

 - 1 -
January 2010

The NVIDIA Windows PC OpenGL ES
2.0 and Khronos API Emulator Support
Pack

Version 100

January 2010 - 2 -

Contents

INTRODUCTION 3

SYSTEM REQUIREMENTS 3

INSTALLING THE SUPPORT PACK 4

BUILDING CODE FOR THE KHRONOS API PC EMULATOR 7

LIMITATIONS/DIFFERENCES BETWEEN EMULATION AND THE TEGRA 8

EMULATOR PROGRAMMING NOTES 10

January 2010 - 3 -

Introduction

This support pack includes a sort of “virtual platform”; a PC-based set of “wrapper” libraries

that allow applications written to Khronos APIs (OpenKODE, OpenGL ES, EGL) to run (or at

least link, depending on the Khronos API) with no source code modifications on both Tegra

devkits and on a Windows-based PC. The Windows PC wrapper can make it easier for

developers to share devkits by allowing application development for Tegra-targetted

applications to be started on a Windows-based PC.

The pack includes Khronos headers and link libraries, as well as Windows PC DLLs that

implement emulators for key Khronos media APIs. The pack is laid out in exactly the same

format as any of the Windows CE 6.0 platform support packs, to ensure that minimal changes

are required to move between the emulator’s “virtual platform” and the Tegra devkit platform.

System Requirements

The minimum specifications for a PC to run emulator-based applications (details are given in

the installation sections of this documentation) are:

Hardware

• Windows-compatible PC

o ~2.0GHz CPU

o 1-2GB RAM or better

• NVIDIA GPU, ~GeForce 6200 or newer (NV43), GeForce 8xxx series or newer

recommended.

Tested/supported GPU hardware includes:

• NVIDIA Quadro NVS 110M

• NVIDIA GeForce 8400 series

• NVIDIA GeForce 8600 GTS

• NVIDIA Quadro FX 4000 (Quadro and PerfKit drivers)

• And most NVIDIA GeForce/Quadro products newer than the aforementioned GPUs

Tested/supported hardware with some reservations includes:

January 2010 - 4 -

• NVIDIA GeForce 6200 TurboCache (no support for Luma-only FBOs)

• NVIDIA GeForce 6600GT (no support for Luma-only FBOs)

• NVIDIA GeForceGo 6600 TE (no support for Luma-only FBOs)

• NVIDIA Quadro NVS 135M (no support for advanced OpenGL ES 2.0 particles on some

drivers)

Software

• Microsoft Windows XP or newer operating system installed on the host PC

o XP has been extensively tested

o Vista and Vista 64 has been given basic testing (although note that Vista 64 may

have issues with other Platform Support packs, such as the Windows CE 6.0

devkit support packs. See the documentation for specific Platform Support

packs for details)

o Windows 7 has been given basic testing

• Microsoft Visual Studio:

o Microsoft Visual Studio 2005 or 2008

Installing the Support Pack

Uninstalling the Previous SDK

If you have NVIDIA’s NVAP SDK 0.1.x through 0.4.x installed on your host PC, you must first

take the following actions to uninstall it and avoid conflicts:

If the previous SDK included an installer program, use it to uninstall the package. If the SDK

was manually installed (some of the oldest SDKs were manual install), then take the following

steps.

1) Remove any runtime DLL directories from previous NVAP SDKs from the system’s

PATH environment, such as the platformlibs paths added when installing a previous

NVAP SDK.

2) Remove the old NVAPSDK environment variable as well.

In addition, previous versions of this emulator pack must be uninstalled before installing the

latest version. Unlike some other platform support packs, only one emulator pack can be

installed at any time, to avoid any DLL mismatches and/or path issues.

January 2010 - 5 -

To install the Support Pack, simply double click the installation file

win_x86_es2emu_<version>.msi

Prerequisites Verification

The installer will detect and display the list of installed software required and/or recommended

for development on the Windows PC emulator. Install any missing software before proceeding

with installation. Please refer to the System Requirements documentation for details.

End-User License

Next you will be prompted with End-User License Agreement. Read the agreement and to

accept it check the box “I accept the terms in the License Agreement”. Click next to proceed.

