorCommand. Specifies the preprocessor that FX Composer will
use. By default, this is set to “cgc,” which is the Cg compiler.

 RunPreprocessor. When set to “True” (the default), FX Composer runs the
preprocessor on CgFX file. (The preprocessor is necessary for shaders that
contain “#include” and “#define” statements.)

 RunStripper. When set to “True” (the default), FX Composer will run the
code stripper utility specified by “StripperCommand” (explained below) when
converting a CgFX file to COLLADA FX.

 StripperCommand. Specifies the utility that will be used to process CgFX files.
By default, this is set to “fxclean,” which removes comments, techniques,
passes, and most annotations, leaving just Cg code.

Note: If a CgFX file contains parameters that are evaluated by
the Cg runtime virtual machine, that file cannot be converted
to COLLADA FX.

Editing COLLADA FX Cg Shaders
To modify a Cg shader in a COLLADA FX effect, double-click the corresponding
Cg file name or the inlined code node listed in Project Explorer’s Included Shader
Files folder, “Converting CgFX to COLLADA FX.”

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 55
April 2007

Converting .fx to CgFX
FX Composer 2 comes with a Perl script that automatically converts HLSL .fx files
to CgFX. It is called “convert_fx.pl” and you can find it in the Utilities sub-folder of
the FX Composer 2 installed location.

convert_fx.pl outputs a copy of the input effect with Microsoft FX/CgFX 1.2
specific state assignments converted to the new OpenGL specific state assignments
in CgFX 1.5.

Perl must be installed for the script to run. (You can download a free Perl
distribution from www.activeperl.com.) To run the script, execute the following
command:

perl convert_fx.pl input.fx output.cgfx

Limitations
Multiple state assignments on a single line are not supported. If the input file
contains any lines similar to the following:

 SrcBlend = One; DestBlend = Zero;

you must move these state assignments to their own line before running this script,
as shown below:

 SrcBlend = One;

 DestBlend = Zero;

State that has no direct OpenGL equivalent will not be changed; instead, this script
will add a comment to the line indicating that the state will have to be manually
updated. Search for “FIXME” in the output file to locate these problem states.

See the declaration of the unsupportedState array below for a list of state that is not
supported.

 Sampler state inside a pass block is not supported by CgFX 1.5 or this script
and will need to be manually moved into a sampler_state block.

 This script only updates state assignments inside a pass or sampler_state block;
it will not modify any shaders, annotations, or semantics.

DU-002761-001_v01 57
April 2007

The Render Panel

The Render Panel
The Render panel displays the current scene and has several controls for navigating
and manipulating scenes. A tab for each device is installed on your system; typically,
you’ll see tabs for Direct3D and OpenGL devices. You can dock or undock these to
view multiple devices simultaneously or to enlarge a particular rendering.

Toolbar
The toolbar helps you work with cameras and objects in the scene and contains the
following buttons:

 Cameras. Lists all available cameras in the active scene.
 Navigation Mode. Allows you to choose between orbit, trackball, and

flythrough.
 Orbit. The orbit mode is a mode of rotation with 2 degrees of freedom.

The horizontal displacement of the mouse determines the rotation of the
camera in the horizontal plane of the object space. The vertical mouse
displacement determines the vertical screen space rotation of the camera.
The center point of rotation is always at the center of the screen, while the
depth of the center point is adapted according to events such as “zoom
extents.”

 Trackball. The trackball rotation mode offers a full 3 degrees of rotation.
The axis of rotation is orthogonal to the mouse displacement and is parallel
to the screen. The angle of rotation is determined by the magnitude of the
mouse displacement. The shorter of the width and the height of the screen
corresponds to a 360 degree rotation. The center point of rotation is set, as
in the orbit mode.

 Flythrough. The flythrough camera mode offers a FPS-style navigation
mode for large scenes. The vertical displacement of the mouse corresponds
to camera pitch, whereas the horizontal displacement is factored in for the
camera yaw. The camera can be moved forward or backward using the
mouse wheel or with Shift + left mouse button.

 Object Selection (Q). Allows you to select objects. If you want to translate,
rotate, or scale a specific object in the scene, you must first select it. Selecting an
object also brings up its properties in the Properties panel. You can use the left
and right arrow keys to move the selection from object to object. This can be
very helpful in complex scenes.

 Object Translation (W). Translates the selected object. A set of axes will
appear, and you must click and drag on the axis that you want to translate along.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 58
April 2007

 Object Rotation (E). Rotates the selected object. A set of circles will
appear to represent rotation along various axes. You must click and drag on a
circle to rotate around that axis.

 Object Scaling (R). Scales the selected object. A set of axes will appear to
represent scaling along various axes. You must click and drag on an axis to scale
in that direction.

 Zoom Selected Object Extents. Zooms the camera so that the extents of
the selected object are visible.

 Zoom Scene Extents. Zooms the camera so that the extents of the entire
scene are visible.

 Reset Camera Rotation. The camera has a rotation component and a
translation component. These cumulative rotations and translations are stored
independently. “Reset Camera Rotation” resets the rotation component of the
camera only and is helpful, for example, when you have rotated your camera to
a point where you are confused about its current orientation.

 Display Skeleton Bones. Show bones (if your scene has any).
 Set Background Color. Changes the rendering’s background color.
 Save Viewport to File. This saves the current view to disk as a BMP, JPG,

or PNG file.

Manipulating the Camera
To manipulate the camera (that is, the viewpoint), use:

 Alt + Left Mouse Button for rotations
 Ctrl + Left Mouse Button for translation
 Mouse wheel for zooming in and out

Applying Materials
To apply a material to an object, drag-and-drop the material onto the object—the
object’s appearance will change to reflect the new shader. To apply a full-scene
material to your scene, drag-and-drop the material onto the Scene Window’s
background (which is gray by default).

You can also drag shader files from the Windows Explorer to achieve the same
results. If you try to drag a shader onto an object that doesn’t have a material
assigned to it, FX Composer will automatically create a material for you and assign
the effect to that material.

If you try to drag a shader onto an object that has a material, but not the specific
profile you’re adding, FX Composer will add that new profile to the existing effect.
And, if an identical profile already exists, you will be prompted to either replace it or
leave it.

You can also change the effect associated with a particular material by dragging-and-
dropping a new effect onto that material in the Assets Panel. Any objects in the
scene that use that material will automatically be updated to reflect the new shader.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 59
April 2007

Context Menu
Right-click on any part of the Render panel to view the context menu. The Context
menu has the following options:

 Set Current Scene (allows you to choose between available scenes)
 Scene Properties (displays the current scene’s properties in the Properties

panel)
 Show Lights

 Show Grid

 Show Cameras

 Show HUD (the HUD displays scene name, camera, and camera mode)
 New Window – Creates a new viewport tab for the same Device type.
 Material/Effects

 <Shows names of material>
 <Shows names of effects>

Viewports
The Render Panel contains a set of tabs where each tab holds a viewport.
Depending on the configuration, you may see a variety of tabs that reflects the
various plug-ins and their respective device. By default, FX Composer 2.0 ships with
a Direct3D 9 and an OpenGL device.

Additional plug-ins maybe available from other partners as well.

In addition to supporting multiple devices, you can create multiple viewports from
the same device type. Bring up the viewport context menu and select “New
window” to create a new tab with its own viewport. This is useful to have different
views of the same scene using different cameras or view a different scene with the
same type of device.

Scene Options
You can modify the following Render panel parameters via the Settings… option
the Tools menu. The options are listed in the Scene Options subsection under
Environment.

 InverseMouseWheelZoom. Changes the direction of zooming when the
mousewheel is used.

Tips for Working with Complex Scenes
Here are a few tips to help you navigate complex scenes in FX Composer:

 Zoom Scene Extents and Zoom Selected Object Extents are very powerful, and
are a great way to get a good view of your overall scene or the selected object.

 There are two ways to select an object:
 Click on the object in the Render panel. If the object is within the bounds of
a bigger object, simply click again without moving the mouse and FX
Composer will cycle through all objects that lie in that pixel.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 60
April 2007

 If you have an extremely complex scene and navigating through the scene
panel is difficult, you can navigate through the Scenes node of Project
Explorer to find the object you’re looking for. Once you’ve found it, you can
right-click and choose “Select” from the context menu. This will then select
the object in the Render panel. (Zooming extents on the object may be useful
at that point.)

 If you’ve selected an object in a complex scene and want to know what material
is assigned to it, you can right-click on it and the Material sub-menu in the
resulting context menu will contain a reference to the material’s technique.
Clicking on the material or technique in the context menu will automatically
expand Project Explorer to show that material or technique.

Animation Panel
The Animation Slider should be used to control the playback of animated scenes. It
allows you to scrub the timeline to position the animation at a current time. You can
also play, pause, skip, stop, and loop the animation.

Figure 24. The Animation Panel
In addition to these typical controls, you can constrain the timeline to a sub-range.
By either typing the start and end times or resizing the Time Range bar directly, you
can enforce a certain range of time within which you can operate.

Figure 25: Animation Slider with a sub-range selection
If you play the animation by pressing the play button in the Playback Controls, the
animation will be constrained to the time sub-range. The animation toolbar also
allows you to pick which scene and clips to display, the playback speed, and whether
to sync animation with the active scene.

Timeline Playback controls

Time constraint

Animation Tracks

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 61
April 2007

In addition, the Animation panel displays each individual animation track in your
scene. Against the background of each track, you can see a line that shows how that
particular track’s value changes over time.

DU-002761-001_v01 63
April 2007

Analyzing Shader Performance

The ShaderPerf Panel
FX Composer integrates NVIDIA’s ShaderPerf tool to analyze shader performance,
complete with informative graphs and tables (Figure 26). To analyze a shader, right-
click on its source file in the Assets Panel and select “Analyze Shader Performance”
from the context menu (Figure 27). (In FX Composer 2 Beta, Shader performance
analysis is only supported on COLLADA FX files.)

By default, the ShaderPerf panel is located in the bottom center of the application.

When no experimentation is active, a startup form is shown. This form allows you
to:

 View the currently loaded effects
 Load new effects
 Access the ShaderPerf Panel configuration window

Figure 26. The ShaderPerf Panel

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 64
April 2007

Configuring the ShaderPerf Panel:
Three configuration options are available for the ShaderPerf Panel:

 Default Selected Drivers: This list contains all the drivers to include in the
experimentations. Disable those that you don’t need for better performance
during the effect analysis.

 Default Selected GPUs: This list contains all the GPUs to include in the
experimentations. Since the list can be quite large, it is recommended that you
uncheck all unnecessary GPUs from this list.

 Enable Automatic Analysis: This option enables the automatic performance
analysis of an effect file when it is compiled.

To modify these settings, select the row and click on the button on the right of the
row.

Certain NVShaderPerf modules like the RSX dll, allow the compiler they use to be
changed. The preferences window contains a setting to change the path of the
compiler in “Environment\PLAYSTATION 3\PS3 Cg Compiler”.

Running tests
There are two ways to run analyze the performance of an effect file:

 By right clicking on an included effect/shader file in the Assets Panel and
selecting Analyze Shader Performance (Figure 13)

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 65
April 2007

 By clicking on a effect file name, in the loaded effect list of the ShaderPerf
Panel

Figure 27. Analyzing a Shader

Once the Shader performance test is complete, a group of tabs will be created (one
per device effect). Each tab contains the result of a device-specific performance test.

ShaderPerf Panel Interface
The ShaderPerf panel’s interface shows you various analysis options on the left and
results on the right. The options on the left allow you to select which passes to
analyze, the type of data to show, and the list of drivers/GPUs to use.

On the right, you’ll see the results of the shader analysis experiments, based on the
selected options. The type of representation can be modified by using the toolbar
buttons in the upper part of the right pane. It can be a table or a graph.

The toolbar on top of the results pane contains can perform the following actions:

 Run: Runs tests for the current panel.
 ASM: Shows the assembly code of the selected passes
 Table: Shows results data as a table
 Graph: Shows the results as a histogram
 Log: Shows the log of the experiments with more details on the results.
 Export: Exports the data as Comma Separated Values (CSV) for external use

The left side of the panel shows all the available options for the current experiment
such as:

 The passes
 A selection between the Fragment Shader or Vertex Shader
 The driver and GPU selection lists

This side bar allows you to precisely select the data you wish to display in the tables
and graphs.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 66
April 2007

Table/Graph Modes
There are two different ways to display the results of an experiment. The Table and
Graph icons on the toolbar allow you to change the display mode.

 The table mode shows the data in columns and rows. Columns represent
drivers and rows represent the GPUs. Each cell has three inner cells containing
the results of the experiment. (The number of R Registers (128 bits registers)
used, the number of cycles used, and the pixel/vertex throughput)

 The graph mode shows a histogram of the vertex/pixel throughput. The
displayed data can be exported to an image file by right clicking on the graphical
component and selecting “Save image…”

Figure 28. The ShaderPerf Panel's Table View

Figure 29. The ShaderPerf Panel's Graph View

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 67
April 2007

Task List
Task List (Figure 30) shows any errors that are found when compiling an effect. The
offending lines are highlighted in Code Editor, and the corresponding compiler
error is displayed. Double-clicking on an error will take you to the corresponding
line of code in Code Editor.

When loading a COLLADA file, FX Composer Beta reports any errors found while
validating the file against version 1.4.0 of the COLLADA schema. Even if any
errors are found, FX Composer will try to load the file as best as it can. We highly
recommend that you repair any COLLADA files that contain errors when possible,
even if they load successfully.

Figure 30. Task List

ShaderPerf Panel Settings
You can modify the following ShaderPerf panel parameters via the Settings…
option the Tools menu. The options are listed in the ShaderPerf subsection under
Environment.

 Default Selected Drivers. Specifies which driver(s) to use by default.
 Default Selected GPUs. Specifies which GPU(s) to use by default.
 Enable Automatic Analysis. Automatically analyzes your shader when it is

opened.

DU-002761-001_v01 68
April 2007

Working with Projects

This section explains how FX Composer projects work and how they interact with
COLLADA files.

Each FX Composer project is saved with the .fxcproj extension. These project files
can contain reference scene data and shader data in multiple COLLADA files.
(Keep in mind that COLLADA files can contain shaders, textures, and geometry, as
well as pointers to other COLLADA files.)

Project Structure
Select “New Project” from the File menu to create a new blank project in FX
Composer. When you save it, you’ll see a dialog box that prompts you for a name
and a location for your project (Figure 31). By default, the dialog box will start in My
Documents\FX Composer 2 Projects.

Figure 31. New Project Dialog

At the root of the project directory is a file called “<project name>.fxcproj.” This
file contains a list of references to the assets files used in the project, as well as
project settings such as the locations of textures, scripts, models, include files, and
shaders.

