<«

NVIDIA.

Tegra Linux
PerfHUD ES Quickstart Guide

Version 10.7.2




INTRODUCTION

SETUP

CONNECTING TO THE PERFHUD ES TARGET

COMMON PROBLEMS

KNOWN ISSUES

August 2010 -2-



Introduction

This quick start guide is designed to assist a new user in setting up and starting PerfHUD ES
profiling of applications on a Tegra Linux device.

PerfHUD ES enables experimentation and in-depth analysis of OpenGL ES 2.x applications.
Through data provided by the OpenGL ES driver and the Tegra SoC, developers are provided
live system status, including deep GPU performance and bottleneck information, in order to
help target optimizations where they are most needed.

The debugging capabilities of PerfHUD ES give full access to the state of the OpenGL ES
pipeline, related textures and shaders, and all rendering states to help find the causes for

improper setup, rendering anomalies, and performance issues.

August 2010 -3-



Setup

Requirements

A Windows-based host PC, ideally with minimum 2GHz CPU and 2GB RAM, plus an
OpenGL 1.5 (GeForce 6-series) or better GPU. The “PerfHUD ES User Guide” installed
during this setup process covers GPU requirements in more depth, as certain features
are necessary for the host PC to visualize the graphics rendered on the Tegra device.
Windows XP is the officially-supported Window OS for PerfHUD ES. Windows Vista
and Windows 7 (32-bit and 64-bit) have had basic testing and seem to operate properly.
An Ethernet connection to the Tegra device from the host PC, specifically with an IP
address on the Tegra device that is reachable from the host PC. Specific details on
setting up networking on your Tegra device is outside the scope of this document.

A Linux OS installed on your target Tegra device with PerfHUD ES support. For public
developers, the L4T 10.7.2 pack or later is required for PerfHUD support. Customers
with LDK releases can add a PerfHUD ES support pack matching the branch. We have
tested a Tegra 250 Devkit with both 10.7.1 and 10.7.2 LDK releases, and L4T 10.7.2 pack.

Installing the Windows PerfHUD ES Host
On the Windows host PC, you need the PerfHUD ES Host installer executable, which if you

don’t already have can be downloaded from the Tegra devsite:

http://tegradeveloper.nvidia.com/tegra/downloads

It should be a file named like “NVIDIA_PerfHUD_ES.exe” for the Windows installer. Once

downloaded, run the installer, then:

1)
2)
3)
4)
5)

Click “Next”.
Decide to accept the EULA and then click “Next”.
Decide on your installation location and then click “Next”.

Click “Install” and wait for installation to complete.
Click “Finish”.

We strongly recommend you read the “PerfHUD ES User Guide” document to learn how to use

the PerfHUD ES host user interface to examine your GLES application. The installer adds a link
to the doc in the the Start Menu under:

All Programs => NVIDIA Corporation => NVIDIA PerfHUD ES Tegra2

August 2010 -4-


http://tegradeveloper.nvidia.com/tegra/downloads

Installing PerfHUD ES Target Device Support

Note: If you are using the L4T 10.7.2 pack or later, you can skip to the Turn On/Off step.

At this time, LDK customers will need the “tegra linux perfhud 10 7 1.tgz” support pack
for this next step — if you don’t already have it, please contact your support representative. It is
easiest to copy the archive to the Tegra device (using you favorite method, either copying to
boot media from a host linux PC, or using remote file transfer like SCP), and then simply

unpack it on-device using a remote shell, with:
tar -xzvf tegra linux perfhud 10 7 1.tgz

If you then execute ‘1s’, you should see find now have ‘perfhud.sh’, as well as two
PerfHUD interposer libraries (*.so’ files). The first time you run perfhud. sh, it will attempt
to install the libraries properly (basically moving them to /usr/1ib).

Turn On/Off PerfHUD Target Support
To enable PerfHUD support (and auto-install the support libs if not yet installed), execute:

./perfhud.sh on
If you later want to turn off PerfHUD support, simply execute:

./perfhud.sh off

August 2010 -5-



Connecting to the Target Device

Prepare Target for Profiling
You should have installed the PerfHUD support pack on your Tegra device in the prior step.

To enable PerfHUD support on the target Tegra device, if you haven’t already, execute:

./perfhud.sh on

Then, launch the application to be profiled on the Tegra device.

Start PerfHUD Host
Run the PerfHUD ES Host application on your Windows PC.

You will then be prompted with a dialog requesting the Target IP address.

Connect to Target over TCP/IP

If you are running just a single application, in a non-GLES-accelerated window manager:

1) Enter the IP address for your target into the dialog.
2) Click “Connect”.

Also note that when there’s only a single GLES application running, if you quit the application
and then start it (or another GLES app) without exiting PerfHUD ES on the host PC, PerfHUD
will automatically establish a connection to the new app instance without user intervention.

This is useful for running a given app repeatedly as you find and fix issues.

If you are instead running multiple GLES applications simultaneously on the target, or a

window manager that also leverages OpenGL ES in addition to applications, you'll want to:

1) Enter the IP address for your target into the dialog.
2) Click “Advanced”

3) Click “Refresh graphics process list”

4) Select your application from the process list

5) Click “Connect”

August 2010 -6-



Common Problems

The windows ding.wav plays over and over again.

The sound effect is played each time a buffer object is uploaded, to disable open the view

dropdown menu and deselect audio notifications.

The driver time never seems to indicate anything on the dashboard.

Please select a non-zero value for driver time sampling as the default is zero.

The speed bar is not visible and the frame profiler is not selectable.

Please ensure that your application is using the “EGL_NV_Perfmon” extension to acquire all
application side timing information as detailed in the “PerfHUD ES User Guide” document.

August 2010 -7-



Known Issues

Application hangs with target device log showing an error like “"Output FIFO does
not refill, context read is stuck”.

There is no current workaround, please try restarting the target device and application. If the

issue persists, please contact us. We are investigating the issue.

My application fails to run with GL_OUT_OF_MEMORY.

Please try restarting the target device and application. If the issue persists, please contact your

support representative.

The timing graph varies wildly for a static scene.

There is no current workaround. We are investigating the issue.

The frame debugger takes a long time to complete or fails to complete.

Please try closing any other applications or increasing the memory available on your host PC.

The texture viewer does not appear.

Please try restarting the PerfHUD ES Host and reconnect to the target device.

The shader viewer shows “"Microcode disassembler is not available” for vertex and
fragment microcode modes.

Vertex and fragment microcode disassembly is not supported by PerfHUD ES on Tegra. Please

select a source mode instead. The unsupported modes will be removed in a future release.

The driver time sampling interval is ignored after a lost connection.

Try setting the sampling interval to another value, then back again to your preferred value.

Framebuffer objects are displayed incorrectly when attached to a texture sampler.

There is no current workaround. We are investigating the issue.

The geometry viewer stutters on very complex geometry.

Please try closing other running applications on the host PC. Also, ensure that you have the

latest drivers for your graphics card.

Vertical scroll bars appeared clipped along the vertical axis.

There is no current workaround. We are investigating the issue.

August 2010 -8-



Portions of the Performance Dashboard overlay the Frame Debugger.

Please try restarting the PerfHUD ES Host to resolve this issue.

August 2010 -9-



Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS"”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL
IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Tegra, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and product
names may be trademarks of the respective companies with which they are associated.

Copyright
© 2008-2010 NVIDIA Corporation. All rights reserved.

NVIDIA.
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com



