
Tegra - Developing Killer
Content for Advanced Mobile

Platforms
Lars M. Bishop

Mobile Developer Technologies

Agenda

Overview of Tegra
User Experience and mobile multimedia apps
Platform integration (and Android)
Using the Khronos APIs to create compelling
multimedia content
Developer Tools and Site
Along with a few demos!

What is Tegra?

Advanced, mobile System-on-a-Chip (SoC)
Soul of the Machine: Low-power, top performance

10

Tegra Basic Feature Blocks

Dual-core ARM Cortex-A9 CPU
Shader-based, high-performance 3D GPU
Dedicated HD video encode/decode HW
High-resolution, dual-display support
Built in, advanced dual-camera support, including
onboard imaging pipeline (ISP)

Operating Systems

Android
Available publicly on Developer site!

Chromium
Smartbook-focused

Linux
Soon to be available on Developer site

Windows CE
Available publicly on Developer site!

Markets and Products

Handheld
Microsoft Zune HD

Embedded / Auto
Audi, Maserati, etc

Tablets / Smartbooks
Notion Ink Adam

~50 designs in progress for 2010

Tegra 250 Developers’ Kit

A full Tegra system on a board!
Tegra 250 SoC
1GB RAM
512MB of flash

VGA / HDMI display support
USB keyboard/mouse support
Built-in Ethernet, Wifi, Bluetooth
Lots of expansion ports

PCIe
SD Card
External UART

User Experience

User Experience on a mobile device is complex
Integration with and respect for the device’s core function

User should be confident that everything will “just work”
Power efficiency

Don’t waste the user’s battery
Convergence devices are “shared functionality” devices

Rendering quality and performance
User expectations are set by non-mobile devices!
Media crossover apps

Platform Integration

Know the platform events to be handled
Do not want a user trying to pause their game manually
when a call comes in!
But also don’t want user to lose their progress!

Be prepared to be swapped out or shut down
Mobile OSes can be very aggressive on managing memory
Know if and how your OS gives warnings before using The
Hammer

Platform Integration: Android

Android applications
Are Java components at the top level
Normally run in their own processes/JVMs

App components can each run in their own process
And other apps can invoke an app’s components

Can call down into native code using the NDK
Can only a set of approved APIs (avoids fragmentation)
Runs in the process of the app

Consist of several building blocks, but we’ll talk briefly
about the visual ones: Activities

These provide visual components and user interactions
Tend to have at least one window, often fullscreen
Can create more windows as needed

Android Activity States

Active
On top of the stack of visible activities
Does not mean the user is actively interacting with it…

Paused
(Partially) visible, but covered by another transparent
or part-screen app

Stopped
Completely invisible (likely no rendering surface)

Shut Down/Killed
Process no longer running

Active

Paused

Stopped

Killed

Android and “Paused” Activities

Note the direct Paused→Killed arrow!
A paused Activity can be killed!

“at any time without another line of its code being executed”

Would you see this in testing? Maybe not
But the spec allows it

This is why onPause documentation recommends
saving persistent state
If you don’t, a user could lose their data

E.g. game progress
Implement important system callbacks in your apps

onCreate
onPause
onResume

Paused

Killed

Static Data and Activity Lifespan

Even if an Activity stops, its process may be left
resident if there are enough resources available
When the Activity restarts, static variables may or
may not be re-initialized
Code such as the following may not represent your
model of the first call in a given Activity’s instance

static int firstCallToThisFunction = 1;
if (firstCallToThisFunction)

// Do critical operation such as
// resetting/initializing or loading…

Power Management

Use cycles wisely!
Apps that drain the battery won’t be popular for long
Don’t spin needlessly

Be event-driven
Throttle frame rate reasonably

Use the efficient subsystem for the job
Vertex shaders instead of CPU for skinning
Video core instead of CPU for video decode

Power Management: Android

Example: Keeping the screen on and bright
Android includes multiple methods:

Activity timers: fine if the app is interaction-focused
“Wake Locks”: very aggressive, not recommended
Window flag: more integrated with app focus

Use the right one; the least invasive for your needs
Don’t keep brightness on all the time in your game

Clear brightness flags between levels, in menus, etc
Or put these modes in windows with no power hints
Consider the needs of the game in each interaction phase