FX Composer allows you to specify a per-project path and a global path for your
various resources (textures, models, and so on.) This allows you to easily exchange
assets with others. When opening a COLLADA file, FX Composer will first look
for resources in your project paths, and then search in the global paths. If no paths
are specified, FX Composer will use the URI paths specified in the COLLADA file.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 69
April 2007

Project Explorer
Project Explorer (Figure 32) is a file-based representation of your project in the
form of an expandable scene graph. The main nodes of the scene graph show the
various documents in your project.

Documents and Assets
A “document” is a container for textures, shaders, cameras, lights, geometry, and so
on. A document’s assets are listed as sub-nodes under each document node. For
example, in Figure 32, “Duck” is the name of the project, and its assets are
“goochy_gloss,” “post_glow,” “LOD3spShape,” and so on.

Figure 32. Project Explorer

FX Composer support 3d file formats other than COLLADA. When importing
geometric assets within FX Composer, everything gets converted internally to
COLLADA. Therefore, when you import 3ds, .x, OBJ or FBX files, they get turned
into COLLADA geometry and materials.

Active Documents
Although you can have a number of documents in a project, only one can be active
at any time. If you create additional geometry, lights, shaders, textures, or cameras,
they will be added to the active document. The active document is indicated by a
filled dot in the scene graph.

Documents can exist physically on disk (for example, as a COLLADA .dae file), or
virtually (in memory).

Physical Documents
To load a physical document, right-click on the project node and select “Add
Document From File” from the resulting context menu. A standard “Open File”
dialog box will open, allowing you to load a COLLADA .dae file. (Future versions
of FX Composer will support other formats such as .3ds .and x.)

Name of
a Project

A Project’s
Assets

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 70
April 2007

Virtual Documents
Virtual documents are useful for organizing and grouping assets into a logical
collection. You can create a new virtual document by right-clicking on the project
node and selecting “New Document.” This will create a new empty node in Project
Explorer, where you can place additional assets.

Once you are satisfied with a virtual document’s contents, save it to disk by selecting
it and choosing “File → Save <Document Name> As….” At this point, it becomes
a physical document.

COLLADA Documents
You can organize the assets within your documents by dragging-and-dropping them
across documents. For example, you could use this feature to create a document
that contains all your meshes.

When you save a project, all effects in your project will be saved into their respective
COLLADA files. You can create a copy of a COLLADA document by right-
clicking on its asset file within Project Explorer and choosing “Save As…” from the
resulting context menu.

Keep in mind that any new assets you create or import are added to the active
document. The active document is indicated by a filled radio button. You can make
a different document active by either clicking on the radio button next to it or right-
clicking on it and selecting “Set as Active Document.”

Sample COLLADA Files
FX Composer ships with several examples of COLLADA files. You can find them
in the MEDIA/COLLADA sub-folder at FX Composer’s installed location.
Typically this will be:

C:\Program Files\NVIDIA Corporation\NVIDIA FX Composer 2\MEDIA\
COLLADA

Project Configurations
Similar to other development environments, FX Composer supports the notion of
project configurations. This allows you to specify different paths and compiler
options for each configuration. For example, your Debug configuration might
include visualization techniques that are useful during development but not meant
to ship in the final product.

By default, a new project contains both a Debug and a Release configuration, but
you can create custom configurations by selecting any project folder, clicking on the
“Configuration” drop-down, and choosing “Add new configuration…” You will
then be prompted for the configuration name, and you can also choose whether you
want project settings copied from an existing project.

You can switch configurations using the “Configuration” drop-down just below the
File menu.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 71
April 2007

Assets Panel
Assets Panel (shown in Figure 33Error! Reference source not found.) displays all
the “assets” in a project, grouped by asset type. Use the drop-down Filter menu to
select the asset types you want to see, such as:

 Animations
 Animation Clips
 Cameras
 Effects
 Geometries
 Lights
 Materials
 Scenes
 Deformers
 Textures

The Asset panel provides a detailed view of all the art assets that are composing the
project.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 72
April 2007

Figure 33. Assets Panel

Asset Type

Asset Type

Asset Type

Asset Type

Asset Type

Asset Type

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 73
April 2007

Common Options
Right-click on any divider or node to bring up a context-sensitive menu of common
options. For example, right-click on the “Lights” divider to add the various light
types—directional, point, or spot—as shown in Error! Reference source not
found..

To rename an asset, select it and press F2.

Figure 34. Right-Clicking on a Divider

Types of Assets
Animation

This section of the Assets Panel groups all the animation streams in your project.
Animation are referenced by the Animation Clips that bind the streams to objects
parameters.

Animation Clips
This section groups all the Animation Clips in your project. Animation Clips are
entities that bind Animation data to objects parameters. The binding allows to
reference a sub-section of the animation stream in order to crop certain portion of
the animation stream.

Scenes
A “scene” is a composition of geometric objects, lights, cameras, and so on. A
project can have many scenes. You can use different scenes for a variety of
purposes—common examples are different levels or different test scenarios. Right-
click on a scene node and select “Apply to All Viewports” to make a scene active to
all the Device tabs. You will notice that it is possible to view different scenes through
different viewports. If you select a specific viewport in the 3D Render Panel and
then a specific Scene in the Assets Panel, the scene object context menu allows you
visualize the scene if you select “Apply to current viewport”. (See section
Viewports, page 59 - to learn how to manage additional viewports).

In each scene you can reference the various assets in your project. For example, you
could have two scenes, each of which references your main character’s geometry
(which would show up in the “Geometries” section of the Assets Panel).

The Scene section is, in essence, a scene graph, where each node contains a
reference to an asset. (Each asset icon includes a “shortcut” picture to remind you

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 74
April 2007

of this.) Double-clicking on any node with a shortcut icon automatically selects the
referenced asset.

Selecting a node displays its properties in FX Composer’s Properties panel and
show the bounding box selection in the Render panel if the node has a 3D
representation. Right-clicking on a node in the Assets Panel brings up a context-
sensitive menu with relevant actions.

Effects
It is important to understand the relationship between effects and materials. An
“effect” is a shader—for example, marble. A “material” is an instance of an effect
with specific properties settings—for example, green marble. Materials are what you
actually apply to objects in your scene.

The advantage of having effects and materials is that you can modify the underlying
shader code of several materials at once if they are based on the same effect, simply
by modifying the effect. Without a materials system, you would have to create
separate shaders for each material variant and modify all of these shaders
individually to achieve the same result.

Sub-Nodes
Each effect node in the Effect section is represented by the icon and contains
several sub-nodes. Full-scene effects are indicated with a blue bar that spans the
width of the control.

 Effect Parameters. Double-clicking on this displays all the effect’s parameters
in the Properties panel. Note, however, that none of these parameters can be
modified because you can only interact with tweakables for materials. Effects
parameters are useful to drive multiple profile parameters altogether.

All other effect sub-nodes are Effect Profiles. These vary according to the needs of
the user or the project. FX Composer 2 supports the following Effect profiles:

 Microsoft Effect FX. This node lists the vertex and fragment programs that are
referenced in the COLLADA FX shader nodes. Double-clicking on a shader
program (for example “goochVS.cg”) opens it in Code Editor.

 NVIDIA Effect CgFX. This node lists external effects that have been
imported. For example, Microsoft HLSL .fx files or CgFX files can be authored
and applied in FX Composer through this mechanism. Double-clicking on an
effect opens it in Code Editor. You can convert an imported effect file to a
COLLADA FX by right-clicking on the file and selecting “Convert to
COLLADA FX” from the resulting context menu.
COLLADA FX Common. This node lists native COLLADA FX common
profiles such as Constant, Blinn and Phong effects along with all the parameters
to configure them.

COLLADA FX Cg. This node contains a sub-tree which represents the
structure on a COLLADA FX Cg effect. The profile sub-nodes are used to create
and edit these profile. To learn more about COLLADA FX Cg authoring, See
section (???)

To add new individual effects, right-click on the Effects section of the Assets Panel,
and the following context menu will appear:

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 75
April 2007

 Add Effect… Allows you to create a new Effect via the Effect Wizard. To

learn more about the Effect Wizard, See section XXX.
 Add Effect From File… Allows you to create a new Effect from an existing

shader container file like a Microsoft .FX or an NVIDIA .CgFX file..

Context Menu
Right-click on any effect to display a context menu with several choices:

 Add Effect File… Allows you to load an existing shader container file like a
Microsoft .FX or an NVIDIA .CgFX file. This action merges the file’s
techniques with the current effect’s techniques.

 Add Profile… Allows you to create a new profile from the supported profiles.
 Add New Effect File… Creates a new empty shader container file.
 View Code. Loads any shader code related to any profiles in the Code Editor.
 Remove. Removes the current effect from Project Explorer.
 Clone. Create a copy of the Effect. The copy is directly added to the list of

Effects under a default name starting by “Copy_of_”.
 Analyze Performance. Activates the Shader Performance panel to run the

GPU and Driver simulators to analyze the selected shaders (See section Shader
Performance to learn more about this feature) .

 Properties. Displays an effect’s properties in the Properties panel.

Materials

Each material node in the material section contains several sub-nodes. Full-scene
materials are indicated by a blue highlight and have a check box to enable or disable
them.

Click on a material name to display all of the referenced effect’s parameters in the
Properties panel. You can then modify the parameters to customize the material’s
appearance.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 76
April 2007

Sub-Nodes
Effect Reference. Effect Reference tells you what effect the current material is

based on. For example, in Error! Reference source not found., you can see that
the material named “Check3d_material” is based on the “check3d” effect. Under
the effect reference is a list of rendering devices supported by the material:

 Sony PLAYSTATION 3
 PC (Direct3D 9.0)
 PC (OpenGL)

Under each rendering device, you will see the available techniques, accompanied
by radio buttons for choosing the technique. The list of techniques also features
icons to indicate their profile:

 DirectX HLSL .fx
 OpenGL CgFX
 COLLADA FX Cg

Context Menu
Right-click on any material to display a context menu with several choices:

 Assign Effect. Allows you to assign any available effect to this material. Note
that only effects listed in Project Explorer are available in this sub-menu.

 Apply to Selection. Applies the material to the currently selected geometry
 View Code. Loads the shader code of all the profiles in the Code Editor
 Rename. Renames the current effect.
 Remove. Removes the current material from Project Explorer.
 Properties. Displays material properties in the Properties panel.

For a material, you will see the same properties regardless of which backend renderer
you’re using (provided that the properties are identical across profiles). This means
that modifying a material’s properties will be reflected in all the different renderers
that the material supports.

On the other hand, when you view an effect’s parameters, you will see a full set of
parameters for each backend renderer that the effect supports. These parameters
will all be grayed out because you can only modify parameters for materials.

Lights
This section of the Assets Panel groups all the lights in your project. FX Composer
supports spot lights, directional lights, ambient lights and point lights.

Cameras
This section of the Assets Panel groups all the cameras in your project. Cameras can
be either orthographic or perspective.

Textures
This section of the Assets Panel groups all the textures in your project. FX
Composer supports the following file formats: .dds, .jpg, .png, .tga, .bmp, .exr, and

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 77
April 2007

.hdr. Furthermore, it supports a variety of texture types (cube map, 1D, 2D, 3D)
and pixel formats (RGBA, RGB, DXT, 32-bit float, 16-bit float).

Double-click on a texture node to open the Texture Viewer, which makes it easy to
browse a collection of images (see the Texture Viewer section for more
information).

In addition to static textures, FX Composer supports project-wide Render Targets
that can be shared across multiple scene renderings. The Render Targets are useful
for efficient full-scene effects like Shadow Mapping or Glow effects.

Left-click on a Render Target node to bring its properties in the Properties Panel.
Render Targets properties are editable as opposed to static textures.

Geometries
This section of the Assets Panel groups all 3D models in your project. FX
Composer also has built-in geometric primitives: teapots, planes, tori and spheres.

Deformers
This section of the Assets Panel groups all mesh Deformers in your project. FX
Composer supports Skin Deformers for Skinned meshes.

Asset Location Resolution
FX Composer 2 uses a typical priority-based search path behavior that helps users
interchange their projects and COLLADA documents across different machines.

Three different search levels are available for resolving asset locations, which occur
in the following order:

1. Use the relative path of the referenced asset.
2. Use the project path.
3. Use the environment path.

If the asset is still not found, FX Composer uses the asset filename, project path,
and then the environment paths to try to find the asset.

Here is an example of how FX Composer would go about finding the texture file
foobar.dds referenced by imagelib.dae under the relative path
.\Images\2d\foobar.dds.

Project Path

 C:\temp

Environment Path

 D:\temp

ImageLib.dae is located in “My Documents.”

FX Composer 2 will attempt to find “foobar.dds” in the following locations in the
following order:

4. My Documents\.\Images\2d\foobar.dds
5. C:\Temp\.\Images\2d\foobar.dds

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 78
April 2007

6. D:\Temp\.\Images\2d\foobar.dds
7. My Documents\foobar.dds
8. C:\Temp\foobar.dds
9. D:\Temp\foobar.dds
10. Display an Error – File Not Found!

If FX Composer finds foobar.dds in steps 4 though 6—a warning will appear in the
log Window because it is not considered an ideal asset resolution.

Environment and Project
Settings

FX Composer offers numerous settings for customizing its development
environment and project configuration (Figure 35). You can access these through
the Tools menu (Tools → Settings).

Items in this menu are grouped under two main categories: Environment and
Project. Environment settings are global, whereas Project settings are specific to the
current project. Project settings override Environment settings.

Figure 35. Environment and Project Settings Dialog
The dialog box includes settings such as project paths, utility locations, ShaderPerf
panel settings, Cg compiler settings, and semantics and annotations. Each of these is
explained in detail in the relevant section of this document.

Environment

Project

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 79
April 2007

Sample Project
FX Composer’s sample project demonstrates many powerful features. Loading and
exploring this project is a great way to become more familiar with FX Composer
and its capabilities.

You can find the MadModMike sample project under the FX Composer 2.0\Project
folder.

It comes with a Python script located in MikeMap.py that demonstrates how to
automatically assign shaders to a character freshly exported from Autodesk Maya.
Bring the Scripting Panel and type import MikeMap, MikeMap.Run()…and the
script will look for object names and materials to automatically apply new CgFX
shaders and normal maps.

This is a good example as to how a studio can automate shader assignements.

DU-002761-001_v01 80
April 2007

Customizing FX Composer

Working with Layouts
Because FX Composer is highly customizable, it provides you with the ability to
load and save layouts. You can access this capability via “Layouts” in the View
menu (see Figure 36).

Figure 36. The Layouts Sub-Menu
This menu offers several options:

 Reset Layout. This reverts to FX Composer’s default layout.
 Existing Layouts. This is the list of existing layouts. Any new layouts you

create will be included in this list.
 Delete Layout. Allows you to delete one of your existing layouts.
 Save Current Layout. Saves the current layout, overwriting the old layout with

the same name. Note that if you use this option without first creating your own
layout, you will replace FX Composer’s default layout (not recommended).

 Save Layout As… Saves the current layout with a new name. This new layout
will then be added to the list of existing layouts.

Changing Layouts
You can choose between existing layouts by using the layout toolbar (see Figure 37),
or by selecting a layout from the Layouts submenu in the View menu.

