

 - 1 -
March 2011

NVIDIA Tegra
Android
Samples

Version 2.0

 - 2 -
March 2011

Contents

INTRODUCTION 3

SAMPLES TREE OVERVIEW 3

INSTALLATION 5

INSTALLING THE SAMPLES ON THE TARGET DEVICE 7

RUNNING THE SAMPLES 8

ANDROID LIFECYCLE BEHAVIOR OF THE SAMPLES 9

COMPILING THE SAMPLES 10

CREATING NEW APPLICATIONS 12

THE NV_EVENT FRAMEWORK 13

FREQUENTLY ASKED QUESTIONS 18

CHANGE HISTORY 19

 - 3 -
March 2011

Introduction

The Android Tegra samples pack contains sample applications focusing on demonstrating

features of the Tegra platform using the Android Native Development Kit (NDK). The goal is to

show developers how they could make use of the features we expose in Android in an

application that is either being ported from an existing C/C++ code base or written in C/C++

from scratch, as well as provide helper libraries to make the transition to Android as easy as

possible.

Samples Tree Overview

\apps

\es2_globe

\es2_water

\event_accelerometer

\event_lorenz

\jniperftest

\multitouch

These NDK samples demonstrate use of the accelerometer, JNI performance,

OpenGLES2, multitouch input, as well as an event loop-based native application

framework on top of the NDK.

\apps-sdk9

\native_globe

\native_lorenz

These NDK samples demonstrate use of the new native-only app frameworks

NativeActivity and native_app_glue added to the NDK in r5 and supported on

SDK level 9 and higher. Note that these applications will fail to install on OS images

earlier than Android 2.3 (Gingerbread), as this is the first version of Android to support

this feature.

 - 4 -
March 2011

\build

\platforms

Additional header and library files used by native code. Please note that EGL headers

and library shipped in this folder are for debugging purpose only (using PerfHUD ES).

Before shipping your application, be sure and recompile your application using the

Android NDK headers and libraries.

\docs

Contains additional documentation besides this introductory document.

\libs

Contains helper library code used by the sample applications. In particular the

NvActivity framework and its subclasses define a simple interface to make it as easy as

possible to port existing C/C++ applications that interact well with Android without

having to write much Java code. There are also helper functions for loading files and

textures and managing the render loop. It also handles touch, multitouch, keyboard and

accelerometer input. For more details of the implementation see the source code

documentation and look at the source code of the samples to see how the helper libraries

can be used. Finally, an additional library, nv_event implements an event loop

framework for easier porting of classic event-driven interactive applications.

\libs-sdk9

Contains helper library code used by the SDK level 9 (NativeActivity) sample

applications. In particular, there is an implementation of the APK-based file handler

library that relies on SDK 9 NDK features in native code, instead of Java-level helper

code.

\prebuilt

Contains prebuilt APK files of all the sample applications.

 - 5 -
March 2011

\tools

\app_create

A Cygwin/bash shell script tool designed to make it easy to create new template

Java/JNI applications. Applications created with this tool are ready to run and form a

framework into which new or existing application code can be added. See the later

section on “Creating new applications” for details on the use of this tool.

\install_samples.bat

A script that deploys the prebuilt samples along with any required data to an ADB-

connected device. See the later section on “Installing the samples to the target device”

for details on the use of this script. Note that this script installs the pre-built, shipped

APKs from the prebuilt directory. It does not install locally-rebuilt APKs, which will

reside in each application’s bin subdirectory. The apps in the prebuilt directory will

remain unchanged from the originally shipped binaries.

Installation

System Requirements

Please refer to the getting NVIDIA Tegra Android Getting Started document for details on the

system requirements.

Prerequisites

Throughout this document it is assumed that all the required software and the “nice to have”

components as described in the NVIDIA Tegra Android Getting Started document have been

installed.

Installing the Android samples

Unzip the package into for example c:\android\samples

Required environment variables

These environment variables should be set either by right clicking My Computer

PropertiesAdvancedEnvironment Variables, or directly in your Eclipse workspace via the

menu item WindowPreferencesC/C++Environment.