Installation Type

There are 3 ways to install the Support Pack. Read the instructions on the screen and choose one

of the three options.

“Typical” and “Complete” setup options will install the Support Pack in C:\Program

Files\NVIDIA Corporation\win_x86_es2emu_<version>\ location by default. If you want to

install the Support Pack to a different location then choose the “Custom” setup option, change

the installation location and click Next. Do not move the Support Pack manually after install –

the installer sets environment variables that point to the installed location of the Support Pack.

Following the selection of the installation type, file copying will begin. It can take several

minutes to complete the installation. Once installation is complete, click “Finish”. Since the

installer adds and modifies environment variables including the PATH, you will be prompted

to acknowledge that restarting the host PC is recommended.

Environment Variables

The installer adds or updates several environment variables to locate the Support Pack:

NV_WINGL_X86_PLAT: This environment variable is set to the path of the root of the Support

Pack, and can be referenced in VCPROJ files to locate Khronos headers and libraries.

PATH: This standard environment variable is modified to append the path to the bin

subdirectory of the Support Pack to the end of the search path. This path includes the Khronos

API emulation DLLs, and allows applications linked against the emulator to run on the PC.

January 2010 - 6 -

Layout of the Platform Support Pack

The platform support pack has the following hierarchy on the host PC once installed:

 $(NV_WINGL_X86_PLAT)\

 bin\

release\

Contain the Khronos API emulator implementation DLLs. This full path is

added to the Windows PC’s $PATH variable by the installer.

 include\

Contains standard, Khronos-mandated subdirectories for each Khronos API’s

headers (e.g. KD for OpenKODE Core). These headers match the ones used to

build the emulator included in the Platform Support pack’s bin directory.

 lib\

release\

Contain Windows-compatible link libraries for the Khronos API emulators.

These libraries match the ones used to build the emulator included in the

Platform Support pack’s bin directory.

The Khronos APIs

To maximize cross-platform compatibility, applications should avoid including and using

headers and functions from the standard C libraries (stdio.h, stdlib.h, memory.h, etc).

Instead, applications should limit their use of platform-specific system headers and instead use

the Khronos OpenGL ES 2.0, OpenMAX IL 1.1, OpenVG 1.0, EGL 1.3, and OpenKODE Core 1.0

libraries. If possible, do not include Windows headers, standard platform library headers, etc.

This Platform Support pack ships with the following Khronos libraries supported in emulation:

� OpenKODE Core 1.0: KD/kd.h, libKD.lib: POSIX-like functionality for files, I/O,
etc, along with basic window-system and input-handling functionality. See the Khronos
documentation for details.

 http://www.khronos.org/registry/kode/specs/openkode.1.0.pdf

� OpenGL ES 2.0: GLES2/gl2.h, GLES2/gl2ext.h, libGLES20.lib: Shader-based
3D rendering. See the OpenGL ES 2.0 and GLSL-E 2.0 Shading Language
documentation for details.

 http://www.khronos.org/files/opengles_spec_2_0.pdf,

 http://www.khronos.org/files/opengles_shading_language.pdf

� EGL 1.3: EGL/egl.h: Buffer and Context management, linking OpenKODE Core and
OpenGL ES 2.0. See the Khronos documentation for details.

 http://www.khronos.org/registry/egl/specs/eglspec.1.3.pdf

January 2010 - 7 -

The following libraries are also supplied, but only as “null” link libraries. None of the functions

in these libraries do any work.

� OpenGL ES 1.1: GLES/gl.h, GLES/glext.h: Fixed-function-based 3D rendering.
See the OpenGL ES 1.1 documentation for details. Link only. APIs not
implemented.

 http://www.khronos.org/registry/gles/specs/1.1/es_cm_spec_1.1.10.pdf

� OpenMAX IL 1.1: openmax/il/*: Support for hardware-accelerated video, audio and
imaging. See the Khronos documentation for details. Link only. APIs not
implemented.

 http://www.khronos.org/files/openmax_il_spec_1_1_1.pdf

� OpenVG 1.0: VG/*: Support for vector graphics. See the Khronos documentation for
details. Link only. APIs not implemented.