Figure 37. The Layout Toolbar

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 81
April 2007

Customizing Toolbars
One of FX Composer’s key production-friendly features is the ability to customize
toolbars. To do this, click on the View menu, and choose “Toolbars →
Customize….” This will bring up a Manage Toolbars dialog box (see Figure 38).
Alternatively, you can right-click on any toolbar and select “Customize…” from the
resulting context menu.

Figure 38. The Manage Toolbars Dialog Box
The Manage Toolbars dialog box allows you to create and modify toolbars. In the
first column you’ll see the existing list of toolbars. You can create a new toolbar by
pressing the + icon. (And you can remove toolbars with the – icon.) Selecting a
toolbar from the list shows you the buttons that belong to it. You can create
additional buttons by pressing the + icon above the column. (And you can remove
buttons with the – icon.) When adding buttons, you can choose between
Commands, Separators, the Layout Selector, Labels, Python Scripts, and the
Configuration Selector.

Selecting a particular button will show you the metadata associated with it (for
example, icon, script filename, tooltip, display text, etc…) You can then modify any
of these to customize the button.

Please note that if you’re assigning a Python function, its name must be carefully
specified with the full namespace, function name, and parentheses. A typical
function example would be “test_toolbars.AddSphereFunction(),” with the script
filename as “test_toolbars.py.”

General Preferences
You can set a variety of preferences for FX Composer via the Settings… selection
in the Tools menu. General preferences are in the Preferences subsection of the
Environment section.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 82
April 2007

 Add To Current Project On Download. (Applies to Shader Library
downloads.)

 Allow More Flexible Menu Strip.

 Allow Side Toolbars. Enables toolbars to dock on the side of panels.
 Automatically Create Default Material. Automatically creates a default

material when you create an object.
 Load in Editor on Download. (Applies to Shader Library downloads.)
 Save Layout on Exit.

 Show Download Options Box. (Applies to Shader Library downloads.)
 Show Finished Downloading Message Box. (Applies to Shader Library

downloads.)

FX Composer SDK

Geometry File Importer
FX Composer provides support for the geometry file formats commonly used in the
graphics industry. FX Composer 2 Beta supports Wavefront OBJ, Microsoft X,
Autodesk FBX and Autodesk 3DS file formats.

The source code of the geometry importer plug-in is given as part of the FX
Composer SDK. They are useful for allowing developers who are using other file
formats to very quickly write their own importers and enable them to load their
geometry into FX Composer.

The source code for all the geometry importers is located in:

C:\Program Files\NVIDIA Corporation\FX Composer 2\SDK\

The OBJ file importer is located below this directory under the WavefrontObj
directory.

It is worth noting that all geometry imported in FX Composer project files gets
translated to COLLADA and stored as such. COLLADA represents a good way for
storing more advanced information about shaders, materials and their parameters,
and as to how they can be bound to scene geometries and objects such as lights and
cameras.

Image File Importer
FX Composer provides support for the most common image file formats. In
addition to these formats, FX Composer 2 Beta provides support for Softimage 3D
PIC image file format. This is a non common file format proprietary to Softimage
(You can find an Adobe PhotoShop Plug-in for the PIC format on:
http://www.fxshare.com/)

The FX Composer PIC plug-in is part of the SDK, and therefore, the complete
source code is given. The FX Composer 2 SDK is located in:

C:\Program Files\NVIDIA Corporation\FX Composer 2\SDK\

http://www.fxshare.com/downloads/tools/photoshop_plugins/readme.php?id=31

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 83
April 2007

The PIC image file loader is located below this directory under the PIC Format
directory.

Scripting Commands
Talk about the scripts in Plugins/etc…

Semantic and Annotation Remapper Plug-ins
FX Composer allows the user to fully remap the set of Semantic and Annotation
used to feed the correct data to shaders. The section entitled Semantic and
Annotation
Remapping (page 103) gives a detailed explanation as to how to use the system.

FX Composer goes one step further to support custom Semantic and Annotation
by exposing custom node operators via plug-ins.

A code example of a Semantic and Annotation Remapper plug-in is located in the
Remapper folder under the SDK folder (C:\Program Files\NVIDIA
Corporation\FX Composer 2\SDK\)

The sample shows how to implement a Matrix Inversion operator and how to
implement a custom way of setting a value of a vector element.

DU-002761-001_v01 84
April 2007

Advanced Asset Creation

Materials
A material in FX Composer always references a particular effect. Selecting a material
in the Assets Panel brings up all the material’s properties in the Properties panel.
You can then modify the properties as you wish, including dragging textures from
the Texture Viewer for properties that require textures. (See “Texture Viewer” for
more information.)

Material parameters can also be bound in groups to objects in the scene (for
example, the light position in the Phong model can be tied to a spot light’s position).
This is known as a material scene binding, and is explained in more detail in the
“Material Scene Bindings.”

You can create a new material by right-clicking on the “Materials” divider in the
Assets Panel. You can also rename a material by pressing F2 when it is selected.

Dragging-and-dropping a material onto an object in the Render panel will assign
that material to the object, replacing any existing material assignment. If you want to
keep the material the same, but change its associated effect, you can do so by
dragging and dropping the effect onto the object.

Images
This section of the Assets Panel groups all the images in your project. FX Composer
supports the following file formats: .dds, .jpg, .png, .tga, .bmp, .exr, and .hdr.
Furthermore, it supports a variety of texture types (cube map, 1D, 2D, 3D) and
pixel formats (RGBA, RGB, DXT, 32-bit float, 16-bit float). Clicking on an image
in the Images list will highlight it in the Texture Viewer (if the Texture Viewer is
visible). Double-clicking on an image node will open the Texture Viewer, which
makes it easy to browse a collection of images (refer to the Texture Viewer section
for more information).

You can add images by right-clicking on the Images divider in the Assets Panel. You
can also rename an image by pressing F2 when it is selected.

When working with images, please note that OpenGL assumes the texture
coordinate origin is at the bottom-left, whereas Direct3D assumes the origin is at
the top-left. FX Composer’s image loader automatically flips images when necessary
for each API (depending on the image format and its origin convention). This
approach means that decals are applied properly in either API without having to
modify the texture coordinates, but look-up tables have to either be API-specific, or
the shader needs to be API-specific.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 85
April 2007

The following table lists supported image formats and their origin conventions:

Table 2. Supported Image Formats and Origin Conventions

Format Image Origin Specification
.dds Top-Left

.jpg Top-Left

.png Top-Left

.tga Top-Left or Bottom-Left

.bmp Bottom-Left

.exr Top-Left

.hdr Top-Left

Geometry
FX Composer supports the creation of internal procedural primitives (currently
spheres, planes, tori and teapots) by accessing the Library Menu -> Add Geometry
off of the applications’ main menu or by right-clicking on the Geometries divider in
the Assets Panel. You can also rename a mesh by pressing F2 when it is selected.

In addition to these procedural primitives, FX Composer supports import of OBJ
files. (See 3D file importers, on page 88 for more information on how to import
external geometry in to FX Composer)

The Geometries section of the Assets Panel lists all mesh definitions that are
available. You can instantiate any mesh definition into the current scene by
dragging-and-dropping it onto the Render panel. The mesh will then appear at the
scene origin, and FX Composer will do a zoom extents operation to ensure that the
entire scene is in view. The drag-and-drop operation will also create a new scene
node (in the Scenes section of the Assets Panel) with the geometry as a child node.
Alternatively, you can achieve the same result by dragging-and-dropping a mesh
from the Geometries section of the Assets Panel onto a scene node (in the Scenes
section).

Deformers
FX Composer supports rigging of geometry through skeletons. The rigging data is
imported from COLLADA files that have “controller” data. You can also rename a
mesh by pressing F2 when it is selected.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 86
April 2007

The Deformers section of the Assets Panel lists all skinning data that is loaded.
Currently, dragging and dropping of deformers is not supported. If a COLLADA
file instantiates the controllers, the Render panel will display the instanced
controllers. Selecting an instanced controller object displays its properties such as
the material and the skeleton data in the Properties panel. You can zoom extents to
a controller just as you zoom extents to a piece of geometry. Currently FX
Composer does not support the “Save As” feature for deformers, but they can be
saved using the “Save All” feature.

Lights
FX Composer supports four types of lights: ambient lights, spot lights, directional
lights, and point lights. You can add a light by right-clicking on the Lights divider in
the Assets Panel. You can also rename a light by pressing F2 when it is selected.
Finally, left-clicking a light in the Assets Panel shows its properties in the Properties
panel.

The Lights section of the Assets Panel lists all lights in the current project. You can
instantiate any light into the current scene by dragging-and-dropping it onto the
Render panel. The light will then appear at the scene origin, and FX Composer will
do a zoom extents operation to ensure that the entire scene is in view. The drag-
and-drop operation will also create a new scene node (in the Scenes section of the
Assets Panel) with the light as a child node.

Alternatively, you can achieve the same result by dragging-and-dropping a light from
the “Lights” section of the Assets Panel onto a scene node (in the “Scenes” section).

Cameras
FX Composer supports two types of cameras: orthographic and perspective. You
can add a camera by right-clicking on the “Cameras divider in the Assets Panel. You
can also rename a camera by pressing F2 when it is selected. Finally, left-clicking a
camera in the Assets Panel shows its properties in the Properties panel.

The Cameras section of the Assets Panel lists all cameras in the current project. You
can instantiate any camera into the current scene by dragging-and-dropping it onto
the Render panel. The camera will then appear at the scene origin, and FX
Composer will do a zoom extents operation to ensure that the entire scene is in
view. The drag-and-drop operation will also create a new scene node (in the Scenes
section of the Assets Panel) with the camera as a child node. Alternatively, you can
achieve the same result by dragging-and-dropping a mesh from the Cameras section
of the Assets Panel onto a scene node (in the Scenes section).

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 87
April 2007

Working with Materials and
Effects

Creating Asset Libraries
FX Composer’s flexibility allows you to create and organize assets any way you
choose. FX Composer provides two ways of creating asset libraries:

1. Create several new assets (effects, materials, images, lights, cameras, or
geometry) in a new empty document. (The document must be active before
creating the assets.)

2. Load a collection of COLLADA documents (each with its own assets). Then
create a new empty document and drag-and-drop your chosen assets into the
new document.

Scene Object Binding
It is sometimes convenient to tie shader parameters to a scene object. For example,
a lighting shader might be tied to a particular light source, meaning that the light
position is input to the shader as a parameter. This means that the rendering will be
updated correctly when you move the light.

This association between shader parameters and scene objects is called “scene
object binding.” In practice, you may want to associate more than just a position
with a shader— in the case of a light, you may want to associate its diffuse and
specular properties, specular exponent, and attenuation with a material. Instead of
having to associate each of these individually, FX Composer allows you to simply
select the object that should drive all the parameters simultaneously. You can specify
this in the Properties panel when a material is selected

Asset Management
FX Composer uses COLLADA as its main asset storage format. This means that an
FX Composer project file is made of a collection of COLLADA Document. Typical
COLLADA databases are decomposed into COLLADA documents that group
certain types of assets or collection of assets that belong to some segmentation of
the content.

As an example, a typical production project may be organized as shown in Figure
39, where Effects would be in a ShaderLibrary and materials would be organized on
a per-level basis. The materials would still reference the unique Effects in the shader
library. Similarly, levels would have their objects and scenes in their own documents
(one could dissociate geometries and scenes but this is just an example).

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 88
April 2007

Figure 39: A typical COLLADA database organization
The obvious advantage of breaking down your asset database in such a way is to
allow the collaboration of multiple team members to operate on distinct asset types
and asset documents without stomping on each other. In our example, a TD should
easily work on the Shader Library while artists could create materials that would be
using the Effect Library. Additionally, game level creators could load the various
material libraries and instantiate geometry in separate levels concurrently.

This setup can be nicely integrated into a source control system like Perforce, where
each asset document can be checked in and out based on who is working on what.

In order to ease the integration with such file revision systems, FX Composer tracks
the status of the Document file to lock or unlock the edition of assets contained in
these documents. In our example, if you want to create materials in the
MaterialLibrary1 document, you would check out the MaterialLibrary1 DAE file
from Perforce. All other documents should be left locked and therefore preventing
the user from modifying them.

Locked assets are shown as grayed out in the Properties Panel and rendered with a
“lock” icon in the Assets Panel and the Project Explorer.

To unlock these assets, change the property of the Document that contains it by
either using your file revision system or Windows Explorer.

File Importers
3D file importers

Wavefront OBJ file format

FX Composer supports the Wavefront OBJ file format. To import an OBJ file, go
to File->Add->Import Existing Files… and select an OBJ file.

ShaderLibrary

MaterialLibrary2 MaterialLibrary1

SceneLevel1 SceneLevel2

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 89
April 2007

Figure 40: OBJ file format import options
The OBJ file importer supports the following import options (See Figure 40):

 Import as Single Object: Consolidate all the mesh objects into one mesh
 Import Materials: Load the Materials (.mtl) and create COLLADA FX

Common materials
 Ignore Call Commands: Do not import other .obj files that may be referenced

within this obj file
 Flip UV Coordinates: applies the following uv transforms (which preserves the

u coordinate and mirrors v):

⎩
⎨
⎧

−=′
=′

vv
uu
1

Importing an OBJ file will result in an instantiation of the geometry in the current
scene and adding the geometry definition to the Library of Geometries. Saving a
project that has imported OBJ geometry will be saved out as COLLADA geometry.
The source code of the OBJ importer is part of the FX Composer 2.0 SDK. (See
section for finding out more information).
The OBJ file format usually comes with a sidekick file with the .mtl extension. This
file contains the OBJ material definition. The following section explains how mtl
materials are supported in FX Composer.

Wavefront MTL Support in FXC
For a full specification of .mtl files please see
http://www.fileformat.info/format/material/

ALL STATEMENTS MENTIONED BELOW ARE SUPPORTED BY THE
.MTL/.OBJ IMPORTER IN FXComposer2.0 UNLESS OTHERWISE STATED.

