

 - 1 -
February 2010

NVIDIA Tegra
Android Platform Support Pack
Getting Started Guide

Version 5421622

 - 2 -
February 2010

Contents

INTRODUCTION 3

SYSTEM REQUIREMENTS 3

ENVIRONMENT VARIABLES (OPTIONAL) 5

INSTALLING THE SUPPORT PACK 6

INSTALLING (“FLASHING”) ANDROID TO THE DEVKIT 7

MAKING THE ANDROID DEBUG BRIDGE (ADB) WORK 9

DEVELOPING AN APPLICATION 10

FREQUENTLY ASKED QUESTIONS 10

KNOWN ISSUES 13

 - 3 -
February 2010

Introduction

The Android Tegra OS Support Pack for the NVIDIA Tegra 250 devkit is designed to provide all

Tegra-specific components required to support development and use of a Tegra 250 devkit with

Android. It contains the software required to flash and boot the devkit into Android.

This Support Pack is not a full Software Development Kit (SDK). It does not contain samples or

support libraries. It contains only the NVIDIA-specific tools to flash and boot Android on the

Tegra 250 devkit. To develop for Android, Google provide an SDK

(http://developer.android.com/sdk/index.html) and a Native Development Kit (NDK)

(http://developer.android.com/sdk/ndk/1.6_r1/index.html) for developing applications in Java

and C/C++ as well as code samples.

WARNING: Please refer to the Known Issues section at the end of this document before

booting your devkit. There are several items that can in specific cases cause the devkit to be

unstable or not boot completely when running the current Android OS. Please consult the

Known Issues section for fixes.

System Requirements

This pack requires additional hardware and software above and beyond the pack itself and the

devkit as shipped. Additional accessories required beyond the ones listed in the next section

are described in the NVIDIA Tegra 250 HW Setup Guide.

Throughout this document, it is assumed that the development host PC is running Microsoft

Windows; Windows XP has been extensively tested, and newer versions such as Vista and

Windows 7 should function as well. However, 64-bit variants of Microsoft Windows have not

been tested. Please consult the NVIDIA Tegra Developers’ website

(http://developer.nvidia.com/tegra) , specifically the forums with any 64-bit development PC OS

issues.

Android development on Mac OS X and Linux is supported; only minor deviations from these

instructions should be required. However, only Windows XP has been tested with this release.

Currently, while Windows, Linux and Mac OS X development PCs can be used to develop with

a Tegra 250 devkit already flashed and booted to Android, only Windows and Linux are supported

operating systems for actually flashing the devkit initially

 - 4 -
February 2010

Note: Currently, Mac OS X cannot be used to flash a Tegra 250 devkit. It can only be used to develop

over ADB with a devkit already flashed using Linux or Windows.

Hardware

NVIDIA recommends

At least a ~2.0GHz CPU

1-2GB RAM

Software

Required

Tegra 250 Android Platform Support Pack

Download and install the latest installer for your development PC’s operating system

from http://developer.nvidia.com/tegra. For Windows development PCs, this is:

 android_tegra_250_<version>.msi

For Linux development PCs, this is (the pack may be provided zipped or directly as an

installable file)

android_tegra_250_<version>.run[.zip]

Android SDK

Download and install the Android SDK from

http://developer.android.com/sdk/index.html

Add the Android 2.0 SDK platform as described in

http://developer.android.com/sdk/adding-components.html

Add the Windows USB driver as described in

http://developer.android.com/sdk/win-usb.html

Additional changes as described later is in this document is required to the driver’s inf

file for it to install.

Required for C/C++ development

Cygwin

Download and install cygwin from http://www.cygwin.com.

Android NDK

Download and install the Android NDK from

http://developer.android.com/sdk/ndk/1.6_r1/index.html

 - 5 -
February 2010

Nice to have

Eclipse

Download and install the Eclipse IDE for Java Developers package from

http://www.eclipse.org/downloads/

Android Development Tools (ADT) Plugin

This allows you to compile Android projects from within Eclipse.

Follow http://developer.android.com/sdk/eclipse-adt.html to install the ADT plugin.

C/C++ Development Tools (CDT) Plugin

This allows you to compile C/C++ code from within Eclipse.

Install CDT by following the same steps as when installing the ADT plugin but using the

URL http://download.eclipse.org/tools/cdt/releases/galileo as the Available Software

Site, and then selecting CDT Main Features -> Eclipse C/C++ Development Tools.

