

 - 1 -
November 2010

Tegra Android
Accelerometer Whitepaper

Version 5

 - 2 -
November 2010

Contents

INTRODUCTION 3

COORDINATE SPACE GLOSSARY 4

ACCELEROMETER CANONICAL AXES 6

WORKING WITH ACCELEROMETER DATA 7

POWER CONSERVATION 10

SUPPORTING OLDER OS VERSIONS 11

 - 3 -
November 2010

Introduction

Portable devices can be used in a variety of orientations. Applications need to consider the ways

in which orientation affects them, such as a custom UI for landscape versus portrait modes, or

interpreting raw sensor data. Applications making use of the accelerometer must take special

care when processing the raw data, given device and operating system expectations, in order to

deliver a proper user experience.

While the accelerometer is an important input device to many software applications, some

developers are using incorrect methods to process the accelerometer data. More to the point,

these applications are not taking into account device orientation, which results in a poor if not

failed user experience. Proper orientation handling of accelerometer input is a simple matter,

which we will discuss in the sections that follow.

 - 4 -
November 2010

Coordinate Space Glossary

Android reports accelerometer values in absolute terms. The values reported are always the

data from the physical sensor adjusted to match the Android ‚canonical‛ format so that all

devices report such data in the same fashion. Android does not transform accelerometer data to

be relative to the device orientation. Applications requiring this must perform their own

transformations.

To that end, this document uses the following definitions of coordinate spaces and coordinate

space transformations to maintain consistency:

Space Description

Device Raw The accelerometer device can output acceleration values in a variety of ways

and is not subject to any particular standard.

Canonical Android specifies that the coordinate frame outputted by the driver must

remap Device Raw so that the positive X axis is oriented increasing to the right

side of the device, the positive Y axis should be increasing to the top of the

device, and the positive Z axis is increasing out the display of the device

towards the user.

See the ‚Accelerometer Canonical Axes‛ reference below for further visual

guide to Canonical accelerometer layout.

Screen The Android window manager’s screen coordinate origin is at the upper left

corner and the maximum coordinate is at the lower right corner, i.e.

increasing x is right, increasing y is down. Android’s display manager will

change the screen orientation based on sensor readings. The screen

coordinate system is always relative to the current rotation.

World This coordinate space is specific to OpenGL ES applications. App developers

may need to alter the sample code to fit their assumptions in this regard. In

this document, it is assumed that applications are using a right-handed

coordinate system, up can be any arbitrary vector.

NOTE: Many applications will require additional transforms to those shown

here to orient their models. Apps using left-handed coordinates may require

an additional coordinate inversion as well.

 - 5 -
November 2010

The table below shows transforms of interest and defines a vocabulary for this paper. OpenGL

applications will typically be using canonToWorld. Android windowing system based

applications will use canonToScreen. Hybrid applications, such as OpenGL applications that

use the Android window system to render widgets, will require both.

NOTE: The accelerometer device driver handles conversion into Canonical space (handling the

deviceToCanon transform), this whitepaper focuses on the canonToScreen and canonToWorld

transformations.

 Destination

Canonical Screen World

S
o
u
rc

e
 Device Raw deviceToCanon

Canonical canonToScreen canonToWorld

 - 6 -
November 2010

Accelerometer Canonical Axes

The following visuals show the variation in accelerometer values based upon given device and

orientation. They include a portrait-native device, a portrait device rotated to landscape, and a

landscape-native device, with Canonical x/y/z accelerometer axes/values labeled.

Phone Device

Portait Native

Orientation 0

Phone Device

Portrait Native

Orientation 90

Tablet Device

Landscape Native

Orientation 0

 - 7 -
November 2010

Working with Accelerometer Data

Where screen-relative results are desired, the accelerometer values must be rotated according to

the display orientation returned by the Android API’s getOrientation() or getRotation()

functions. Both functions return the same values, but the former is a deprecated usage.

The value returned from these functions corresponds to the integers/constants defined in

Android.view.Surface, those prefixed with ROTATION_. Below is an example of the invocation

of one of these functions. Here this is of type Activity.

WindowManager windowMgr =

(WindowManager)this.getSystemService(WINDOW_SERVICE);

int rotationIndex = windowMgr.getDefaultDisplay().getRotation();

The returned constants are:

constant name index/value

ROTATION_0 0

ROTATION_90 1

ROTATION_180 2

ROTATION_270 3

Applications can use the rotation value to construct a transformation matrix that will convert

Android Canonical accelerometer data to other coordinate spaces. In order to transform from

Canonical aligned accelerometer values into either screen or world aligned accelerometer values, a

canonAccel vector needs to be rotated by 90 degree increments based on the rotationIndex,

(where ROTATION_0 means no rotation is necessary).