 MTL Illumination Models

The mtl file format has a predefined collection of illumination Models reference by
the "illum_#" token where # can be a number from 0 to 10. The illumination
models are summarized below:

http://www.fileformat.info/format/material/

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 90
April 2007

FX Composer translates these illumination models with COLLADA FX Common
profiles as such:

MTL Illumination Models FX Composer 2

COLLADA FX Common Profile

illum_0 Collada Constant common profile

illum_1 Collada Lambert common profile

illum_2 Collada Blinn common profile

illum_3 Not supported, default to Collada Phong common
profile

illum_4 Not supported, default to Collada Phong common
profile

illum_5 Not supported, default to Collada Phong common
profile

illum_6 Not supported, default to Collada Phong common
profile

illum_7 Not supported, default to Collada Phong common
profile

MTL Illumination Models Description

illum_0 Color on and Ambient off

illum_1 Color on and Ambient on

illum_2 Collada Blinn common profile

illum_3 Highlight on

illum_4 Transparency: Glass on, Reflection: Ray
trace on

illum_5 Reflection: Fresnel on and Ray trace on

illum_6 Transparency: Refraction on, Reflection:
Fresnel off and Ray trace on

illum_7 Transparency: Refraction on, Reflection:
Fresnel on and Ray trace on

illum_8 Reflection on and Ray trace off

illum_9 Transparency: Glass on, Reflection: Ray
trace off

illum_10 Casts shadows onto invisible surfaces

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 91
April 2007

illum_8 Not supported, default to Collada Phong common
profile

illum_9 Collada Phong common profile

illum_10 Not supported, default to Collada Phong common
profile

 Colors and Float Modifiers

Note: For all colors the use of CIEXYZ and Spectral files are not
supported

e.g., Ka spectral file.rfl factor

Ka xyz x y z

Ambient Color (Ka r g b)
The Ka statement specifies the ambient reflectivity using RGB values.
"r g b" are the values for the red, green, and blue components of the color. The g
and b arguments are optional. If only r is specified, then g, and b are assumed to be
equal to r. The r g b values are normally in the range of 0.0 to 1.0. Values outside
this range increase or decrease the reflectivity accordingly.

Importing to FX Composer is trivial; this simply becomes the ambient color of the material.

Diffuse Color (Kd r g b)
The Kd statement specifies the diffuse reflectivity using RGB values.
"r g b" are the values for the red, green, and blue components of the atmosphere.
The g and b arguments are optional. If only r is specified, then g, and b are assumed
to be equal to r. The r g b values are normally in the range of 0.0 to 1.0. Values
outside this range increase or decrease the reflectivity accordingly.

Importing to FX Composer is trivial; this simply becomes the diffuse color of the material.

Specular Color (Ks r g b)
The Ks statement specifies the specular reflectivity using RGB values.
"r g b" are the values for the red, green, and blue components of the atmosphere.
The g and b arguments are optional. If only r is specified, then g, and b are assumed
to be equal to r. The r g b values are normally in the range of 0.0 to 1.0. Values
outside this range increase or decrease the reflectivity accordingly.

Importing to FX Composer is trivial; this simply becomes the specular color of the material.

Note: Transmission Filter (Tf r g b) is not currently supported in
FX Composer 2.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 92
April 2007

Transparency (d factor)
Specifies the dissolve for the current material.
"factor" is the amount this material dissolves into the background. A factor of 1.0 is
fully opaque. This is the default when a new material is created. A factor of 0.0 is
fully dissolved (completely transparent). Unlike a real transparent material, the
dissolve does not depend upon material thickness nor does it have any spectral
character. Dissolve works on all illumination models.

This is simply translated as the transparency of the material in FXC. The –halo option of this is
not currently supported.

Specular Exponent (Ns exponent)
Specifies the specular exponent for the current material. This defines the focus of
the specular highlight.
"exponent" is the value for the specular exponent. A high exponent results in a
tight, concentrated highlight. Ns values normally range from 0 to 1000.

This value will be brought into the range between 0 and 128 via a simple ratio; e.g., a value of
1000 in the .mtl file will become 128 in FXC.

Note: Mapping of Sharpness (Sharpness value) is not currently
supported in FX Composer 2.

Index of Refraction (Ni optical_density)
Specifies the optical density for the surface. This is also known as index of
refraction.
"optical_density" is the value for the optical density. The values can range from
0.001 to 10. A value of 1.0 means that light does not bend as it passes through an
object. Increasing the optical_density increases the amount of bending. Glass has an
index of refraction of about 1.5. Values of less than 1.0 produce bizarre results and
are not recommended.

This is translated directly into the index of refraction in the COLLADA common profile by FX
Composer 2.

 Texture Maps

Ambient Texture Map (map_Ka -options args filename)
Specifies that a color texture file or a color procedural texture file is applied to the
ambient reflectivity of the material. During rendering, the "map_Ka" value is
multiplied by the "Ka" value.
"filename" is the name of an FX Composer supported image file.

FX Composer does not yet support the –options and arguments and will ignore them if they are
present. The texture map for the ambient component will replace the ambient color in the collada
common profile.

Diffuse Texture Map (map_Kd -options args filename)
Specifies that a color texture file or color procedural texture file is linked to the
diffuse reflectivity of the material. During rendering, the map_Kd value is multiplied
by the Kd value.
"filename" is the name of an FX Composer supported image file.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 93
April 2007

FX Composer does not yet support the –options and arguments and will ignore them if they are
present. The texture map for the diffuse component will replace the diffuse color in the
COLLADA Common profile; use this if you want a typical texture on your model’s surface.

Specular Texture Map (map_Ks -options args filename)
Specifies that a color texture file or color procedural texture file is linked to the
specular reflectivity of the material. During rendering, the map_Ks value is
multiplied by the Ks value.
"filename" is the name of an FX Composer supported image file.
FX Composer does not yet support the –options and arguments and will ignore them if they are
present. The texture map for the specular component will replace the specular color in the collada
common profile.

Note: Specular exponent texture map (map_Ns -options args
filename) is not currently supported by FX Composer.

Note: Disolve texture map (map_d -options args filename) is not
currently supported by FX Composer.

Note: Texture map anti-aliasing (map_aat on) is not currently
supported by FX Composer.

Note: Decal Texture mapping (decal -options args filename) is
not currently supported by FX Composer.

Note: Displacement Texture mapping (disp -options args
filename) is not currently supported by FX Composer.

Note: Bump Texture mapping (bump -options args filename) is
not currently supported by FX Composer.

Note: Reflection mapping (refl …) is not currently supported by
FX Composer.

Autodesk 3DS file format
FX Composer 2 supports the import of geometry from .3ds Autodesk files.
Animation, Light and Camera object are ignored.

Microsoft X file format
FX Composer 2 supports the import of geometry from .X Microsoft files.
Animation is completely ignored.

Autodesk FBX file format
FX Composer 2 supports the import of geometry from .FBX Autodesk files. Any
additional asset type contained is ignored.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 94
April 2007

Image File Importer

Softimage® 3D Picture file format (PIC)
FX Composer supports the Softimage PIC file format. You can import PIC image
files directly into the Textures Panel via the Assets Panel context menu from the
Image section like any other file.

The source code of the PIC image loader is part of the FX Composer 2.0 SDK. (See
section for finding out more information)

DU-002761-001_v01 95
April 2007

Scripting

This document describes using the scripting system in FX Composer 2 Beta. Please
note that some of the details of the API and its usage may change before release.

Introduction
Scripting in FX Composer is typically accomplished using the Python scripting
language. The implementation of Python used is IronPython 1 from Microsoft.
IronPython supports all of the standard python syntax & library, with the additional
advantage that it is implemented in a .NET language. This means that python
scripting in FX Composer can call the rest of the FX Composer engine without
additional work. It is important to note that none of the core functionality of FX
Composer requires Python. The scripting is implemented entirely using a plugin
(FXComposer.UI.Python), and in theory any scripting language that could
communicate with the FX Composer engine could be used.

Scripting can be used for various purposes. It can be used to build and modify
custom scenes, generate shaders, and geometry, or load and save collada documents,
for example. Scripting examples come with the FX Composer install and
demonstrate how to talk to the FX Composer engine.

The approach taken to FX Composer scripting is to allow the scripting to talk to all
aspects of the engine. This means that a script author needs to be careful not to
make calls into the engine that will cause instability. To assist with this, a script-
friendly API layer has been provided – this layer ensures that scripting is easier to do
and has no side effects, with the added advantage that all such commands are
undoable. Whenever a script modifies the state of FX Composer, it should use one
of the Fxc* API’s.

Fxc* APIs
Most scripts make extensive use of the simple API’s. These all begin with ‘Fxc’
followed by a meaningful name for the group of things they effect. For example, to
work with an FX Composer scene (FXScene), the API commands are mainly in
‘FxcScene’. To work with nodes, the commands are in ‘FxcNode’. These classes
are mainly made up of static methods that can be called, and usually take the object
as their first parameter.

For example, to create & destroy a scene:

>>> FXScene scene = FxcScene.Create(“MyScene”);
>>> FxcScene.Destroy(scene);

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 96
April 2007

To create & destroy a node:

>>> FXNode node = FxcNode.Create(“MyNode”);
>>> FxcNode.Destroy(node)

It is important to note that the FXNode & FXScene types are engine classes, which
should not be modified directly. Calling Fxc* API’s has the advantage that the call
can be undone. Directly modifying the returned structures will cause complications
and should be avoided. In the above cases, the return node and scene objects are
passed into the Destroy API to remove them. The rest of this document will
demonstrate many of the Fxc API’s, and the reference help file also contains a
complete list of the current methods.

Namespaces
FX Composer is split up into namespaces, as in any typical .NET project.
FXComposer.Maths is the namespace for maths operations,
FXComposer.Scene.Commands is the namespace for Fxc* API’s that control the
scene, FXComposer.IO is the namespace for IO modules, etc. In order to access
classes in any of these namespaces, they must be imported. The Python scripting
host automatically imports the key namespaces at start of day. The default python
script that is run is called fxcapi.py, and here are the imports that are automatically
run:

Core python libraries
import sys
import System
import System.IO
import clr

Core FX Composer assemblies
clr.AddReferenceByName("FXComposer.Core")
clr.AddReferenceByName("FXComposer.Maths")
clr.AddReferenceByName("FXComposer.Utilities")

Import core
from FXComposer.Core import *

Load all plugin assemblies
assemblies = FXRuntime.Instance.Plugins.PluginAssemblies
for assembly in assemblies:
 clr.AddReferenceByName(assembly.FullName)

Common imports
from FXComposer.Core import *
from FXComposer.Core.Commands import *
from FXComposer.Maths import *
from FXComposer.Scene import *
from FXComposer.Scene.Commands import *
from FXComposer.Scene.Services import *
from FXComposer.Scene.Effects import *
from FXComposer.Scene.Control.Services import *
from FXComposer.Scene.Control import *

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 97
April 2007

from FXComposer.Services import *
from FXComposer.Commands import *

Iron Python can be downloaded free from Microsoft, at the following address, and
contains documentation for the CLR methods seen above. The release is useful for
users wishing to see what’s possible when scripting .NET applications, and for
examples and tutorials on using IronPython.

http://www.codeplex.com/IronPython

Properties
Most objects in the FX Composer engine have a list of properties associated with
them. The property list can be enumerated, or more commonly, properties can be
directly accessed. To get the value of the current translation of a Node, we would
do this:

>>> translation = node.Translation.PropertyValue

The ‘PropertyValue’ is the value held in the property. If we wanted the name of the
property we would do this:

>>> name = node.Translation.Name

The result would be “Translation”. Note that as mentioned above, we never
directly modify this value, instead we would do:

>>> FxcNode.SetTranslation(node,node.Translation.PropertyValue +
FXVector3(1,0,0))

Here we have added a 1,1,1 translation value to the current one in the node,
resulting in moving any objects in the scene attached to this node 1 unit to the right.

Services
Sometimes during scripting, a service in the engine will be called. Services are
responsible for a particular task in FX Composer – for example, the task service
manages a list of current tasks, renderport service manages a list of current
renderports, etc.

An example of a service that might be called is:
>>> from FXComposer.IDE.Services import *
>>> FXProjectService.Instance.AddDocument(FXUri(“c:/mydae.dae”))

Here we are first importing the service from its namespace
(FXComposer.IDE.Services), then we are calling it directly to add a Collada
document to the current project. Services are singletons, so have an ‘Instance’
static member which can be used to access them. To load a project, we use the
same service:

>>> FXProjectService.Instance.OpenProject(FXUri(“c:/myproj.fxcproj”))

http://www.codeplex.com/IronPython

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 98
April 2007

Using the Scripting – Example
Walkthrough

In this section we are going to walk through the basic steps involved in building a
scene and drawing it in a viewport. We start by creating a scene...

Create a Scene
Firstly we will create a new scene. FX Composer supports any number of scenes,
and can even draw different scenes in different ‘renderports’. In FX Composer, a
renderport is simply a view of a scene. The Render Panel contains renderports for
each backend device.

Firstly, we bring up the python panel in FX Composer, and type the following to
create a scene:

>>> scene = FxcScene.Create()

If we go to the Assets Panel, we will see that a scene is now visible:

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 99
April 2007

1. Testing Undo/Redo
Let’s try the undo functionality. If we type:

Undo()

We will see the scene we created disappear. If we type:
Redo()

It will return. In this way we should be able to undo/redo any operations we
perform using the Fxc API’s.

There is an interesting catch here though.... The value of ‘scene’ in the python
scripting window is now a reference to a disposed object. We can check this by
typing:

>>> scene.IsDisposed
True

The response tells us that we do in fact have an old reference. We can fix it by
getting the current active scene (since there is only one in this case):

>>> scene = FXSceneService.Instance.ActiveScene
>>> scene.IsDisposed
False

When we are looking at geometry later, we’ll see another way of finding the scene by
its Uri.

Manipulating the RenderPorts
Since we are going to build an OpenGL scene, we will ensure that the OpenGL
window is visible, and get a reference to it. We can do this from the user interface
by clicking the tab of course, but let’s do it from script, which can be useful for
automation:

port = FxcRender.FindRenderPort(“OpenGL”)

To activate the port, we use the command:
FxcRender.SetActiveRenderPort(port)

If you didn’t have this renderport selected, you should find that it is now brought to
the front in the scene panel.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 100
April 2007

2. Creating Some Geometry
To make our scene more interesting, lets add some geometry to the scene. Firstly,
we will create a torus:

torus = FxcGeometry.CreateTorus(“MyTorus”)

If we again look in the Assets Panel we will see our torus geometry:

The torus is a complex object made up of a ‘geopipe’ and various ‘ geopipe objects’.
The geopipe is just a container for the geometry, and the geopipe objects are the
stages inside the geometry pipeine. We will see how to modify the torus later, but it
is a good exercise to click it and view the properties in the property panel.

Note that we didn’t get any geometry in the scene. This is because we need to
instance the geometry into the scene we created. Using the user interface is slightly
different – clicking on the “Add Torus” button in the UI will create the torus
geometry and add it to the current scene. Try it to see this in action. Notice the
geometry is created, and added to a scene. Don’t forget to hit CTRL+Z to remove
it before going to the next step.

What if we accidentally forgot to assign the ‘torus’ variable? How to we ‘find’ the
created torus and reference it? Here are the steps:

>>> FxcGeometry.CreateTorus(“Torus1”)
<FXComposer.Scene.FXGeoPipe object at 0x000000000000002F
[fxcomposer://localhost/Document1#Torus1]>
>>> torus =
FXRuntime.Instance.UriManager.FindObject(FXUri(“fxcomposer://localhost/
Document1#Torus1”))

The Uri we make here has to be the same Uri of the object we created. The
previous command actually output the Uri for us in the script window. Another
way to find out the Uri would be to click on the torus in the Assets Panel and look
for the Uri property. This same method works for all items that have a Uri.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 101
April 2007

3. Adding Geometry to the Scene
To add our newly created geometry to the scene, we need to first create a node for it
in the current scene, like so:

>>> node = FxcNode.Create()

And then we add this node to the root of the scene.
>>> FxcNode.SetParent(node, scene)

The SetParent call here is being used to set the parent of the node to be the scene;
this makes the node a top-level node in the scene. Set Parent can also be called with
another node to build a hierarchy of nodes.