 - 6 -
March 2011

If you set these via My Computer, you’ll have to restart Eclipse for these settings to take effect.

NDKROOT

Set the environment variable NDKROOT to the installation path of the NDK. For example

C:\android\android-ndk-r5b

Windows specific

CYGWIN_HOME

Set the environment variable CYGWIN_HOME to the root of your Cygwin installation. For

example c:\cygwin

CYGWIN (optional)

If Cygwin complains about “MS-DOS style path detected”, setting the environment variable

CYGWIN to “nodosfilewarning” will make the warning go away.

OS X and Linux specific

PLATFORM

Set the PLATFORM variable to either linux-x86 or darwin-x86 for Linux and OS X respectively.

An example of these variables set up in Eclipse on Windows might look like the following:

 - 7 -
March 2011

Installing the samples on the target device

To install the samples, please make sure adb is in your path and then double click the

install_samples.bat file in the tools subfolder. This will execute the appropriate ADB

commands to install all the sample applications and required data. After running the script the

applications can now be found in the application list on the device.

If the applications do not appear, please look at the console output of the script as a pointer to

what went wrong.

Note: If you have previously installed an earlier version of this SDK to your devkit hardware, you
may receive errors such as:

“[INSTALL_PARSE_FAILED_INCONSISTENT_CERTIFICATES]”.

If you see this error, uninstall the samples on the Tegra device by going to
SettingsApplicationsManage Applications, then select the application you want to uninstall

and press the Uninstall button. Try installing the samples again.

 - 8 -
March 2011

Running the samples

es2_globe

The es2_globe application is a 3d graphics intensive application that shows common idioms

for high performance application development, such as index and vertex buffer object use. The

globe can be interactively dragged via the touchscreen, or with a mouse connected to the devkit.

Tapping (or mouse-clicking) in the top-left corner toggles between rendering from small, simple

vertices and doing the computation of all attributes in the vertex shader, or simplifying the

vertex shader and rendering from larger vertices. Tapping in the bottom left corner toggles the

cloud layer on and off. Tapping in the top-right corner toggles the parallax mapping effect.

Tapping in the bottom-right corner toggles the normal-mapped lighting on and off.

event_accelerometer

This sample shows how to properly transform Android accelerometer data with respect to the

device’s orientation.

JNIPerfTest

This application has no controls; it’ll print some statistics about JNI performance out to logcat

and will automatically exit when finished.

event_lorenz

event_lorenz shows an application using the SDK’s nv_event framework; it also requires a

keyboard connected to the devkit in order to interact with it. Pause the demo by pressing “p”,

switch to wireframe rendering by pressing “w”, press “o” to view the model from the outside

and press esc to exit.

multi

This shows differently colored and oriented triangles centered on each multitouch input – thus,

two fingers will show as two different triangles, one under each finger.

native_globe

native_globe is written to behave the same way as es2_globe, but uses the pure-native

code NativeActivity system added with Android’s SDK 9 and NDK r5.

 - 9 -
March 2011

native_lorenz

native_lorenz is written to behave the same way as event_lorenz, but uses the pure-

native code NativeActivity system. Pause the demo by pressing “p” or the volume up

button, switch to wireframe rendering by pressing “w” or the volume down button, press “o”

to view the model from the outside, or drag on the screen to control the time like a slider.

es2_water

Tap somewhere on the touchscreen to change the gravity vector. The direction of the gravity

vector has the same direction as the vector between the center of the screen and the touch point.

Press esc to exit the application.

Android Lifecycle Behavior of the Samples

Various samples behave differently from one another when the BACK and/or HOME buttons

are pressed. The following section lists the expected behavior of each sample in these cases:

es2_globe

The globe app is based on nv_event and its “supports pause/resume” mode. The globe app is

able to initialize its 3D resources quickly, so it simply releases all rendering resources on pause

and reloads them on resume. This allows it to correctly handle pause/resume.

event_accelerometer

The event_accelerometer app’s behavior is based on nv_event’s “default: do not handle

pause/resume” mode. In this mode, pause forces “finish” of the app. The process is not force-

killed by the application. Launching the app again works correctly; no static data issues exist.

