
Richard J. Seis

Mobile Developer Technologies

Adobe Flash and Air -

Mobile Games Fast!

Conferences are long!

Perfect – you’re all of mixed disciplines.

Tests we’ve done . . .

Definite slant toward asset creation.

So . . . much . . . information . . .

2

Definite slant toward asset creation.

Tests run with many games.

You’ve heard much of this already!?

Let’s try to retain all this information!

Flash only renders parts that have changed

Significant improvement, unless scrolling

Let’s try to understand all the implications

Number 1 – What’s it doing

3

Purple ball has moved

Redraws everything in the “dirty rectangle”

Ground, sky, 3 houses, fence, ball, and pots

Uses the bounding box, not pixels

Number 1 – Continued

4

What about multiple objects moving?

Observed governing factors for dirty rectangles

No rectangles will overlap

Only 3 or less rectangles

Minimize the number of rectangles

Number 1 – Continued

5

Minimize the number of rectangles

Minimize the area that is covered

Dirty rectangles are hard to manage in a constant
scrolling game

Minimize what’s drawn

Hard to when large areas are constantly changing

Most games, even scrolling ones, have times of pause

For times when only parts of the scene changes

Avoid unnecessary change

Number 2 – Is that really necessary

6

Avoid unnecessary change

Subtle animation effects

Large number of animating objects

Minor animations that contribute little

Avoid scattering animations, 3 rectangle limit

Make objects compact, reduces overlap

Let’s put this in context, introducing “Block Smash”

Number 2 – Continued

7

Scattering animations – diagonal reflection is played on all of
the blocks simultaneously when any is hit

Try having an animation play sequentially one column at a time

Number 2 – Continued

8

Subtle animated effects that cover large areas – large glow
around our ball

Try simply making the ball or effect smaller

Number 2 – Continued

9

Avoid animations that contribute little – all the stars have a
constant twinkle animation

Try making them static or stagger animations

Number 2 – Continued

10

Keep intermittent animations short – the score text has a scale
animation applied when it changes

Try making it shorter, eliminating it, other type of indicator

8

10

12

14

Normal

Add

Darken

Difference

Hard Light

Blending modes vary in performance

Number 3 – Careful when you mix

11

0

2

4

6

Relative Performance Cost of Flash Blending Modes

Hard Light

Invert

Lighten

Multiply

Screen

Subtract

Slowest – Hard Light – 12X

Fastest – Add, Screen, Subtract – < 2X

20

25

30

35

40

45

None

Adjust Colour

Bevel

Blur

Drop Shadow

Filters can be more expensive than blending

Number 4 – Be who you are

12

0

5

10

15

Relative Performance Cost of Flash Filters

Drop Shadow

Glow

Gradient Bevel

Gradient Glow

Cheapest – Adjust Colour – 9X

Most Expensive – Gradient Glow – 40X

Maybe “bake” it in

40

50

60

70

80

90

Image

Straight Text

Rotated Text

Text is expensive, but is needed

Number 5 - Don’t write, show me

13

0

10

20

30

Relative Performance Cost of Text

Rotated Text

Make text that doesn’t change an image

Straight text is 6X

Rotated text is 80X

Reduce the number of draw calls

“Draw call” – rendering of similar object(s)

There is setup time per call

Generally, reducing the number, increases performance

Number 6 - We’re better in groups

14

Generally, reducing the number, increases performance

Ideally in the low hundreds per frame

Reduction Methods

Set objects to use cache as bitmap where practical

Combine as many of the object shapes as possible

Where there’s animation, separate the static from animated

Separated into two objects

Static object – the birdhouse

Animated object – the bird

Example of separating the static from animated

Number 6 - Continued

15

The birdhouse is reduce to one draw call as it can
be cached as bitmap

The bird is the only shape potentially needing
multiple draw calls

Animated object – the bird

Reduce shape complexity

GLES2 tries . . .

Number 7 - Keep it simple

16

If you really need it – maybe do LOD

Simple but important

How to hide an object

BAD – set its Alpha value to 0

Hardware still does all the work

Number 8 - The right way to hide

17

Hardware still does all the work

Even if you fade, use below when finished

GOOD – set its visible property to “false”

No cost to the hardware

Turns rendering off completely

None of these tips are helping!

Now’s the time for the profiling tool

You may have heard of these already

On Tegra platforms – PerfHUD ES

Number 9 - Use the tools

18

On Tegra platforms – PerfHUD ES

Matters more than ever

PerfHUD ES – for instance

Performance Dashboard

Primitive counts, Draw calls, Batches, etc.

Frame Debugger

Frame Scrubber, Geometry Viewer, Texture Viewer

No really!

These are just some of the dials you can turn, let
your game dictate needs

Number 10 – This is important

19

Platforms are low powered, relatively

Becoming increasingly important, mixed

Start early

Keep learning, testing, and helping

Performance is team wide

No single “big win,” do multiple

Remember there are other resources

See the Tegra Developer’s site

Conclusion

20

See the Tegra Developer’s site

http://developer.nvidia.com/tegra

OS Support packs

SDK’s, demos, apps

Docs, Whitepapers

Development Tools

Public support forums

Access to the Tegra board store

Next session

How to – Unreal Engine for NVIDIA Tegra

Questions

What’s Next

21

Where else can you find us?

Twitter: nvidiadeveloper

Website: http://developer.nvidia.com

***** ADD ADOBE STUFF – branding, data