Environment variables (optional)

While not required to be set, these environment variables will be referred to throughout this

document.

These environment variables should be set either by right clicking

My Computer->Properties->Advanced->Environment Variables

or directly in your Eclipse workspace via the menu item

Window->Preferences->C/C++->Environment.

If you set these via My Computer, you’ll have to restart Eclipse for these settings to take effect.

NDKROOT

Set the environment variable NDKROOT to the installation path of the NDK. For example

C:\android\android-ndk-1.6_r1

Windows specific

CYGWIN_HOME

Set the environment variable CYGWIN_HOME to the root of your Cygwin installation. For

example c:\cygwin

 - 6 -
February 2010

Installing the Support Pack

On Windows

To install the Support Pack, simply double click the installation file

android_tegra_250_<version>.msi

End-User License

You will be prompted with End-User License Agreement. Read the agreement and to accept it

check the box “I accept the terms in the License Agreement”. Click next to proceed.

Installation Type

There are 3 ways to install the Support Pack. Read the instructions on the screen and choose one

of the three options.

“Typical” and “Complete” setup options will install the Support Pack in

C:\Program Files\NVIDIA Corporation\android_tegra_250_<version>\

 by default. If you want to install the Support Pack to a different location then choose the

“Custom” setup option, change the installation location and click Next.

Install the new Platform Support Pack to a different directory tree than any other platform

support packs. Overlapping platform packs in a single tree will lead to problems.

On Linux

To install the Support Pack, unzip it from a .zip to the contained .run (if the file was shipped

zipped). Then, open up a terminal and run

sh android_tegra_250_<version>.run

End-User License

You will be prompted with End-User License Agreement. Read the agreement and to accept it

type “yes” and press enter. The OS image and flashing utilities will be extracted to the directory

 ./android_tegra_250_<version>

 - 7 -
February 2010

Installing (“Flashing”) Android to the Devkit

Once the Platform Support pack is installed to the host PC, it is possible to flash the included OS

image to the devkit.

Prerequisites

Refer to the diagrams of the connections and the main board, as well as the instructions for

putting the hardware into recovery mode in the Devkit HW Setup guide.

Selecting and Connecting the Desired Display

The Android OS image can support booting to VGA (15-pin D-Sub) or HDMI (HDMI also

supports DVI-D via HDMI-to-DVI-D connectors). The selection of display device is currently

an OS flash-time decision. Select your desired video-out option and connect the display to the

corresponding jack.

For maximum compatibility, please ensure that your boot display is plugged in before

powering on the devkit, so that the OS can detect the display properly during boot.

Additionally, if you choose to use a Keyboard-Video-Mouse (KVM) switch to share display and

input devices, you should have the devkit’s input on the KVM switch selected and active prior

to boot to ensure it can properly read the capabilities of the boot display.

Placing the devkit into Recovery (“Flashing”) Mode

Refer to the NVIDIA Tegra 250 devkit HW Setup guide for details on how to put the devkit into

recovery mode.

Flashing using Windows

The Android Platform Support pack includes recovery mode USB drivers in the directory

os/usbpcdriver

Once the display type is selected and the devkit is in recovery mode, the OS image can be

flashed. The Platform Support pack includes two batch files in the “os” subdirectory that can

be used to flash the OS:

Display

Type

Flash Batch Script

CRT nvflash_1gb_crt.bat

HDMI nvflash_1gb_hdmi.bat

 - 8 -
February 2010

The flashing process will begin immediately. At the end of a successful flashing, the device will

reboot to the desired video out mode with the Android desktop. If run from a command

prompt (rather than double-clicking the batch file), the resulting output should be similar to the

following:

Nvflash started

rcm version 0X20001

System Information:

 chip name: t20

 chip id: 0x20 major: 1 minor: 2

 chip sku: 0x8

 chip uid: 0x0808010541bfa0d7

 macrovision: disabled

 hdcp: enabled

 sbk burned: false

 dk burned: false

 boot device: nand

 operating mode: 3

 device config strap: 0

 device config fuse: 0

 sdram config strap: 0

sending file: tegra_250_333MHz_1GB.bct

- 4080/4080 bytes sent

tegra_250_333MHz_1GB.bct sent successfully

odm data: 0x300011

downloading bootloader -- load address: 0x108000 entry point: 0x108000

sending file: fastboot.bin

\ 884016/884016 bytes sent

fastboot.bin sent successfully

waiting for bootloader to initialize

bootloader downloaded successfully

setting device: 1 0

creating partition: BCT

creating partition: PT

creating partition: EBT

creating partition: UIP

creating partition: USP

creating partition: SOS

creating partition: LNX

creating partition: APP

creating partition: CAC

creating partition: UDA

Formatting partition 2 BCT please wait.. done!