JNIPerfTest

If left to run to completion of all tests, the app closes its window, but the app process is still

resident. Re-launching the app functions correctly, as static data is re-initialized. Pressing the

BACK button is ignored, and while the HOME button will send the window away, the tests

continue. Basically, the application does not include any lifecycle management, since it is

designed to be a performance benchmark that runs to completion. It does, however, correctly

handle relaunching without killing its own process.

 - 10 -
March 2011

event_lorenz

The nv_event-based version of the es2_lorenz app (present in previous versions of the

NVIDIA Tegra Android Samples SDK, now deprecated) uses nv_event’s “supports

pause/resume” mode. The event_lorenz app is able to initialize its 3D resources quickly, so

it simply releases all rendering resources on pause and reloads them on resume. This allows it

to correctly handle pause/resume.

multi

multi always stays resident after being sent away with home or back, but when re-launched it

re-runs initialization of the EGL/GLES code and is capable of re-launch.

native_globe

native_globe is written to behave the same way as es2_globe, but uses the pure-native

lifecycle events sent by the android_native_app_glue wrapper (provided by Google) for

NativeActivity. Specifically, the INIT_WINDOW and TERM_WINDOW messages are used to

signal renderer creation and shutdown. The focus-based messages LOST_FOCUS and

GAINED_FOCUS are used to signal the halting and restarting of rendering.

native_lorenz

native_lorenz is written to behave the same way as event_lorenz, but uses the pure-

native lifecycle events sent by the android_native_app_glue wrapper for

NativeActivity. Specifically, the INIT_WINDOW and TERM_WINDOW messages are used to

signal renderer creation and shutdown. The focus-based messages LOST_FOCUS and

GAINED_FOCUS are used to signal the halting and restarting of rendering.

es2_water

The es2_water app is based on nv_event and its “supports pause/resume” mode. The

es2_water app is able to initialize its 3D resources quickly, so it simply releases all rendering

resources on pause and reloads them on resume. This allows it to correctly handle

pause/resume.

Compiling the samples

Setting up the Eclipse workspace

1. Create a new workspace (in Eclipse click FileSwitch WorkspaceOther<)

 - 11 -
March 2011

2. Select the menu WindowPreferencesJavaBuild PathClasspath Variables

and add ANDROID_JAR with the path to the Éclair android.jar. For example

C:\android\android-sdk-windows\platforms\android-9\android.jar

3. Set the path to the Android SDK via the menu

WindowPreferencesAndroidAndroid SDK Location. For example

c:\android\android-sdk-windows

4. Import projects by selecting FileImportGeneralExisting projects into

workspace, and selecting the NVIDIA Android samples root. For example

c:\android\samples. Make sure that the option “Copy projects into

workspace” is NOT checked.

5. It is recommended that ProjectBuild Automatically be disabled, as it can cause

failed builds.

6. Build everything by selecting projectBuild All.

7. WARNING – the rebuilt APK files will NOT be placed in prebuilt. They will

be placed in the bin subdirectory for each app. Reinstalling the APKs from the

prebuilt tree will simply reinstall the APKs shipped with the SDK, not the

newly-built copies!

Note: Android SDK‟s API9 (or newer) is required in order to build the NativeActivity-based

samples (native_lorenz and native_globe, as well as any samples

generated with the “native” template for app_create tool). Keep that in mind

when setting the value of the ANDROID_JAR variable in step 2.

Note: Sometimes the build step must be done multiple times to resolve errors about “missing

required source folder: „gen‟”. If you after building twice still get

“The project cannot be built until build path errors are resolved”, try editing a .java file in that

project, save the change and build again.

Note: Another option for the above errors is to exit and restart Eclipse which will often allow the

“build all” to complete the build process and clear the errors.

Note: If the compiler gives the error “must override a superclass method” for overloaded run

functions, please make sure that the Compiler compliance level is set to 1.6. Go to

PreferencesJavaCompiler and select 1.6 in the Compiler compliance level drop down list.

Note: If there still are errors after this, make sure everything is set up correctly according to this

guide and check the problems view for more details about the error by selecting the menu

item WindowShow ViewProblems.