All we have to do to get our torus in the scene is to add it as a geometry instance
under the node:

>>> torusInstance = FxcNode.CreateGeometryInstance(node, torus)

If we look in the Assets Panel, we can now see the node and the torus assigned to
the scene. If we expand out the torus, we can see that there is currently no assigned
material.

Checking the geometry in the viewport confirms this:

We can make the geometry fill the viewport by doing:

>>> scene.ZoomExtentsAll(1.0, 1)

The second parameter is a Boolean, which in python is passed as 1 or 0. The first
parameter is the ratio of the current viewport. We could explicitly calculate this if
we wished:

>>> port.Width.PropertyValue / port.Height.PropertyValue

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 102
April 2007

4. Creating a material
In FX Composer, effects represent shaders designed to be run on one or more
backend devices. They contain profiles, techniques, passes, parameters, etc.
Materials, on the other hand, are instances of effects that are applied to geometry in
the scene.

Typically the programmer builds the effect, and the artist manipulates the material
by setting parameters. An effect might be ‘metal’, but an artist might tweak its
parameters to make 2 materials, one that is shiny metal, and the other that is dull
metal.

We need both an effect and a material for our torus.

Firstly, we create a material. That’s easy:
>>> material = FxcMaterial.Create(“BumpyShiny”)

Note that this time we’ve decided to name the material asset. Most of the previous
commands also have this option, to give assets a name.

There are many ways to create an effect. We are going to use the most simple. We
will load our effect from a .cgfx effect file using an FxcEffect API:

>>> effect =
FxcEffect.OpenEffectFile(FindShaderFile(“bumpreflect.cgfx”),
“BumpyShinyEffect”)

The API we call just requires the path to the effect file, and the name of the created
effect. We’ve used a helper API, defined in fxcapi.py which makes this easy for us.
It searches FX Composer’s project and global paths for the shader filename we
requested. Once we have the effect, we can tie the two together by referencing the
effect from the material:

>> FxcMaterial.SetEffect(material, effect)

Finally, we need to add the material to the torus:
>> FxcGeometry.SetInstanceMaterial(torusInstance, material, "")

We use “” to indicate an empty material symbol. We could equally well have used
“TorusMaterial”, which is the default material symbol for the torus mesh. The
empty symbol has the effect of applying our material to all material symbols on the
torus. Symbols are applied to polygon groups; each model may have any number of
material symbols which an instance material can be assigned to. The default shapes
typically have one.

At this point we have created a scene, added geometry, and assigned a working
material.

DU-002761-001_v01 103
April 2007

Semantic and Annotation
Remapping

FX Composer includes a semantic remapper to allow developers to fine-tune the
inputs that FX Composer will feed their effects.

In previous versions only a name remapping was possible, but in this latest release
of FX Composer, a complete type remapping is now possible. For example, if your
effects have special need of a forged matrix or vector, FX Composer now allows
you to manipulate the default fixed semantics to make the input you want.

Numerous operators like Matrix/Vector operations are shipped with the product.
This collection of operators can be extended by users using the FX Composer
plugin system, meaning you can code the operator that suits your needs.

Syntax
FX Composer remappings are located in a file named “mappings.xml” located in
<application root>\Plugins\scene\render\Data\.

If you open this file, you will notice that it contains several predefined remappings.
We’ve included as many mappings so you don’t have to create them yourself.

The system is based on a graph of what we call “operator nodes.” These nodes are
connected to form a graph that will have inputs from FX Composer and that will
have an output calculated from the traversed nodes.

Here is a simple example of a Matrix Multiplication:

1: <Remapping name="Name">

2: <identifiers>

3: <parametername value="WorldView"/>

4: </identifiers>

5: <expression>

6: <MatrixMultiply description="World * View">

7: <input type="internalsemantic" value="world"/>

8: <input type="internalsemantic" value="view"/>

9: </MatrixMultiply>

10: </expression>

11: </Remapping>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 104
April 2007

The Remapping Tag (line 1):

This tag specifies a block of remapping. The name parameter can be set to anything
helpful to document what the remapping does.

The identifiers: (Lines 2 to 4)

This tag defines what needs to be matched in the shader file in order for this
remapping to be used. In the previous Matrix Multiplication example, the only thing
that we need in order to remap this parameter is that its name be ViewInv.

Other identifiers can be used such as:

<semantic name="LightPosition"/>

This option specifies that in order to be remapped, the name of the parameter
semantic has to match.

<parametername value="LightPos"/>

This option specifies that the parameter has to match the name of the parameter
itself.

<annotation name="object" value="PointLight0"/>

This option specifies that the parameter has to have the specific annotation/value
pair in order to match.

All of these identifiers can be used at the same time, but the remapping will be
active only if all the identifiers match.

An Expression Node (Line 5):

This node specifies the beginning of an expression block containing remapping
operators.

An Operator node (line 6):

In this case, “MatrixMultiply” represents a node that will have two inputs and one
output. The inputs are the two child nodes of MatrixMultiply.

Other types of operators include MatrixTranspose, MatrixInverse, DotProduct,
CrossProduct, Cosine, Sine, Log, Ceiling, and MatrixSelect…

All operator nodes have a Description attribute that can be used for debugging. This
description attribute is used when an error or warning is displayed by FX Composer.
This allows you to debug and locate any remapping problems.

Two Input Nodes (line 7 and 8):

This operator node is created at runtime and two of its inputs come from FX
Composer Internals. These internals are referenced using the input tag with a type
set to “internalsemantic,” telling FX Composer that this node will in fact be fed with
an internal value. In our example, the world and view matrix.

The output of the operator is then used by its parent if it is a node, or is directly fed
to the shader if it is the last node.

Operator nodes can be linked to make even more complex remappings. A list of
complete examples is featured at the end of this user reference.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 105
April 2007

List of Operators

MatrixMultiply
Description

Used to multiply two matrices.

Input/Output
Direction Type Remarks
Input 1 Matrix Left matrix

Input 2 Matrix Right matrix

Output Matrix

Parameters
Name Value Remarks
Description Used for error handling

Example
<MatrixMultiply description=”World * View”>

 <input type="internalsemantic" name="world"/>
 <input type="internalsemantic" name="view"/>

</ MatrixMultiply >

<MatrixMultiply description="(World * View) * Projection”/>
 <MatrixMultiply description="World * View">
 <input type="internalsemantic" name="world"/>
 <input type="internalsemantic" name="view"/>
 </MatrixMultiply>
 <input type="internalsemantic" name="projection"/>

</MatrixMultiply>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 106
April 2007

MatrixAdd
Description

Used to add two matrices.

Input/Output

Parameters

Example
<MatrixAdd description=”World + View”>

 <input type="internalsemantic" name="world"/>
 <input type="internalsemantic" name="view"/>

</ MatrixAdd >

Direction Type Remarks
Input 1 Matrix Left Matrix

Input 2 Matrix Right Right

Output Matrix

Name Value Remarks
Description Used for error handling

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 107
April 2007

MatrixSubstract
Description

Used to substract two matrices.

Input/Output

Parameters

Example
<MatrixSubstract description=”World - View”>

 <input type="internalsemantic" name="world"/>
 <input type="internalsemantic" name="view"/>

</ MatrixSubstract >

Direction Type Remarks
Input 1 Matrix Left Matrix

Input 2 Matrix Right Right

Output Matrix

Name Value Remarks
Description Used for error handling

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 108
April 2007

MatrixInverse
Description

Used to get the inverse of a matrix.

Input/Output

Parameters

Example
<MatrixInverse>

 <input type="internalsemantic" name="view"/>
</MatrixInverse>

Direction Type Remarks
Input Matrix

Output Matrix

Name Value Remarks
Description Used for error handling

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 109
April 2007

MatrixTranspose
Description

Used to get the transpose of a matrix.

Input/Output

Parameters

Example
<MatrixTranspose>

 <input type="internalsemantic" name="view"/>
</MatrixTranspose>

Direction Type Remarks
Input Matrix

Output Matrix

Name Value Remarks
Description Used for error handling

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 110
April 2007

MatrixTransposeConditional
Description

Used to get the transpose of a matrix only of Input 2 is true.

Input/Output
Direction Type Remarks
Input 1 Matrix

Input 2 Boolean The transpose will only be returned if this input is
true

Output Matrix

Parameters

Example
<MatrixTransposeConditional>

 <input type="internalsemantic" name="view"/>
 <input type=”internalsemantic” name=”isopengl”/>

</ MatrixTransposeConditional >

Name Value Remarks

Description Used for error handling

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 111
April 2007

MatrixScale
Description

Used to multiply a matrix by a scalar factor.

Input/Output
Direction Type Remarks
Input 1 Matrix

Input 2 float

Output Matrix

Parameters
Name Value Remarks
Description Used for error handling

Example
<MatrixScale description="Matrix Scale">

 <input type="internalsemantic" value="world"/>
 <input type="float" value="0.1"/>

</MatrixScale>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 112
April 2007

MatrixOrthonormalize
Description

Used to orthonormalize a matrix.

Input/Output

P
Parameters
Name Value Remarks

Description Used for error handling

Example
<MatrixOrthonormalize>

 <input type="internalsemantic" name="view"/>
</MatrixOrthonormalize >

Direction Type Remarks
Input Matrix

Output Matrix

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 113
April 2007

MatrixSelect
Description

Used to select a row/column of a matrix.

Input/Output
Direction Type Remarks
Input Matrix

Output Vector

Parameters

Remarks
The output vector will the size of the column/row selected.

Example
<MatrixSelect mode="Row4">

 <input type="internalsemantic" name="view"/>
</MatrixSelect>

Name Value Remarks
Description Used for error handling

Mode Row1-4, Column1-4 Options are not case sensitive

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 114
April 2007

VectorMultiply
Description

Used to multiply a vector by a scalar.

Input/Output
Direction Type Remarks
Input 1 Vector

Input 2 float

Output Vector

Parameters:

Name Value Remarks

Description Used for error handling

Example
<RemappedSemantic name="myVectorMultiplication">

 <VectorMultiply>
 <input type="float3" value="1, 0, 0"/>
 <input type="float" value="2.0"/>
 </VectorMultiply>

</RemappedSemantic>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 115
April 2007

VectorAdd
Description

Used to add two vectors.

Input/Output
Direction Type Remarks
Input 1 Vector

Input 2 Vector

Output Vector

Parameters
Name Value Remarks
Description Used for error handling

Example
<RemappedSemantic name="myfloat3Addition">

 <VectorAdd>
 <input type="float3" value="1, 0, 0"/>
 <input type="float3" value="1, 0, 0"/>
 </VectorAdd>

</RemappedSemantic>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 116
April 2007

VectorSubtract
Description

Used to subtract two vectors.

Input/Output
Direction Type Remarks
Input 1 Vector

Input 2 Vector

Output Vector

Parameters
Name Value Remarks
Description Used for error handling

Example
<VectorSubtract>

 <input type="float3" value="1, 0, 0"/>
 <input type="float3" value="1, 0, 0"/>

</ VectorSubtract >

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 117
April 2007

VectorLength/VectorLengthSq
Description

Used to get the length of a vector.

Input/Output
Direction Type Remarks

Input 1 Vector

Output Float

Parameters
Name Value Remarks

Description Used for error handling

Example
<VectorLength>

 <input type="float3" value="1, 0, 0"/>
</ VectorLength >

<VectorLengthSq>
 <input type="float4" value="1, 0, 0, 0.25"/>

</ VectorLengthSq >

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 118
April 2007

VectorNornalize
Description

Used to normalize a vector.

Input/Output
Direction Type Remarks
Input 1 Vector

Output Vector

Parameters
Name Value Remarks
Description Used for error handling

Example
<VectorNormalize>

 <input type="float3" value="1, 0, 0"/>
</VectorNormalize >

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 119
April 2007

CrossProduct
Description

Used to calculate the cross product of two vectors.

Input/Output
Direction Type Remarks
Input 1 Vector

Input 2 Vector

Output Vector

Parameters
Name Value Remarks
Description Used for error handling

Example
<CrossProduct>

 <input type="float3" value="1, 0, 0"/>
 <input type="float3" value="0, 1, 0"/>

</CrossProduct >

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 120
April 2007

DotProduct
Description

Used to calculate the dot product of two vectors.

Input/Output
Direction Type Remarks
Input 1 Vector

Input 2 Vector

Output Float

Parameters
Name Value Remarks

Description Used for error handling

Example
<DotProduct>

 <input type="float3" value="1, 0, 0"/>
 <input type="float3" value="0, 1, 0"/>

</DotProduct>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 121
April 2007

Cast
Description

Used to get the cast from a type to another.

Input/Output
Direction Type Remarks

Input Vector

Output Vector

Parameters
Name Value Remarks

Description Used for error handling

To Float2, float3, float4

Example
<Cast to="float3">

 <MatrixSelect mode="Row4">
 <MatrixInverse>
 <input type="internalsemantic" name="view"/>
 </MatrixInverse>
 </MatrixSelect>

</Cast>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 122
April 2007

TransformCoordinate
Description

Used to transform a coordinate value by a matrix.

Input/Output
Direction Type Remarks
Input 1 Vector

Input 2 Matrix

Output Vector

Parameters
Name Value Remarks
Description Used for error handling

Example
<TransformCoordinate>

 <input type="float3" value="0, 1, 0"/>
 <input type="internalsemantic" value="world"/>

</TransformCoordinate>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 123
April 2007

TransformNormal
Description

Used to transform a normal value by a matrix.

Input/Output
Direction Type Remarks

Input 1 Vector

Input 2 Matrix

Output Vector

Parameters
Name Value Remarks

Description Used for error handling

Example
<TransformNormal>

 <input type="float3" value="0, 1, 0"/>
 <input type="internalsemantic" value="world"/>

</ TransformNormal >

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 124
April 2007

VectorSetValue
Description

Used to set the value of an individual component of a vector.

Input/Output
Direction Type Remarks
Input 1 Vector The input vector to modify

Input 2 Float The value to assign to the selected component

Output Vector The modified vector

Parameters
Name Value Remarks

Description Used for error handling

Operation Char Examples:
“x”
“y”
“a”
…

Remarks
This operator creates a vector of the length of operation parameter. It then fills the
vector, component by component based on the order the parameters.

Example
<VectorSetValue component="z">

 <input type="float3" value="1, 2, 3"/>
 <input type="internalsemantic" value="currenttime"/>

</VectorSetValue>

This will result in an output of: “1, 2, 1233.021321” (last number being the current
time).