Formatting partition 3 PT please wait.. done!

Formatting partition 4 EBT please wait.. done!

Formatting partition 5 UIP please wait.. done!

Formatting partition 6 USP please wait.. done!

Formatting partition 7 SOS please wait.. done!

Formatting partition 8 LNX please wait.. done!

Formatting partition 9 APP please wait.. done!

Formatting partition 10 CAC please wait.. done!

Formatting partition 11 UDA please wait.. done!

done!

sending file: fastboot.bin

\ 884016/884016 bytes sent

fastboot.bin sent successfully

sending file: flashboot.img

/ 2308096/2308096 bytes sent

flashboot.img sent successfully

sending file: system.img

/ 75989760/75989760 bytes sent

system.img sent successfully

 - 9 -
February 2010

Flashing using Linux

No special USB drivers are required to flash using Linux.

Once the display type is selected and the devkit is in recovery mode, the OS image can be

flashed. The Platform Support pack includes two shell files in the directory of the OS image

that can be used to flash the OS:

Display

Type

Flash Batch Script

CRT nvflash_1gb_crt.sh

HDMI nvflash_1gb_hdmi.sh

To execute one of them, start a terminal and run (for example)

 chmod +x nvflash_1gb_crt.sh

 ./nvflash_1gb_crt.sh

The flashing process will begin immediately. At the end of a successful flashing, the device will

reboot to the desired video out mode with the Android desktop. The resulting output should

be similar to the Windows version’s output.

Making the Android Debug Bridge (ADB) work

Installing the Windows USB Driver

For the NVIDIA Tegra to be recognized by Google’s Windows ADB drivers, the file

android-sdk-windows\usb_driver\android_winusb.inf

in the Android SDK must be edited to have the following added in the

[Google.NTx86]

section:

;NVIDIA Tegra

%SingleAdbInterface% = USB_Install, USB\VID_0955&PID_7000

%CompositeAdbInterface% = USB_Install, USB\VID_0955&PID_7100&MI_01

 - 10 -
February 2010

When the device is connected and the new hardware wizard pops up, pointing the wizard to

the location of this modified android_winusb.inf will enable you to install the Android Composite

ADB Interface.

Making ADB recognize the Tegra device

In addition to installing the USB driver, ADB must be configured to use our device. This is done

by entering the following command in a Windows command prompt:

echo 0x955 >> "%USERPROFILE%\.android\adb_usb.ini"

Or on Linux and OS X with the following commands:

mkdir –p ~/.android

echo 0x955 >> "~/.android/adb_usb.ini"

Once this is done, restart adb with the “adb kill-server” command and makes sure “adb

devices” lists the Tegra device.

Note: If the adb connection hangs, try typing adb kill-server in a command prompt window to

restart it.

Developing an application

Please refer to http://developer.android.com/guide/index.html for more information on

developing on Android. A good place to start is the “Hello World” tutorial available at

http://developer.android.com/resources/tutorials/hello-world.html.

Frequently asked questions

How do I compile Android C/C++ code inside Eclipse?

1) First create a new or load an existing Android project into Eclipse.

2) Select the menu item File->New->Other->C/C++->Convert to a C/C++ Project.

3) Select “Makefile project” and “— Other toolchain —“, and click finish. This will allow

you to build the C/C++ code using a makefile that makes use of the NDK compilers.

4) Right click your project and select properties

 - 11 -
February 2010

5) Under C/C++ Build, make sure the build directory is what you want. Typically for

Android applications it’ll be ${workspace_loc:/<myproject>/jni}

6) Under C/C++ Build->Environment, add a new variable with the name “PATH” and the

value “${CYGWIN_HOME}/bin”.

7) Under C/C++ General->Paths and symbols, add any directories you want to have

scanned for code completion. For example ${NDKROOT}/build/platforms/android-4/arch-

arm/usr/include for the 1.6 NDK.