 http://www.khronos.org/files/openvg_1_0_1.pdf

Building Code for the Khronos API PC Emulator

In order to build and link an application for the emulated Khronos platform on Windows, the

paths to the emulator’s Khronos headers and libraries must be added to the project:

1) Add the following paths to the “C/C++:General:Additional Include Directories” in all of

the emulator configurations in the project:

$(NV_WINGL_X86_PLAT)/include

(for most Khronos APIs)

$(NV_WINGL_X86_PLAT)/include/OpenMax/il

(for OpenMAX IL)

2) Add the following paths to the “Linker:General:Additional Library Directories” in all of

the emulator configurations in the project:

$(NV_WINGL_X86_PLAT)/lib/release

The Platform Support pack installer will have already set the variable

$(NV_WINGL_X86_PLAT) as required and added the path to the implementation DLLs to the

system path. However, after installing the Platform Support pack, exit and restart any open

MSVC++ instances, so that they can re-read the environment variables.

Link Libraries for Khronos Applications on the PC
Emulator

The emulator platform includes both GLES2 and EGL in the same library/DLL. Thus, to link

both GLES2 and EGL to an emulator app, link the library libGLES20.lib instead of

January 2010 - 8 -

libEGL.lib and libGLESv2.lib as done on Tegra. This may be modified to match the

Khronos standard in a coming release.

In order to successfully link an OpenKODE Core app on the emulator, both libKD.lib and

libnvkdmain.lib must be added to the “additional libraries” line. Failure to include latter

library will result in “undefined main” link errors.

Only release emulator libraries and DLLs are shipped with the platform support pack, so both

release and debug configurations of applications should link with the release Khronos libraries.

Limitations/Differences Between Emulation and

the Tegra

While the emulator is designed to match the Tegra where possible, there are numerous cases

where the emulated behavior will not match the Tegra, See the following sections for details.

OpenGL ES 2.0

Please note the following differences between the Tegra platform’s ES 2.0 support and that of

the PC-based emulator:

Tegra Platform OpenGL ES 2.0 Driver SDK WinXP Emulation Wrapper

Shader Support

Source-code and Binary-precompiled shaders

both supported

Binary-precompiled shaders not

supported

Support for reading the framebuffer in a

fragment shader via

NV_shader_framebuffer_fetch

Only fixed-function alpha blending

supported

Shader limitations exposed via GL state

queries

Shader limitations should be read from

the tables in the Tegra OpenGL ES 2.0

development guide; the wrapper is not

guaranteed to return Tegra-correct

values

Default precision specifiers supported Default precision specifiers ignored.

January 2010 - 9 -

Texturing Support

Non-power of two textures do not support

mipmapping or wrapping

Non-power of two textures can

support mipmapping and wrapping

Supports ETC, LATC1 and LATC2

compressed textures

Does not support ETC or LATC

textures

Maximum texture size 2048x2048 texels Maximum texture size is

implementation-dependent

Signed fixed-point and floating-point

textures supported.

Signed shader support varies.

Buffer Formats

Support for 16bpp depth, including optional

use of a non-linear Z extension

(GL_NV_depth_nonlinear).

Depth buffer formats differ by

implementation and may include 24 or

32 bpp depth

Support for PBuffers in EGL (but FBOs are

considered the best option in ES2.0)

No support for PBuffers

Performance

Performance is, of course, representative of

the device…

Performance is in no way linked to

final Tegra device performance

Misc

Support for vector-graphic rendering via the

GL_NV_draw_path extension.

No vector-graphic support

Support for Coverage-sampled Antialiasing

(CSAA).

No CSAA support – MSAA support

may be enabled automatically on some

drivers

GLSL-ES idioms not supported in GLSL

These are ignored, but will compile:

• Default precision specifiers

January 2010 - 10 -

Shader Checking Issues

The shader-checking code is implemented outside of the native Windows GL shader compiler.

As a result, the line numbers of shader errors will be incorrect with respect to the source

shaders.

In some cases, there may be issues with shaders that are correct according to the GLSL-ES

compiler for Tegra not compiling on the desktop wrapper. In addition, it can be confusing when

developing shaders for the line numbers of errors to be offset.