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 125
April 2007

Swizzle
Description

Used to transform a normal value by a matrix.

Input/Output
Direction Type Remarks
Input 1 Vector

Output Vector

Parameters
Name Value Remarks
Description Used for error handling

Operation String Examples:
xyz
yxwz
argb
rgba
…

Remarks
This operator creates a vector of the length of operation parameter. It then fills the
vector; component by component based on the order of the parameters.

Examples
<Swizzle operation="yxz">
 <input type="float3" value="1, 2, 3"/>
</Swizzle>

This will result in an output of: “2, 1, 3.”

<Swizzle operation="wwyz">
 <input type="float4" value="1, 2, 3, 4"/>
</Swizzle>

This will result in an output of: “4, 4, 2, 3.”

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 126
April 2007

Demux
Description

Used to separate a vector into individual outputs.

Input/Output
Direction Type Remarks
Input Vector

Output n individual pins n being the size of the vector

Parameters
Name Value Remarks

Description Used for error handling

Ooutputsize Number (1, 2, 3, 4) Determines the number of output pins to create
from the input vector. It usually is the dimension
of the vector.

Example
<DeMux outputsize="2">

 <MatrixSelect mode="Column1">
 <input type="internalsemantic" value="world"/>
 </MatrixSelect>

</DeMux>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 127
April 2007

Mux
Description

Used to concatenate output pins into a single vector of a given dimension.

Input/Output
Direction Type Remarks
Input n individual pins n being the size of the vector

Output Vector

Parameters
Name Value Remarks
Description Used for error handling

Inputsize Number (1, 2, 3, 4) Determines the number of inputs that the parser
will have to look for. This will also be the size of
the output vector.

Example
Creating a float3 with currenttime, lasttime and a constant:

<Mux inputsize="3">

 <input type="internalsemantic" value="currenttime"/>
 <input type="internalsemantic" value="lasttime"/>
 <input type="float" value="0.025"/>

</Mux>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 128
April 2007

Cosine/ACosine/Sine/ASine/Tangent/ATangent
Description

This operator is used to calculate the sine, cosine and tangent of the input value.

Input/Output
Direction Type Remarks

Input Float, double

Output Float

Parameters
Name Value Remarks

Description Used for error handling

Example
<Cosine>

 <input type="internalsemantic" value="currenttime"/>
</Cosine>

<Tangent>

 <input type="internalsemantic" value="currenttime "/>
</Tangent>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 129
April 2007

Log
Description

Returns the logarithm of a number.

Input/Output
Direction Type Remarks
Input Float

Output Float

Parameters
Name Value Remarks

Description Used for error handling

Example
<Log>

 <input type="internalsemantic" value="currenttime"/>
</Log>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 130
April 2007

Pow
Description

Returns x raised to the power of y.

Input/Output
Direction Type Remarks
Input1 Float

Input2 Float Power

Output Float

Parameters
Name Value Remarks

Description Used for error handling

Example
<Pow>

 <input type="internalsemantic" value="currenttime"/>
 <input type="float" value="2.0"/>

</Pow>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 131
April 2007

Add/Substract/Multiply/Divide/Modulus
Description

Returns performed operation.

Input/Output
Direction Type Remarks
Input1 Float

Input2 Float

Output Float

Parameters
Name Value Remarks
Description Used for error handling

Example
<Add>

 <input type="internalsemantic" value="currenttime"/>
 <input type="float" value="2.0"/>

</Add>

<Substract>
 <input type="internalsemantic" value="currenttime"/>
 <input type="float" value="2.0"/>

</Substract>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 132
April 2007

Floor
Description

Returns the largest integer less than or equal to the specified decimal number.

Input/Output
Direction Type Remarks
Input Float

Output Float

Parameters
Name Value Remarks

Description Used for error handling

Example
< Floor >

 <input type="internalsemantic" value="currenttime"/>
</ Floor >

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 133
April 2007

Ceiling
Description

Returns the smallest integer greater than or equal to the specified decimal.

Input/Output
Direction Type Remarks
Input Float

Output Float

Parameters
Name Value Remarks

Description Used for error handling

Example
< Ceiling >

 <input type="internalsemantic" value="currenttime"/>
</ Ceiling >

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 134
April 2007

Input (input)
Description

This node is used to reference an internal FX Composer 2 Semantic.

Input/Output
Direction Type Remarks

Parameters
Name Value Remarks

Type Internalsemantic

Value World, view, projection, isopengl,
mouseposition, time, lasttime, elapsedtime,
random

Name Value Remarks

Type Float

Value Floating point value, pi

Name Value Remarks

Type Float2, float3, float4

Value Floating point values separated by comas

Name Value Remarks

Type Light, camera, node The type of object you want to bind this semantic
to

Name String Any group name that will represent the light,
camera or object node you want to link

Value Position, direction, color The parameter you want to link

Space World, object, view Default is world

Examples
<MatrixTranspose>

 <input type="internalsemantic" name="view"/>
</MatrixTranspose>

<input type="float3" value="1, 2, 3"/>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 135
April 2007

Programming Your Own
Operator Nodes

FX Composer 2 gives you the opportunity to add operator nodes that suit your
needs. The concept used is the same as for regular FX Composer plugins.

The remapping is based on a graph composed of Remapping Operator Nodes.

 Each node has inputs and outputs that can be of various types. (FXMatrix,
double, float…)

 Each input and output of these operators are connected to other operators.
 Every operator node has to inherit from FXSemanticMappingNode and

implement the IFXPlugin Interface.

Integration into FX Composer
The operator nodes are loaded into FX Composer 2 using an fxplug file. Refer to
main documentation for more information.

Here is an example of a declaration:

<virtualdirectory path="FX Composer/remappingoperators">
 <class name=" DummyNamespace.VectorLength"/>

</virtualdirectory>

Note that the virtual directory of the operator nodes has to be : “FX
Composer/remappingoperators”.

FX Composer will look for operators inside this virtual directory.

Naming Convention
FX Composer semantics remapping relies on string comparisons to figure out
which operator to create from the xml nodes inside the file. Therefore a naming
convention has been established. An operator node must have a name ending by
“Node”.

The name inside the xml is used without the “Node” suffix.

For the case below, the xml file would look like:

<VectorLength>
…
</VectorLength>

FX Composer then adds the suffix and looks for the type of the operator in its
database.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 136
April 2007

Simple Example: VectorLength
In this case, this operator only takes one input and outputs one value.

public class VectorLengthNode : FXSemanticMappingNode
{
 private FXProperty<float> _Output;
 public override IFXProperty Output
 {
 get { return _Output; }
 }

 private FXProperty<FXMatrix> _Input;
 public override IFXProperty Input
 {
 get { return _Input; }
 }

 public VectorLengthNode()
 {
 _Output = new FXProperty<float>(this.Properties, "Length", "");
 _Input = new FXProperty<FXMatrix>(this.Properties, "Input Vector", "");
 _Input.PropertyValue = new FXMatrix(1, 3);
 _Output.DependsOn(_Input);
 }

 public override void EvaluateProperties()
 {
 FXMatrix mat = _Input.PropertyValue;
 FXVector3 vector = new FXVector3((float)mat[0, 0], (float)mat[0, 1],
(float)mat[0, 2]);
 _Output.PropertyValue = vector.Length();
 }
}

Remarks:

The constructor creates the properties and assigns a default value to the input.

The Evaluate properties method is called whenever this operator node has to be
used.

Input and Output properties are used to access the internal fields.

Case of Multiple Inputs/Output
In the following case, a Matrix Scale, the operator needs two inputs. For that case, a
property called InputPins is overridden from the base class. The getter of this
property returns an array of IFXProperty containing the inputs in the order that
they should appear in the xml file.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 137
April 2007

In the case below, it creates an array containing the internal input matrix, and the
scalar value. They should appear in the same order in the mapping.xml file.

Example:

<MatrixScale description="Matrix Scale">
 <input type="internalsemantic" value="world"/>
 <input type="float" value="0.1"/>
</MatrixScale>

Here is the code for a MatrixScaleNode:

public class MatrixScaleNode : FXSemanticMappingNode, IFXPlugin
{
 private FXProperty<FXMatrix> _Output;
 public override IFXProperty Output
 {
 get { return _Output; }
 }

 private FXProperty<double> _Scalar;
 public FXProperty<double> Scalar
 {
 get { return _Scalar; }
 set { _Scalar = value; }
 }

 private FXProperty<FXMatrix> _Input;

 public override IFXProperty[] InputPins
 {
 get
 {
 return new IFXProperty[] { _Input, _Scalar};
 }
 }

 public MatrixScaleNode()
 {
 _Output = new FXProperty<FXMatrix>(this.Properties, "Output Vector",
"");
 _Input = new FXProperty<FXMatrix>(this.Properties, "Input Matrix", "");
 _Input.PropertyValue = FXMatrix.Identity4x4;
 _Scalar = new FXProperty<double>(this.Properties, "Scalar", "");
 _Output.DependsOn(_Input);
 }

 public override void EvaluateProperties()
 {
 FXDebug.CheckArgument(_Input.PropertyValue, "Input pin cannot be
null");

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 138
April 2007

 double scalar = _Scalar.PropertyValue;
 FXMatrix mat = _Input.PropertyValue * FXMatrix.Scaling((float)scalar,
 (float)scalar,
 (float)scalar);
 _Output.PropertyValue = mat;
 }

 #region IFXPlugin Members
 public bool Build(IFXPluginType pluginType)
 {
 return true;
 }
 #endregion

}

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 139
April 2007

Complete Examples
Retrieving the Camera Position from the View Matrix

<Remapping name="">

 <identifiers>

 <semantic value="myCameraPosition"/>

 </identifiers>

 <expression>

 <Cast to="float3">

 <MatrixSelect mode="Row4">

 <MatrixInverse>

 <input type="internalsemantic" value="view"/>

 </MatrixInverse>

 </MatrixSelect>

 </Cast>

 </expression>

</Remapping>

Calculating the World x View x Projection Matrix

<Remapping name="">
 <identifiers>
 <semantic value="myWorldViewProjection"/>
 </identifiers>
 <expression>
 <MatrixTransposeConditional description="">
 <MatrixMultiply description="(World * View) * Projection">
 <MatrixMultiply description="World * View">
 <input type="internalsemantic" value="world"/>
 <input type="internalsemantic" value="view"/>
 </MatrixMultiply>
 <input type="internalsemantic" value="projection"/>
 </MatrixMultiply>
 <input type="internalsemantic" value="isopengl"/>
 </MatrixTransposeConditional>
 </expression>
</Remapping>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 140
April 2007

Calculating the World Inverse Transpose

<Remapping name="">

<identifiers>
 <semantic value="myWorldInverseTranspose"/>
 </identifiers>
 <expression>
 <MatrixTransposeConditional description="OGL Render devices">
 <MatrixTranspose description=" ">
 <MatrixInverse description=" ">
 <input type="internalsemantic" value="world"/>
 </MatrixInverse>
 </MatrixTranspose>
 <input type="internalsemantic" value="isopengl"/>
 </MatrixTransposeConditional>
 </expression>
</Remapping>

Computing the Angle Between Two Vectors in Degrees

<Remapping name="">
 <identifiers>
 <semantic value="myVectorAngleDegrees"/>
 </identifiers>
 <expression>
 <Divide>
 <Multiply>
 <ACosine>
 <DotProduct>
 <VectorNormalize>
 <input type="float3" value="1, 1, 0"/>
 </VectorNormalize>
 <input type="float3" value="0, 1, 0"/>
 </DotProduct>
 </ACosine>
 <input type="float" value="180"/>
 </Multiply>
 <input type="float" value="pi"/>
 </Divide>
 </expression>
</Remapping>

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 141
April 2007

Computing the Angle Between Two Vectors in Radians

<Remapping name="">
 <identifiers>
 <semantic value="myVectorAngleRadians"/>
 </identifiers>
 <expression>
 <ACosine>
 <DotProduct>
 <VectorNormalize>
 <input type="float3" value="1, 1, 0"/>
 </VectorNormalize>
 <input type="float3" value="0, 1, 0"/>
 </DotProduct>
 </ACosine>
 </expression>
</Remapping>

Scripting
FX Composer supports scripting through any compliant .NET language using
plugins. FX Composer contains a Python scripting window that can be used to
control the engine using Python. This feature is not complete yet due to pending
updates to the Python runtime, which will happen after this alpha. A sample
command list might be:

from fxcapi import *
Reset()
Teapot()
Translate(1,1,1)
Teapot();
Undo()
Undo();
Undo()
Redo();
import FXComposer.Scene
dir(FXComposer.Scene)

Scripting can be used for task automation, interprocess communication, changes
and additions to the UI, and more. For information on the “IronPython” version of
Python used in FX Composer 2, see the IronPython community Web page at
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython

List of Commands
Command list goes here.

http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 142
April 2007

Scripting Toolbars
FX Composer allows you to create custom toolbars with buttons that execute
Python scripts. For more information, please see the section on Working with
Layouts.

Sample Scripts
Various use cases:

 Convert CgFX/.fx to COLLADA FX
 Binding light objects to parameters
 Assigning shaders based on name

DU-002761-001_v01 143
April 2007

FX Composer 2 in Your Production Pipeline

This chapter discusses the various ways you can integrate FX Composer 2 into your
pipeline.

FX Composer 2–Centric
In this scenario you would use FX Composer to read in shader effects, COLLADA
files, and geometry from DCC applications. You would then create and modify
scenes in FX Composer (material assignment, parameter binding, and tweaking) and
export the scenes through COLLADA and COLLADA FX. This cross-platform
output can then be conditioned for multiple platforms, such as PCs, Macs, and
consoles.

Figure 41. FX Composer-Centric Workflow

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 144
April 2007

Effect Library Creator
FX Composer can be used to group numerous shader effects into a COLLADA
document library. The DCC application then loads the COLLADA library, allows
you to manipulate the scene, and then exports it to a conditioner, which prepares it
for a specific platform such as a console.

Figure 42. Workflow for Effect Library Creation

Engine
You can also use FX Composer as a complement to your game engine. In this case,
FX Composer reads in shader files and imports game geometry so you can author,
assign, and tweak shaders in FX Composer. This data would then be visible directly
in the game engine via an interprocess communications interface (for example, a
rendering game adapter).

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 145
April 2007

Figure 43. Workflow for Engine Integration

Shader Library
By creating an empty COLLADA file, importing a series of CgFX effects,
converting them to COLLADA FX effects, and saving the file, you can
conveniently create a library of COLLADA FX Cg effects. Shader libraries are
useful for organizing and logically grouping various shader effects.

DU-002761-001_v01 147
April 2007

Release Notes

Please read the following release notes before using FX Composer 2.

1. Make sure to use a Release 80 or newer driver for full OpenGL and Frame Buffer
Object functionality. We recommend the latest public driver available at
http://www.nvidia.com/content/drivers/drivers.asp.