 - 12 -
March 2011

Note: If you have installed the prebuilt samples using the install_samples.bat script, you may

receive the error

“[INSTALL_PARSE_FAILED_INCONSISTENT_CERTIFICATES]”.

If you see this error, uninstall the samples on the Tegra device by going to
SettingsApplicationsManage Applications, then select the application you want to uninstall

and press the Uninstall button. Try running/installing the samples from Eclipse again.

Creating new applications

In order to ease the creation of new Android JNI native/Java samples that can be built from

Eclipse, the SDK includes a bash shell script that generates new projects from a selection of

templates. This tool is called app_create. It can create new applications in subdirectories of

apps/ that can be used as the basis for more complex application projects. To use the script, do

the following:

1. Choose a path name for the application, e.g. “my_app”. A directory of the given name

under apps/ (or apps-sdk9/ in the case of native template apps) must NOT already

exist prior to running the script, or the script will fail. This is a safety measure to avoid

overwriting existing code.

2. Choose a Java class name for the application, e.g. “MyApp”

3. Select your desired application template. The options are:

- basic: similar to the framework used for most of the current samples, a simple

template with JNI exposed to the application

- nv_event: A more complex framework, used to create the event_lorenz sample,

wherein the JNI code is wrapped in a library and the application is presented with a

more classic “event loop” and “event queue”

- native: Supporting only Android 2.3 (Gingerbread) and newer OS images,

applications created from this template have no Java code. The app is purely native

and is based on NativeActivity and android_native_app_glue.

4. Open a Cygwin/bash shell to the SDK’s tools\app_create directory

5. Run the script

./app_create.sh <app path name> <app java name> <template name>

e.g.

./app_create.sh my_app MyApp nv_event

 - 13 -
March 2011

This will result in the new application being created in the indicated subdirectory of apps/ or

apps-sdk9/ for native template-based apps. To load the new application into Eclipse for

building, simply re-run the steps previously mentioned for “setting up the Eclipse workspace”,

selecting only the new project from the project import dialog. The new application project

should be added to your workspace.

The project may be treated exactly like any other project in the SDK. New source files may be

added to the app’s jni directory, an assets directory may be created and filled with assets for

the APK, and additional settings may be added to the AndroidManifest.xml.

All three versions of the application have the same basic features: they render a spinning GLES2

triangle and provide basic keyboard and touch controls. The difference in the versions of the

application lie in the methods used to implement them. The basic template renders and

handles events directly in JNI-called threads, while the nv_event version handles events and

rendering in native-created threads to avoid stalling Android and avoid having JNI code in the

application source.

The nv_event framework

Prior to Android 2.3’s addition of NativeActivity, Android and most NDK frameworks used

callbacks down into native code to implement each input event, each rendered frame, etc. Since

shipping devices on Android 2.2 cannot support this new functionality, Marketplace

applications may still need this kind of framework. There are several issues with this “callback

per operation” model:

 Many applications do not fit this model, as the classic interactive rendering

model tends to involve queued events and a loop in the application code for

alternatively processing events and rendering

 Application code may not be prepared for the multi-threaded nature of

Android’s callbacks

 Android becomes less responsive, unresponsive or can even throw ANR

(Application Not Responding) exceptions if a thread calling into native code

from Java over JNI spends too long in native code without returning.

This SDK includes a paired set of library/Java class code that provides an event loop/event

queue API on top of the Android callbacks. In addition, this library implements application

setup and can avoid the need for any JNI code in the application itself. The nv_event

framework consists of several basic native code APIs:

 - 14 -
March 2011

 Event Queues: Functions to read pending input and system events from a queue

that is automatically filled by the framework. These functions are thread-safe.

 EGL Functions: Functions to bind and unbind the application’s OpenGL ES 2.0

context to the current thread, as well as a function to swap buffers.

 “main”-like Entrypoint: An entrypoint that the application defines in native

code that is called inside of a natively-created thread. This function can

implement the classic event and render loop, and returns only when the

application exits, rather than once per frame. Because it is invoked within its

own thread, there is a greatly reduced risk of making the main thread and thus

the Android UI less responsive.