For the canonToScreen transform, the rotations follow these equations:

 - 8 -
November 2010

Where:

A function implementing the canonToScreen transform follows.

static void canonicalToScreen(int displayRotation,

 float[] canVec,

 float[] screenVec)

{

 struct AxisSwap

 {

 signed char negateX;

 signed char negateY;

 signed char xSrc;

 signed char ySrc;

 };

 static const AxisSwap axisSwap[] = {

 { 1, -1, 0, 1 }, // ROTATION_0

 {-1, -1, 1, 0 }, // ROTATION_90

 {-1, 1, 0, 1 }, // ROTATION_180

 { 1, 1, 1, 0 } }; // ROTATION_270

 const AxisSwap& as = axisSwap[displayRotation];

 screenVec[0] = (float)as.negateX * canVec[as.xSrc];

 screenVec[1] = (float)as.negateY * canVec[as.ySrc];

 screenVec[2] = canVec[2];

}

For the canonToWorld transform, the rotations follow these equations instead:

This axis-aligned transformation can be put into a static array, as shown below in the

canonicalToWorld() function that uses a simple integer lookup array to avoid costly

trigonometric functions when converting a canonical space accelerometer vector into an

OpenGL-style world space vector.

 - 9 -
November 2010

static void canonicalToWorld(int displayRotation,

 const float* canVec,

 float* worldVec)

{

 struct AxisSwap

 {

 signed char negateX;

 signed char negateY;

 signed char xSrc;

 signed char ySrc;

 };

 static const AxisSwap axisSwap[] = {

 { 1, 1, 0, 1 }, // ROTATION_0

 {-1, 1, 1, 0 }, // ROTATION_90

 {-1, -1, 0, 1 }, // ROTATION_180

 { 1, -1, 1, 0 } }; // ROTATION_270

 const AxisSwap& as = axisSwap[displayRotation];

 worldVec[0] = (float)as.negateX * canVec[as.xSrc];

 worldVec[1] = (float)as.negateY * canVec[as.ySrc];

 worldVec[2] = canVec[2];

}

The next function will compute the axis-angle transform necessary to align a model’s localUp

vector with that of the accelerometer. The function returns the vector (rotAxis) and angle (ang)

which is sufficient to build a transformation matrix or to build a quaternion to orient a model

vertically in World space.

void computeAxisAngle(const float* localUp, const float* worldVec,

 float* rotAxis, float* ang)

{

 const Vec3& lup = *(Vec3*)localUp;

 Vec3 nTarget = normalize(*(Vec3*)worldVec);

 *rotAxis = cross(lup, nTarget);

 *rotAxis = normalize(*rotAxis);

 *ang = -acosf(dot(lup, nTarget));

}

The NVIDIA Android NDK Samples includes library functions for building matrices and

quaternions from the axis angle representation. It may be necessary to apply an additional

rotation to orient objects in the plane orthogonal to the final world vector.

 - 10 -
November 2010

Power Conservation

In order to conserve device power, applications should choose the slowest accelerometer

update rate possible to achieve the desired result. Values available for setting the update rate

are defined in android.hardware.SensorManager and are listed below in order of decreasing

update rate.

constant name relative speed

SENSOR_DELAY_FASTEST fastest

SENSOR_DELAY_GAME faster

SENSOR_DELAY_NORMAL slower

SENSOR_DELAY_UI slowest

A sample of setting the sensor update rate is shown below.

if (mSensorManager == null)

 mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);

if (mSensorManager != null)

 mSensorManager.registerListener(

 this,

 mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

 SENSOR_DELAY_GAME);

Note that the ‘delay’ values are abstract, with values specific to a given device, and thus rates

could vary significantly between different devices. The only way to guarantee a certain update

rate is to measure the rate returned by a device at run time.

 - 11 -
November 2010

Supporting Older OS Versions

In order to support OS versions older than Android Froyo/v2.2, it may be necessary to rely on

the older deprecated function, getOrientation(). Below is a brief snippet of code illustrating

dynamic function binding. Please note that getOrientation() may disappear from future

Android versions, so it may be most prudent to dynamically bind against both functions and

use the one that is available.

WindowManager wm;

Method getRotation;

wm = (WindowManager)this.getSystemService(WINDOW_SERVICE);

Class<Display> c = (Class<Display>)wm.getDefaultDisplay().getClass();

Method[] methods = c.getDeclaredMethods();

String rotFnName = new String("getRotation");

for(Method method : methods)

{

 Log.d("Methods", method.getName());

 if(method.getName().equals(rotFnName))

 {

 getRotation = method;

 break;

 }

}

int orientation;

Display display = wm.getDefaultDisplay();

if(getRotation != null)

{

 try

 {

 Integer i = (Integer)getRotation.invoke(d);

 orientation = i.intValue();

 }

 catch(Exception e) {}

}

else

{

 orientation = display.getOrientation();

}

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL
IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Tegra, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