2. The following limitations exist in this alpha release of FX Composer 2:

a. Per-object SAS scripts are not yet supported. In practice, all non-scene
effects are by definition per-object, but these will only break if they do SAS
scripting inside the pass, and a small number of our effects actually do this
(less than 5). An example is “fur.fx.”

b. COLLADA FX supports a new layer syntax for expressing full-screen
effects. The alpha does not yet read this information; thus, full-screen
effects will only work with .cgfx/.fx shaders on this build.

3. You may see a message from FX Composer saying, “FX Composer has detected
that an application or user has altered some Cg components in a way that is
incompatible with FX Composer. In order to fix this problem, please re-install FX
Composer. While this incompatibility exists, FX Composer will automatically disable
the OpenGL renderer plugin.”

This message will be displayed if the Cg DLLs in the FX Composer directory are
modified. Re-installing FX Composer will replace the DLLs with their original
versions, and will not affect any other applications on your system that use Cg.

4. When loading a COLLADA file, FX Composer Beta now reports any errors found
while validating the file against version 1.4.1 of the COLLADA schema. Even if any
errors are found, FX Composer will try to load the file as best as it can. We highly
recommend that you repair any COLLADA files that contain errors when possible,
even if they load successfully.

http://www.nvidia.com/content/drivers/drivers.asp

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 148
April 2007

DU-002761-001_v01 149
April 2007

Detailed Tutorial

Creating new shaders in FX Composer is a straightforward procedure. The easiest
thing to do is to copy an existing shader and start modifying—this will save you a
lot of effort compared to building shaders completely from scratch. With this in
mind, a number of effects files are provided with the package.

Coding Conventions
Whether starting from a template, or writing a new shader from scratch, you should
keep basic elements and coding styles consistent between shaders and their usages.
This section describes the standards generally used in the example shaders. While
not required, they are offered as suggestions to help maintain consistency and
readability. Whatever the preference of an individual shader writer and their
workmates, a consistent approach to your shaders is a Best Practice.

Naming
The names below are loosely based on common computer graphic mathematical
practice reaching back to the late 1970s, and partly on names made common by
early offline shading languages such as the RenderMan SL. In general, the two prime
motivations are that names be descriptive and at the same time easy to type. Easy
typing minimizes mistakes. These naming conventions are therefore not as strict as
systems like “Hungarian naming.”

Different languages imply different naming conventions; for example, GLSL
contains predefined names like “gl_FragColor.” In general, the naming used here is
based, where applicable, on the names used in standard Cg/HLSL annotations and
semantics. This makes shaders easier to understand across platforms.

In the following list, the portion of a name in [brackets] is optional (not an array
index).

Pos[ition]
A point location passed into a shader, usually directly from the vertex buffer.

HPos[ition]
A point transformed into [xyzw] homogeneous clip-space coordinates.

P[x]
A transformed point in coordinate system x; for example, Po: object coordinates,
Pw: world coordinates, Pl: light-source coordinates, Pt: texturing coordinates,
Pn: noise-calculation coordinates, Ph: homogeneous clipspace coordinates. With no
suffix, just “P” is the same as “Pos”.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 150
April 2007

E[x]
Mostly present in vertex shaders, E indicates the location of the eye point. Ew: Eye
point in world coordinates

L[x]
A light-direction vector. Without [x], the vector is in “raw” unprocessed form (for
example, in a fragment shader receiving an unnormalized light vector from the
vertex unit). An “n” on vector names usually indicates that the vector has been
normalized; for example, Ln: normalized “L.”

V[x]
A view vector, similar in usage to L[x]. Most-commonly seen normalized as Vn.

NameXf
Any 4×4 or 4×3 transform matrix (other matrix types, say for color conversions,
would not be marked “Xf.”) Typically “Name” is the name of the coordinate
system, as in“WorldXf.”

WVPXf/wvpXf
A special case where ease-of-typing dominates descriptiveness, “wvp” is much easier
to type than the concatenation “WorldViewProjection.”

Name[I][T]Xf
Inverse and/or Transposed transformation matrices. Again, ease-of-typing wins
over fully descriptive but finger-fumbling names like
“WorldViewProjectionInverseTransposeXf.”

NameColor
Values that are colors should be clearly named to distinguish them from similar
scalar values. As a bad example, it is not uncommon to see shaders that use the
name “diffuse” to variously describe a scalar, a surface color, and even a texture
sampler. Be sure to use an adequately descriptive name.

Ka
Scalar multiplier for any ambient color.

Kd
Scalar multiplier for any diffuse surface color.

Ks
Scalar multiplier for any specular surface color.

SpecExp/PhongExp
The exponent used in calculating phong specular nodes. Higher exponents (above 8
or 12) will create a smaller, more-focused highlight.

Kr
Scalar multiplier for any reflective (for example, from a cube map) surface color.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 151
April 2007

KrMin
Scalar multiplier for reflectivity when accounting for Fresnel attenuation. If KrMin
is specified, the reflectivity strength will vary from KrMin (viewed directly along the
surface normal) to Kr (along the contour edges).

FresExp
The exponent used when calculating the Schlick approximation of Fresnel’s
equation. In Schlick’s paper, he used the value of 5. Recent writers have suggested 4
as a more-useful default, and lower values like 3 will create a more deep-gloss
“lacquered” appearance.

NameTex[ture]/NameSamp[ler]
In general, it is a good idea to declare both the file texture and the associated
hardware sampler together, colocated within the file and both sharing the sample
root name. Resist the urge to use less-clear labels like “Map,” which may potentially
apply to either a texture or a sampler. Be sure to distinguish between Bump and
Normal maps.

UV[#]
TEXCOORD register variables that are expressly being used for decal texture
lookup (or as image processing coordinates). “UV” is clear but less typo-prone than
“TEXCOORD”

Technique Names
If only one technique is provided, it is usually called “main.” Otherwise, the name
should be distinctive and descriptive to a nontechnical reader (for example, an artist
using the shader). Longer names like “fragmentShadedTextured” are encouraged.
Names like “textured,” “untextured,” or “debug_UVs” might be common.

Pass Names
Pass names should either be descriptive of function (“blurHorizontal”) or at least
their order of operation (“p0” and “p1” and so on.

Other Coding Conventions

“Tweakables” and “Untweakables”
Dynamic global parameters that are automatically tracked by the application, such as
matrices with the semantic WORLDVIEWPROJECTION, are generically called
“untweakables” because they cannot be directly tweaked by the artist/user. Such
untweakables are usually collected in a group declaration within an effect file, and
have their display widgets set to “None” so that they do not appear in the FX
Composer Properties panel, where their uneditable presence would only create
confusion (and slow the frame rate).

All other global parameters, which can be directly tweaked and do appear in the
properties panel, are therefore called “tweakables.”

Connection Structs
Most example shaders use a struct to collect their special-register inputs and
outputs, where each member of the struct has the appropriate register semantic (for

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 152
April 2007

example, “:TANGENT0”). This is not a language requirement, but makes
debugging much easier.

Unless multiple render targets (MRTs) are involved, fragment programs are usually
declared with a :COLOR output semantic on the function, rather than using an
“out” declaration on one of the program’s formal parameters. The uses are
equivalent, but using the “float4 function_name(): COLOR” semantic is clearer.

In general, functions are declared after global parameters, so that those parameters
can be used without declaration. In some cases, the author may prefer to pass values
as direct formal parameters to the shader. Most often this will occur when a single
function may be repeated on multiple passes—say once for each light, where the
light positions and colors are passed as function parameters.

“Ambient” versus “Incandescent” Light
Some shader writers add the scene’s ambient color to the shaded surface color.
Instead, the ambience should be multiplied by the surface color (and textures) so
that contrast is not lost. If a color should be explicitly added to the surface after all
other shading, that color should be labeled as “Incandescence” rather than
“Ambience.”

“World” Coordinates
Many of the sample shaders are written to use “World” coordinates. Many shaders
are written to calculate shading in eye coordinates, tangent space, and so on. These
are all valid options. Most of the shaders written to light in “World” space do so
because it’s a naturally good coordinate system for using and/or adding reflection
maps.

A Sample Shader
Now that the language is clearer, let’s look at and modify a simple sample shader
effect. Let’s make a copy of “simple_Cg_example.cgfx” in Windows Explorer, and
call it “bluePlastic.cgfx.” Make sure that the file is writeable.

We’ll apply this shader to a COLLADA dae model, and save it. You can use any
model file; we’ll be using “Widgie2.dae,” which is a simple one-node model. Make a
copy of “Widgie2.dae” that’s write-enabled, just like the shader.

Next, open FX Composer 2. Create an empty Project (“File→New→Project…”)
called “Tutorial.”

Now drag your copy of “Widgie2.dae” from Windows Explorer onto the Render
panel—the model will appear in red wireframe.

Now drag the shader “bluePlastic.cgfx” from Windows Explorer and drop it onto
that red wireframe model. Wait a moment for the shader to compile and you’ll see
something like this (Figure 44):

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 153
April 2007

Figure 44. Unedited Sample Shader

This looks good but it’s hardly blue, so we’ll need to touch up the shader a bit.

FX Composer has automatically connected the shader to the preexisting material
(from the DCC application that created the original “Widgie2”). In FX Composer
Project Explorer, open the “Effects” folder, and then the effect “widgeSurf1.”
Inside that effect you’ll find the folder “Import Effect Files” and inside that
“bluePlastic.cgfx.” Double-click “bluePlastic.cgfx” to load the source code directly
into Code Editor.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 154
April 2007

Figure 45. Source Code Loaded in Editor

Let’s look at that source code (skipping a few comments). There’s a fair chunk of
text, but mostly it’s all stock parts, and already typed-in for use, so all we need to do
is look it over broadly. We’ll see that there are three basic sections: declarations of
variables, actual shader functions, and a “technique” block that collects the entire
effect together:

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 155
April 2007

#define TEXTURED_SURFACE

//
/////////////////
// UNTWEAKABLES -- global variables that will be automatically tracked
by FX Composer//
// and other apps. You don't tweak these directly
////////////////////////////////
//
/////////////////

float4x4 WorldITXf : WorldInverseTranspose <string UIWidget =
"none";>;
float4x4 WVPXf : WorldViewProjection <string UIWidget = "none";>;
float4x4 WorldXf : World <string UIWidget = "none";>;
float4x4 ViewIXf : ViewInverse <string UIWidget = "none";>;

//
/////////////////
// TWEAKABLES -- global variables that MAY be automatically tracked,
or may be ////////
// manipulated by sliders and other forms of user input.
/////////////////////////
//
/////////////////

float4 PointLight0Pos : Position <
 string UIName = "Point Lamp 0 Position";
 string Object = "PointLight";
 string Space = "World";
> = {-54.0f, 50.0f, 100.0f, 1.0f};

float3 PointLight0Col : Diffuse <
 string UIName = "Point Lamp 0";
 string UIWidget = "Color";
 string Object = "PointLight";
> = {1.0f, 0.95f, 0.85f};

// Ambient light everywhere in the scene
//////////////////////////////////

float3 AmbiColor : Ambient
<
 string UIName = "Ambient Light";
 string UIWidget = "Color";
> = {0.07f, 0.07f, 0.07f};

// Surface attributes //////////////////////////

float3 SurfColor : Diffuse
<
 string UIName = "Surface";
 string UIWidget = "Color";
> = {1.0f, 1.0f, 1.0f};

float SpecExpon : SpecularPower
<
 string UIName = "Specular Power";
 string UIWidget = "Slider";
 float UIMin = 1.0;
 float UIMax = 128.0;
 float UIStep = 1.0;
> = 25.0;

float Kd
<
 string UIName = "Diffuse Brightness";
 string UIWidget = "Slider";

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 156
April 2007

 float UIMin = 0.0;
 float UIMax = 1.0;
 float UIStep = 0.05;
> = 1.0;

float Ks
<
 string UIName = "Specular Brightness";
 string UIWidget = "Slider";
 float UIMin = 0.0;
 float UIMax = 1.0;
 float UIStep = 0.05;
> = 0.6;

// Surface texture //////

#ifdef TEXTURED_SURFACE
texture ColorTexture : Diffuse
<
 string ResourceName = "default_color.dds";
 string ResourceType = "2D";
 string UIName = "Surface Texture (if used)";
>;

sampler2D ColorSampler = sampler_state
{
 Texture = <ColorTexture>;
 MinFilter = LinearMipMapLinear;
 MagFilter = Linear;
};
#endif /* TEXTURED_SURFACE */

//
/////////////
// "CONNECTOR" STRUCTS -- how vertex buffer, vertex and fragment
shaders combine //
//
/////////////

//
// This is the data fed to the effect's vertex shaders from the vertex
buffer.
//
struct appdata
{
 float3 Position : POSITION;
 float4 UV : TEXCOORD0;
 float4 Normal : NORMAL0;
};

//
// This is the data that the vertex program will deliver to the
rasterizer and pixel shader,
// for subsequent per-fragment shading.
//
struct vertexOutput
{
 float4 HPosition : POSITION;
 float4 TexCoord : TEXCOORD0;
 float3 LightVec : TEXCOORD1;
 float3 WorldNormal : TEXCOORD2; // why world space? see
"Why World?" above
 float3 WorldView : TEXCOORD5;
};

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 157
April 2007

///
// SHADERS - VERTEX PROGRAMS //
///

//
// Vertex setup for fragment-shaded point lighting
//
vertexOutput pointlightVS(appdata IN,
 uniform float4
LightPos)
{
 vertexOutput OUT = (vertexOutput)0;
 float4 normal = normalize(IN.Normal);
 OUT.WorldNormal = mul(WorldITXf, normal).xyz;
 float4 Po = float4(IN.Position.xyz,1);
 float3 Pw = mul(WorldXf, Po).xyz;
 OUT.LightVec = normalize(LightPos.xyz - Pw);
 OUT.TexCoord = IN.UV;
 OUT.WorldView = normalize(float3(ViewIXf[0].w, ViewIXf[1].w,
ViewIXf[2].w) - Pw);
 OUT.HPosition = mul(WVPXf, Po);
 return OUT;
}

///
// SHADERS - FRAGMENT (PIXEL) PROGRAMS //////////////////////////////
///

//
// unified fragment shading
//
float4 plasticPS(vertexOutput IN,
 uniform float3 LightColor) : COLOR
{
 // surface info values
 float3 diffColor = SurfColor;
#ifdef TEXTURED_SURFACE
 diffColor *= tex2D(ColorSampler,IN.TexCoord.xy).xyz;
#endif /* TEXTURED_SURFACE */
 float3 Nn = normalize(IN.WorldNormal);
 float3 Vn = normalize(IN.WorldView);
 float3 Ln = normalize(IN.LightVec); // from the point source
 float3 Hn = normalize(Vn + Ln);
 float4 litV = lit(dot(Ln,Nn),dot(Hn,Nn),SpecExpon); // built-in
lighting function
 float3 diffContrib = (litV.y * Kd) * LightColor * diffColor;
 float3 specContrib = (Ks * litV.z) * LightColor;
 // Now join spec and diffuse together
 float3 result = (diffContrib + specContrib);
 // finally, we add-in ambient light
 result += (AmbiColor * diffColor);
 return float4(result,1);
}

//
///////////////
// TECHNIQUES -- Putting the shaders together into a complete effect
////////////////
//
///////////////

//
// Fragment shading combined into a single pass
//
technique main
{
 pass pass0
 {
 VertexProgram = compile arbvp1
pointlightVS(PointLight0Pos);

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 158
April 2007

 DepthTestEnable = true;
 DepthMask = true;
 CullFaceEnable = false;
 BlendEnable = false;
 FragmentProgram = compile arbfp1 plasticPS(PointLight0Col);
 }
}

Each section is clearly marked and pretty simple within itself. In Code Editor each
line is numbered for your convenience during editing.