Entrypoints in nv_event

Applications use nv_event by:

 Subclassing a trivial class from NvEventQueueActivity (the app_create.sh

tool does this for you)

 Linking the libnvevent.a library and its dependent libraries (the

app_create.sh tool does this for you)

 Implementing the two required application entrypoint functions (the

app_create.sh tool creates stub versions of these for you to fill out)

There are two required entrypoints that any nv_event application must define; they are

declared in nv_event.h:

extern int32_t NVEventAppInit(int32_t argc, char** argv);

Called by the framework in the main JNI thread from within a JNI function call, applications

should use this function to call any initialization that must query application Java classes.

Examples of code requiring initialization from within this function are documented in the

libraries documentation, and include nv_shader_init() in nv_shader.h. Applications

should avoid heavyweight initialization or loading of data in this function.

extern int32_t NVEventAppMain(int32_t argc, char** argv);

Called from within its own native-created thread, this function should be thought of as the

“main” or WinMain equivalent. Applications should do their data loading, event looping,

rendering and shutdown code from within this function, returning from the function only on

application shutdown. While this thread is native and does not have to return to Java to avoid

 - 15 -
March 2011

stalling Android, the thread is linked to the JVM and can make JNI calls through the use of

nv_thread.h’s NVThreadGetCurrentJNIEnv().

Handling Pause and Resume

NvEvent runs in two different modes for handling Android lifecycle pause and resume events.

“Quit on pause” and “support pause/resume”. Each requires slightly different coding on the

developer’s part

The “quit on pause” mode is currently the default owing to historical reasons in the SDK. Note

that new applications should consider using “support pause/resume” mode described below

whenever possible. “Quit on pause” is set in java by setting the member supportPauseResume

to false (the default) in onCreate. In this mode, NvEvent will automatically generate an

NV_EVENT_QUIT event on pause. The application should shut down and return from

NVEventAppMain, at which point NvEvent will finish (this will not kill the process; it simply

does an Activity finish). NvEvent will also finish its Activity if and when the application

returns from NVEventAppMain of its own accord. The app in this case cannot handle being sent

to the background. It will simply quit in this case.

The “support pause/resume” mode is enabled by explicitly setting supportPauseResume to

true in onCreate. In this mode, NvEvent will generate an NV_EVENT_RESUME event when

the app is started or resumed, and will generate an NV_EVENT_PAUSE event when paused. Note

that in this mode, the application must not initialize EGL and GLES resources until it receives

an NV_EVENT_RESUME event. Do not initialize EGL or GLES prior to the event loop in this

mode, or the calls will fail. In this mode, NV_EVENT_RESUME indicates both resumption after

pause and initial window readiness. On each NV_EVENT_PAUSE event, the application should

release all GLES and EGL resources before returning from the event handler. The Globe app

shows an example of this behavior. In this mode, the app will not exit on pause, and will

instead be given the chance to keep running. However, applications should, in general go into

a “sleep” mode when paused, waiting for events and looking for a quit or resume event before

doing any significant work.

Using EGL in nv_event

Nv_event applications may or may not use EGL/GLES. Applications wishing to use

EGL/GLES in NvEvent must first initialize EGL and a GLES context using NVEventEGLInit.

Then, the NVEventAppMain thread or any nv_thread-created thread can bind the context and

surface via NVEventEGLMakeCurrent(). Before binding to a second thread or before returning

 - 16 -
March 2011

from the main function, the bound thread should call NVEventEGLUnmakeCurrent(). A thread

currently bound can call NVEventEGLSwapBuffers() to display the current backbuffer.

The time to call NVEventEGLInit and NVEventEGLMakeCurrent depends upon the

pause/resume handling mode. Applications using the default “quit on pause” mode can

initialize EGL at any time in NVEventAppMain. Applications running in “support

pause/resume” mode must wait to receive an NV_EVENT_RESUME event in their main loop

before initializing EGL. Doing so earlier in the application’s lifecycle, or doing so between the

receipt of an NV_EVENT_PAUSE event and an NV_EVENT_RESUME event will cause an exception in

the app.

Event handling in nv_event

nv_event supports the reading of queued events via the function NVEventGetNextEvent().