In these (and other) cases, it may be possible to let these shaders “pass through” the wrapper by

setting a hint that disables pre-processing of the shaders. The wrapper (but not on the actual

Tegra development hardware) supports the following hint:

// to disable GLSL-ES shader-checking

glHint(GL_SHADER_COMPILER, 1);

// to enable GLSL-ES shader-checking (the default)

glHint(GL_SHADER_COMPILER, 0);

Emulator Programming Notes

OpenKODE Core File System

The root of the OpenKODE Core file system on the emulator is designed to match the WinCE-

based Tegra driver as closely as possible. Thus, the root of the file system is based off of the

location of the application’s executable. Given a path to the executable $(APP_PATH), the

OpenKODE directories map as follows:

OpenKODE Core

Directory

Windows Path

/res $(APP_PATH)\resources

/data $(APP_PATH)\data

Explicit use of removable storage is not recommended on the emulator, as it is not supported in

the same manner on the WinCE Tegra OS images.

January 2010 - 11 -

“Fullscreen” Window Size

OpenKODE “Fullscreen” windows are drawn as normal Win32 windows of a fixed size on the

emulator. By default, all OpenKODE fullscreen windows are 800x480 pixels. Developers who

want to change the “size” of the fullscreen windows on their system can do so by setting the

following global environment variables on their development PC:

NVAP_SCREEN_WIDTH=

NVAP_SCREEN_HEIGHT=

To the desired height and width. After changing this value, restart Visual Studio to re-read the

environment.

Window Handle Support on the Emulator

The emulator’s EGL implementation can support both OpenKODE Core-created

EGLNativeWindowType handles returned from kdRealizeWindow(KDWindow*) and also

native Windows HWNDs. This allows Win32 applications to cross over between the emulator

and the Tegra devkit. However, a given application instance can only handle one of these two

types of windows. Passing the first window handle to the emulator’s EGL implementation

causes that particular EGL “back end” to be installed for that application instance.

January 2010 - 12 -

Cross-platform Windows HWND code that creates an 800x480 window on the Emulator and a

fullscreen window on the Tegra devkit is as follows:

 HWND hwnd = CreateWindow(

 TEXT("EGLWndClass"),

 NULL,

 WS_OVERLAPPED|WS_SYSMENU|WS_THICKFRAME|WS_DISABLED,

 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

 NULL,

 NULL,

 (HINSTANCE)GetModuleHandle(NULL),

 NULL);

 if (!hwnd)

 return -1;

 EnableWindow(hwnd, TRUE);

 RECT area;

 area.left = 0;

 area.top = 0;

#ifdef _WIN32_WCE

 area.right = GetSystemMetrics(SM_CXSCREEN);

 area.bottom = GetSystemMetrics(SM_CYSCREEN);

 SetWindowLong(hwnd, GWL_STYLE, WS_POPUP);

 SetWindowPos(hwnd, HWND_TOPMOST,

 area.left, area.top,

 area.right, area.bottom,

 SWP_FRAMECHANGED);

#else

 area.right = 800;

 area.bottom = 480;

 SetWindowPos(hwnd, HWND_TOP,

 area.left, area.top,

 area.right, area.bottom,

 SWP_NOMOVE);

#endif

 /* set as foreground window to give this app focus in case it doesn't

have it */

 SetForegroundWindow(hwnd);

 ShowWindow(hwnd, SW_SHOWNORMAL);

January 2010 - 13 -

EGL and OpenGL ES 2.0 Conformance

Note that the goal of this platform support pack is to make it easier for developers to create

OpenKODE, EGL and GLES 2.0 applications without deploying to a (possibly shared) devkit on

every iteration. Thus, focus in development has been on functionality and basic feature set,

rather than exact Khronos conformance. Please keep this in mind when developing

applications. Differences between the (conformant) Tegra Khronos drivers and the emulator

are listed in prior sections.

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL
IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Tegra, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and product
names may be trademarks of the respective companies with which they are associated.

Copyright

© 2008-2010 NVIDIA Corporation. All rights reserved.