The image we have onscreen is textured, green plastic, not blue plastic. How can we
make it blue?

One way would be to simple choose a different texture; the texture currently loaded
(and visible in the Texture Explorer panel) is green. In fact, what we really have is
not green plastic but a green texture overlaid on white plastic. If the effect is loaded in
the Properties panel, you’ll see a white color chip. Changing this color will alter the
surface.

Let’s alter this shader to eliminate the texture entirely and set the default color to
blue.

First, the elimination of the texture is easy—just comment-out or delete the line
“#define TEXTURED_SURFACE” right at the top of the shader code (line 24).

Then, scroll down to the declaration of the surface color (line 72) and change the
default color, originally {1,1,1} to pure blue {0,0,1}.

After making these two edits, from the Materials Editor menu bar select
“Build→Compile bluePlastic.cgfx” to view the changes:

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 159
April 2007

Figure 46. Still Not Blue

The texture is gone, but: why isn’t the model blue?

The reason is that we changed the default value for the variable “SurfColor,” but the
shader is already loaded as part of a material (“widSurf1” in the Materials folder).
The value for the current material is still white. The next time we load the shader
from scratch, “SurfColor” will initialize to blue. But because we altered the default
after loading the effect, we need to alter the color in the properties panel if we want
to look at it in the current scene. Open the material in Project Explorer and select
Material Parameters, or just click on the model and the material properties will
appear in the Properties pane, ready for editing.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 160
April 2007

Figure 47. After Making the Material Blue

Here we go with the material edited to blue.

Try tweaking all the parameters to get a feeling for how they operate. Add a point
light source from the “Primitives” menu, and then explore attaching it to the “Point
Lamp 0 Position” property.

Altering the appearance more can just continue iterating on the same ideas. Try
adding an extra color for the specular highlight: scroll down in Code Editor to line
68 or so, and copy the lines that define “SurfColor.” Then paste a copy of the lines
immediately below SurfColor’s declaration. Rename the new variable “SpecColor”
(both the name and the “UIName”) and change the default value to something
different, say {1,0,0}, which is red. Hit “Build File.”

Your new property will now appear in the Properties panel, but the image is
unchanged—we haven’t altered the shading, just the parameter list.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 161
April 2007

Note: Shader authors: Avoid leaving in parameters that are “dead;” they drive
artists crazy! Make sure you remove these parameters before passing
shaders on to other users.

To add this color into our shading, let’s track down the actual line that defines the
specular highlight (somewhere around line 214 in the edited file):

 float3 specContrib = (Ks * litV.z) * LightColor;

Let’s change this to use our new SpecColor:
 float3 specContrib = (Ks * litV.z) * LightColor * SpecColor;

Click again on “Build→Compile bluePlastic.cgfx”…

Figure 48. Adding a Colored Highlight

…and now we have a colored highlight.

Feel free to experiment with many different approaches, and don’t be bashful about
mashing together code from lots of different shader effect to get the look that’s best
for your project.

Finally, we’ll save an updated version of the model and material, either through
“Save All” or just exit FX Composer and answer “Yes” to the dialog box.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 162
April 2007

DU-002761-001_v01 163
April 2007

Appendix

Glossary of Terms
active document.

The document currently open. Although you can have a number of documents can
exist for a project, only one can be active at any time. The active document is
indicated by a filled dot in the scene graph.

assets

Sub-notes that makes up a document—such as scenes, material, lights, images, and
geometries.

Asset Library

Section that provides two ways of creating asset libraries: 1) Create several new
assets (effects, materials, images, lights, cameras, or geometry) in a new empty
document, or 2) load a collection of COLLADA documents (each with its own
assets) and then create a new empty document and drag-and-drop your chosen
assets into the new document.

Cameras

The section of Assets Panel that groups all the cameras (orthographic cameras or
perspective cameras) in a project.

Code Editor

The section that lets you view and modify shader source code. Code Editor features
all the standard editing functionality.

Color Picker

Supports high-dynamic range and allows you access to the full range of floating
point values. Color Picker shows individual color channels, as well as an overall
exponent (represented by the vertical slider on the right of the Color Picker).

Deformers

The section of the Assets Panel that lists all skinning data that is loaded.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 164
April 2007

document

A container for textures, shaders, cameras, lights, geometry, and so on. A
document’s assets are listed as sub-nodes under each document.

effects

A generic shader—for example, marble.

Geometries

This section of the Assets Panel that groups all 3D models in a project

Texture Viewer

A viewer that helps you navigate through the images in your project. By default,
Texture Viewer arranges thumbnails of all your images neatly in rows. Each
thumbnail is accompanied by the image’s file name and resolution.

Images

The section of Assets Panel that groups all the images in a project in certain formats
(dds, .jpg, .png, .tga, .bmp, .exr, and .hdr). or texture types (cube map, 1D, 2D, 3D)
and pixel formats (RGBA, RGB, DXT, 32-bit float, 16-bit float).

Assets Panel.

displays all the “assets” in a project, grouped by asset type. such as geometries,
images, lights, materials, and scenes.

Lights

The section of Assets Panel that groups all the lights (spot lights, directional lights,
and point lights) in a project.

material

An instance of an effect with specific properties settings—for example, green
marble. Materials are what you actually apply to objects in a scene.

Output Panel

Displays various messages from FX Composer related to builds.

physical document

A document that exists on disk (for example, as a COLLADA .dae file). Compare to
“virtual document.”

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 165
April 2007

Project Explorer

A file-based representation of your project in the form of an expandable scene
graph. The main nodes of the scene graph show the various documents in your
project.

Properties Panel

Allow you to view and change object properties—primarily material properties. For
example, you can use Color Picker to adjust a Phong materials’ diffuse color,
specular color, or specular exponent, or you can type in color values.

Python Panel

Panel that gives you a console from which you can access FX Composer’s powerful
scripting features.

scene

A composition of geometric objects, lights, cameras, and so on. You can use
different scenes for a variety of purposes—common examples are different levels or
different test scenarios.

Render Panel

Panel that displays the current scene and has several controls for navigating and
manipulating scenes. A tab for each device is installed on your system; typically,
you’ll see tabs for Direct3D and OpenGL devices. You can dock or undock these to
view multiple devices simultaneously or to enlarge a particular rendering.

ShaderPerf

Tool that helps you analyze shader performance, complete with informative graphs
and tables.

Texture Explorer

Displays all the textures used in the current scene, including procedurally generated
textures and render targets. Texture Explorer panel also enables visualization of
cube maps and normal maps.

Toolbar

Helps you work with cameras and objects in a scene and contains many buttons for
this purpose, such as Cameras, Navigation Mode, and Object Selection.

 FX Composer 2 Beta Getting Started User’s Guide

DU-002761-001_v01 166
April 2007

virtual document

Documents not on disk that are useful for organizing and grouping assets into a
logical collection.. Once you are satisfied with a virtual document’s contents, you
can save it to disk; at this point, it becomes a physical document. Compare to
“physical document.”

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and FX Composer are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

	Quick Tutorial
	Overview
	Creating an Effect
	Importing Geometry
	Applying Materials to Geometry
	Modifying Material Parameters
	Assigning Textures
	Binding a Light to a Material
	Shader Library
	Editing Shaders
	Overview
	What Is FX Composer 2?
	Support for Standard Development Features
	Visual Debugging and Performance Tuning
	Mental Mill Artist Edition

	The Basics
	Layout
	Start Page

	Working with Shaders
	Authoring Shaders
	Shader Library Panel
	Shader Library Preferences

	Properties Panel
	Material Scene Bindings
	Color Picker

	Code Editor
	Code Editor Settings

	Mental Mill Artist Edition
	Material Panel
	Texture Viewer
	Creating a COLLADA FX Common Profile
	Creating Various Types of Shaders
	Creating a COLLADA FX Cg Effect
	Creating a Fullscene COLLADA FX Effect
	COLLADA FX Authoring
	Assets Panel
	Effects
	Profiles
	Common Profile
	API specific profiles
	Profile Parameters
	Adjusting parameters
	Techniques
	Passes
	Drawing Commands
	Render States
	Shader Pipeline
	Shader Source Code

	Full Screen Collada FX
	Evaluate Scene
	Render

	CgFX and .fx Authoring
	Vertex Stream Remapper
	Global Remapper:
	Finer Remapping :

	Converting CgFX Effects to COLLADA FX Effect
	Editing COLLADA FX Cg Shaders
	Converting .fx to CgFX
	Limitations

	The Render Panel
	The Render Panel
	Toolbar
	Manipulating the Camera
	Applying Materials
	Context Menu

	Viewports
	Scene Options
	Tips for Working with Complex Scenes

	Animation Panel

	Analyzing Shader Performance
	The ShaderPerf Panel
	
	Configuring the ShaderPerf Panel:
	Running tests

	ShaderPerf Panel Interface
	Table/Graph Modes
	
	Task List

	ShaderPerf Panel Settings

	Working with Projects
	Project Structure
	Project Explorer
	Documents and Assets
	Active Documents
	Physical Documents
	Virtual Documents

	COLLADA Documents
	Sample COLLADA Files

	Project Configurations
	Assets Panel
	Common Options
	Types of Assets
	Animation
	Animation Clips
	Scenes
	Effects
	Sub-Nodes
	Context Menu

	 Materials
	Sub-Nodes
	Context Menu

	Lights
	Cameras
	Textures
	Geometries
	Deformers

	Asset Location Resolution
	Environment and Project Settings
	Sample Project

	Customizing FX Composer
	Working with Layouts
	Changing Layouts

	Customizing Toolbars
	General Preferences
	FX Composer SDK
	Geometry File Importer
	Image File Importer
	Scripting Commands
	Semantic and Annotation Remapper Plug-ins

	Advanced Asset Creation
	Materials
	Images
	Geometry
	Deformers
	Lights
	Cameras
	Working with Materials and Effects
	Creating Asset Libraries
	Scene Object Binding
	Asset Management
	File Importers
	3D file importers
	Wavefront OBJ file format
	Wavefront MTL Support in FXC
	Autodesk 3DS file format
	Microsoft X file format
	Autodesk FBX file format

	Image File Importer
	Softimage® 3D Picture file format (PIC)

	
	Scripting
	Introduction
	Fxc* APIs
	Namespaces
	Properties
	Services
	Using the Scripting – Example Walkthrough
	Create a Scene
	1. Testing Undo/Redo
	Manipulating the RenderPorts
	2. Creating Some Geometry
	3. Adding Geometry to the Scene
	4. Creating a material

	Semantic and Annotation Remapping
	Syntax
	List of Operators
	MatrixMultiply
	Description
	Input/Output
	Parameters
	Example

	 MatrixAdd
	Description
	Input/Output
	Example

	 MatrixSubstract
	Description
	Input/Output
	Parameters
	Example

	 MatrixInverse
	Description
	Input/Output
	Parameters
	Example

	 MatrixTranspose
	Description
	Input/Output

	 MatrixTransposeConditional
	Description
	Input/Output
	Parameters
	Example

	 MatrixScale
	Description
	Input/Output
	Parameters
	Example

	 MatrixOrthonormalize
	Description
	Input/Output
	PParameters
	Example

	 MatrixSelect
	Description
	Input/Output
	Parameters
	Remarks
	Example

	 VectorMultiply
	Description
	Input/Output
	Example

	 VectorAdd
	Description
	Input/Output
	Parameters
	Example

	 VectorSubtract
	Description
	Input/Output
	Parameters
	Example

	 VectorLength/VectorLengthSq
	Description
	Input/Output
	Parameters
	Example

	 VectorNornalize
	Description
	Input/Output
	Parameters
	Example

	 CrossProduct
	Description
	Input/Output
	Parameters
	Example

	 DotProduct
	Description
	Input/Output
	Parameters
	Example

	 Cast
	Description
	Input/Output
	Parameters
	Example

	 TransformCoordinate
	Description
	Input/Output
	Parameters
	Example

	 TransformNormal
	Description
	Input/Output
	Parameters
	Example

	 VectorSetValue
	Description
	Input/Output
	Parameters
	Remarks
	Example

	 Swizzle
	Description
	Input/Output
	Parameters
	Remarks
	Examples

	 Demux
	Description
	Input/Output
	Parameters
	Example

	 Mux
	Description
	Input/Output
	Parameters
	Example

	
	 Cosine/ACosine/Sine/ASine/Tangent/ATangent
	Description
	Input/Output
	Parameters
	Example

	 Log
	Description
	Input/Output
	Parameters
	Example

	 Pow
	Description
	Input/Output
	Parameters
	Example

	 Add/Substract/Multiply/Divide/Modulus
	Description
	Input/Output
	Parameters
	Example

	 Floor
	Description
	Input/Output
	Parameters
	Example

	 Ceiling
	Description
	Input/Output
	Parameters
	Example

	 Input (input)
	Description
	Input/Output
	Parameters
	Examples

	Programming Your Own Operator Nodes
	Integration into FX Composer
	Naming Convention
	Simple Example: VectorLength
	Case of Multiple Inputs/Output

	 Complete Examples
	Retrieving the Camera Position from the View Matrix
	Calculating the World x View x Projection Matrix
	Calculating the World Inverse Transpose
	Computing the Angle Between Two Vectors in Degrees
	 Computing the Angle Between Two Vectors in Radians

	Scripting
	List of Commands

	Scripting Toolbars
	Sample Scripts

	

	FX Composer 2 in Your Production Pipeline
	FX Composer 2–Centric
	Effect Library Creator
	

	Engine
	Shader Library
	

	Release Notes
	

	Detailed Tutorial
	Coding Conventions
	Naming
	Pos[ition]
	HPos[ition]
	P[x]
	E[x]
	L[x]
	V[x]
	NameXf
	WVPXf/wvpXf
	Name[I][T]Xf
	NameColor
	Ka
	Kd
	Ks
	SpecExp/PhongExp
	Kr
	KrMin
	FresExp
	NameTex[ture]/NameSamp[ler]
	UV[#]
	Technique Names
	Pass Names

	Other Coding Conventions
	“Tweakables” and “Untweakables”
	Connection Structs
	“Ambient” versus “Incandescent” Light
	“World” Coordinates

	A Sample Shader

	Appendix
	Glossary of Terms