8) Now create a makefile in your project’s jni directory. For inspiration, build an NDK app

with the V=1 parameter. For example:
 make APP="hello-jni" V=1

This will show the command line used to create the .so. Make sure the dynamic library

is output to the <myproject>/libs/armeabi directory.

9) Build the project by selecting the menu item Project->Build all. If all goes well the newly

created makefile will have compiled your C/C++ code and the generated APK file will

contain the .so.

My existing C/C++ based application won’t compile

and link!

The current Android NDK released by Google (1.6) only provides a limited set of native APIs

and libraries for C/C++ development. For example, there is no C++ RTTI, exception or STL

support. For more details on the limitations and what is supported, please read the following

files provided with the NDK:

${NDKROOT}/docs/SYSTEM-ISSUES.TXT

${NDKROOT}/docs/STABLE-APIS.TXT

${NDKROOT}/docs/system/libc/OVERVIEW.TXT

While not tested by NVIDIA, if the STL functionality is required there are ports of STLPort and

uSTL for Android available on the internet.

After exiting my application and launching it again,

weird things happen…

As explained at http://developer.android.com/guide/topics/fundamentals.html#proclife, the

process of an application can be kept alive as a cache to improve startup time of future

launches. So even if your activity has exited, the process that it belongs to can still be alive. As

static variables belong to the process and not the activity instance, as long as the process is alive

these will not be de-allocated when the activity ends and will not be re-initialized when the

 - 12 -
February 2010

activity starts. To work around this, make sure to either not use static variables, or manually de-

allocate and re-initialize them when appropriate.

Where can I find the USB drivers?

There are two different sets of USB drivers; the NVIDIA Recovery USB drivers required when

flashing the device and the Windows ADB drivers used for the Android Debug Bridge. The

recovery drivers are included with the Android OS flash pack. To install them, just point the

installer to the directory of the recovery driver when the new hardware wizard shows up.

We do not ship specific ADB drivers, but rather the official ones from Google are tweaked to

recognize our device. This is described in the sections “System Requirements” and “Making

the Android Debug Bridge (ADB)” work found earlier in this document.

Why is my app not full screen?

Check the AndroidManifest.xml file of your application. It should specify the minSdkVersion 4

or higher. If minSdkVersion is either not specified or if it is 3 or below then application will not

be full screen. Such applications do not support higher resolutions. Use one of the following:

<uses-sdk android:minSdkVersion="5" />

<uses-sdk android:minSdkVersion="4" />

You can find related discussion in Android Developers Group:

http://groups.google.com/group/android-

developers/browse_thread/thread/d5ac812e206a3cb7/6f6323b379411485?lnk=gst&q=Need+Help

+%3A+getheight%28%29%2Fwidth%28%29+API+returning+&pli=1

Where can I get more information about Android

Widgets?

In Android Widgets are used to display information about an application (like calendar events

or song being played etc.) in views that can be embedded in other applications like the home

screen. Please refer to the following for more information on how to write Widgets.

http://developer.android.com/guide/topics/appwidgets/index.html

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html

http://android-developers.blogspot.com/2009/04/introducing-home-screen-widgets-

and.html

 - 13 -
February 2010

The Screen goes dark after 1 minute and comes up as

the lock screen (normal Android behavior)

On a USB keyboard, use the Windows/Menu key or F1 to unlock the lock screen. Then on the

device go to

Settings->Applications->Development

and toggle the “Stay awake” option. Alternatively, the screen timeout can be changed via

Settings->Sound & Display->Screen timeout.

Known Issues

This is an alpha release and is not representative of a final OS image.

ADB connection hangs

If the ADB connection hangs, start a command prompt and execute “adb kill-server” to make it

restart.

Display is left shifted when the default boot display is
CRT

Please try another monitor, use the auto-adjust menu item on the monitor (if available),

manually adjust the monitor or use the HDMI output.

The device reboots constantly with some USB
peripherals attached

Please try using another USB mouse. If the device is connected to the computer via a USB cable,

please unplug and then reconnect when the device is fully booted.

If you connect both D-Sub (CRT) and HDMI to the devkit, HDMI will

not work

Do not connect both HDMI display and CRT (VGA) displays to the devkit simultaneously; only

connect the type selected as a part of the flashing process.

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL
IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Tegra, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and product
names may be trademarks of the respective companies with which they are associated.

Copyright

© 2008-2010 NVIDIA Corporation. All rights reserved.