This function is capable of returning immediately with or without an event, blocking until the

next event is available, or waiting at most a given number of milliseconds for an event before

retuning “no event”. This gives applications the flexibility to avoid “spinning” on the event

loop if they do not need to render at a high rate.

The nv_event system currently supports the following events. Some of these events (as noted)

are not enabled by default, owing to their high rates of firing or their larger amounts of data to

be copied:

 NV_EVENT_KEY

Represents a key press or release, with keycodes matching the supplied enumerants in

nv_event.h. Note that key repeats are not sent in this case. Also, key down events are

generated for many non-character keys, such as shift.

 NV_EVENT_CHAR

Represents the Unicode character of a key or multi-key press. Not all keys generate a character

event, but unlike key events, character events will auto-repeat. A press-and-release of a single

key can generate three events. Key down, character, and key up.

 NV_EVENT_TOUCH

A single-touch touchscreen or mouse event. Note that mice are currently represented as touch

devices. No motion events are generated unless there is a button down, and only one button is

supported.

 NV_EVENT_MULTITOUCH

Multi-touch (currently 1 or 2 fingers) events. These events are not generated by default.

However, if the application’s Java code is modified such that the member variable

 - 17 -
March 2011

wantsMultitouch is set to true in the function override onCreate, then multi-touch events

will replace single-touch events for that application.

 NV_EVENT_ACCEL

Accelerometer force vector events. These come in at a constant rate when enabled, and are thus

disabled by default. However, if the application’s Java code is modified such that the member

variable wantsAccelerometer is set to true in the function override onCreate, then the

accelerometer events will be posted to the event queue.

 NV_EVENT_WINDOW_SIZE

Sent by the system when the window (and thus the OpenGL ES 2.0 rendering surface) has

changed size. An instance of this event will be sent immediately upon startup to indicate that

the rendering surface is render for rendering.

 NV_EVENT_QUIT

Sent by the system when the application is requested to exit. The application should exit the

event loop immediately and shut down, returning from the NVEventAppMain() function.

Currently, there is no way for an application to cleanly exit other than by being requested to do

so by Android (e.g. pressing the Home button). This will be fixed in an upcoming version of

the framework.

NV_EVENT_RESUME

Sent by the system when the app’s window becomes visible and focused, either for the first time

(during launch) or following a pause event. The handler for this event should initialize EGL

and GLES resources if those APIs are being used. This event is only sent to the application in

“support pause/resume” mode.

NV_EVENT_PAUSE

Sent by the system when the app’s window is no longer visible. The handler for this event

should release GLES and EGL resources and unbind the EGL context if those APIs are being

used. This event is only sent to the application in “support pause/resume” mode.

Loading texture images in nv_event

Nv_event includes a pair of functions that can load and release GLES-friendly texture data from

APK assets or /data files. The functions are NVEventGetTextureData() and

NVEventReleaseTextureData(), and they can be called as follows to load textures:

 - 18 -
March 2011

 //Temporary variables for loading pixel data

 unsigned char* pixels;

 unsigned int width, height, format, type;

 void *data;

 unsigned int id;

 glGenTextures((GLsizei)1, &id);

 glActiveTexture(GL_TEXTURE0);

 glBindTexture(GL_TEXTURE_2D, id);

 data = NVEventGetTextureData("tex.jpg", pixels,

 width, height, format, type);

 glTexImage2D(GL_TEXTURE_2D, (GLint)0, (GLint)format,

 (GLsizei)width, (GLsizei)height, (GLint)0,

 (GLenum)format, (GLenum)type,

 (const GLvoid*)pixels);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

 NVEventReleaseTextureData(data, pixels);

The calls to Get and Release must be balanced in order to avoid leaks. See the included

library documentation for details.

Returning from the app’s NVEventAppMain function

In either pause/resume mode, exiting the NVEventAppMain function should cause the app’s

process to exit.

Frequently asked questions

How can I set my app to run as home screen app?

In Android any app can be set to run as the home screen app by setting the category elements in

the activity’s intent-filter in the AndroidManifest.xml file as

<category android:name="android.intent.category.HOME"/>

<category android:name="android.intent.category.DEFAULT"/>

For the application to be able to be used as a home screen app, the board will have to be

rebooted after the app has been installed. After reboot, since there will be more than one

application with the home screen intent, the ActivityManager will prompt the user to select one

of them to be used as the home screen. It will list the default home screen app (Home) and all

other home screen apps that you have installed on the device.

 - 19 -
March 2011

It also gives an option to use the selected app by default for that activity. If this option is

checked the user will not be prompted to choose from available home screen apps in

subsequent boots. Otherwise the user will be prompted to choose an app each time device

reboots (unless the apps are uninstalled).

http://justanapplication.wordpress.com/2009/08/22/a-standalone-android-runtime-launching-

helloworld-the-easy-way/ shows how to change the HelloAndroid app to run as the home

screen app.

Please note that it is up to the app to do the home screen tasks. The above changes only sets the

app to run after reboot, it does not automatically add any home screen related features in your

app (like Widget handling, listing app icons etc). Your app should handle any UI/home screen

features explicitly.

Shaders not working on non-Tegra devices?

We have found some differences between Tegra and other shader compilers.

On Tegra, fragment shaders are not required to specify the precision of each floating point

variable or default floating point precision. But this may be required by other shader compilers,

and will generate a shader link error if not specified.

On Tegra while calculating the value of gl_Position.x, gl_Position.y and

gl_Position.z, vertex shaders are not required to explicitly calculate gl_Position.w. But

this may be required by other shader compilers.

Getting IllegalArgumentException in
eglCreateContext() on non-Tegra devices?

Confirm that eglChooseConfig() returned at least one matching configuration. If not, find

out which configurations are supported on the non-Tegra device that you are testing. For

example, on Motorola DROID, eglChooseConfig() might return matching configs when

requesting a 24-bit depth size instead of 16-bits.

Change History

01 March, 2011 Release

- Two samples applications have been added that use Android SDK 9’s

NativeActivity and native_app_glue classes.

http://justanapplication.wordpress.com/2009/08/22/a-standalone-android-runtime-launching-helloworld-the-easy-way/
http://justanapplication.wordpress.com/2009/08/22/a-standalone-android-runtime-launching-helloworld-the-easy-way/

 - 20 -
March 2011

- Builds of native code are now done using the NDK’s ndk-build, making it possible

to seamlessly support NDK r4b and r5b.

- Most applications now handle Android application lifecycle cases correctly and do

not force process exit with exit(0), which is not recommended.

- The multitouch demo now correctly handles up to 10 touch points at once.

- Fragment shaders that were missing default precision specifiers have been fixed.

- All apps have been upgraded to build to at least SDK8 (Froyo) as a minimum.

- A possible infinite loop in pause/resume event handling in NvEvent has been fixed.

- Expanded Android lifecycle documentation and NvEvent documentation.

19 November, 2010 Release

- nv_event now supports pause/resume. Any new apps made using the app_create

script will inherit this support. Older applications wishing to update should set

supportPauseResume equal to true in the constructor of their activity class , add an

event handler for NV_EVENT_PAUSE and NV_EVENT_RESUME, and slightly alter

the strategy for waiting for events. Use app_create to make a dummy project in

order to see the changes on the C++ side. Apps may want to remove the orientation

property in their manifest as well. NOTE: when device rotation occur, FOV must be

adjusted to maintain proper object scale. The event_accelerometer sample shows

how to do this when using “field of view” values in

event_accelerometer/jni/render.cpp.

- A new accelerometer app, named event_accelerometer, was created to show how to

process accelerometer data with respect to device orientation and how to use that

data to orient an object.

10 June, 2010 Release

- Verified the code with the latest Android NDK (R4) and SDK (R6) and ADT plugin

(0.97).

- Fix to the multi-touch handling in nv_event. Previous system worked correctly for

single-touch, but multi-touch was being reported erratically.

27 May, 2010 Release

- Added the nv_event system, related app_create tool and the event_lorenz

sample.

- Expanded all support libraries docs.

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL
IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Tegra, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and product
names may be trademarks of the respective companies with which they are associated.

Copyright

© 2008-2011 NVIDIA Corporation. All rights reserved.