But don’t ignore them or skip them

Multimedia Quality

Users have growing expectations for rendering and
multimedia quality
Tegra supports media acceleration via standard APIs
including:

Shader-based 3D
Video playback and encode
Camera support

This makes it easier to port high-quality content
across the supported OSes
Tegra focuses on the Khronos Media APIs

Khronos APIs

Open standard for multimedia acceleration
Includes:

Display/Buffer Management: EGL
3D: OpenGL ES
Multimedia: OpenMAX
Platform Abstraction: OpenKODE Core

EGL

Replaces all of the per-platform WGL, AGL, XGL’s
Makes porting Khronos apps a LOT easier

Buffer, context and configuration management
Not just a “setup API”

Serves as the Khronos media API hub!
Also makes interesting cross-API use cases possible and
standardized (EGLImage)

EGL Config Confusions

EGLConfigs define the pixel depth, aux buffer
formats, API support, etc for surfaces and contexts
Querying and selecting a config can be confusing:
eglChooseConfig(disp, attribs, &config, 1, &count);

Don’t be tempted to just grab first matching config
See the EGL spec – the sorting method required by the
spec ended up being confusing to some developers
E.g. requesting 16bpp RGB can return 32bpp RGB FIRST
even if an exact 16bpp config existed
Spec requires that the deeper config be returned first!
Other surprises in there, too

Request a long array of matches, and sort in the app

OpenGL ES 2.0

Becoming widely supported on major smartphone
OSes / platforms and other mobile platforms
Current and next-generation mobile 3D hardware is
generally built for ES 2.0
Availability of powerful vertex and pixel shaders are
an important upgrade:

Performance: avoid per-vertex CPU work that was common
when shoehorning modern content into ES 1.x
Differentiation: huge range of effects now possible
Power: Use the right core for the job; dedicated vertex
units avoid lighting up CPU’s FPU as much

OpenGL Optimizations

Good, compelling content tends to be large
Memory bandwidth can be tight

Optimize all aspects of memory bandwidth usage
Vertex formats/layout

Normals are particularly ripe for small formats
Texture formats, mipmapping

Compression is (still) king
Use deep textures, but only where they’re needed
Use 1- and 2-component textures where possible

Maximize use of static VBOs/IBOs
Use indexed primitives, sort for vertex caching
IBOs+VBOs to allow for maximal GPU parallelism

Packing multiple 1-3D attribs into a 4D attrib

OpenGL Optimizations (2)

Shaders can be “heavy state”
Uniforms are shader state and must be restored on shader
swap
Avoid shader thrashing; group by shaders

Screen densities on newer mobile devices are high
Lots more pixels to fill now (854x480, 1024x600, etc)
Do work in the (likely under-utilized) vertex unit if possible
Consider rough depth sort or a depth pre-pass to optimize
later color pass for expensive shaders

How much shader precision do you need?
Use lowp and midp where possible
Important for varyings and locals

3D Game Demos

OpenMAX IL

More and more, video, camera and multimedia
integration are becoming core features of next-gen
mobile entertainment apps
OpenMAX IL is a graph-based media API

Readers / streaming sources / camera devices
Decoders
Processors
Renderers
Encoders
Writers

The result is an advanced API, capable of much
more than basic “play video to screen” use cases

Multimedia Integration

Khronos APIs make multimedia-and-3D integration
possible in a standard way
EGL and its EGLImage extensions are key
EGLImages allow image data created in one Khronos
API to be used in another API

OpenMAX image buffers and OpenGL ES textures
Tegra and its driver stack accelerates these “cross
API” use cases
Tegra Khronos Apps SDK includes interop sample
code (NVIDIA Tegra developers’ website)

OpenGL ES + OpenMAX + EGLImage
OpenMAX IL is often used “tunneled”, e.g.
connecting video decode to video rendering:

But OMX IL can also decode to EGLImages, which
can be used as textures in OpenGL ES 2.0

In addition, a camera can stream to EGLImages…

File
Reader

Video
Decoder

Overlay Video
Renderer

File
Reader

Video
Decoder

Decoder decodes to
overlay surface

onscreen

Decoder decodes to
EGLImages

OpenGL ES
rendering uses the

EGLImages as
textures

Application: GPU Image Processing

Connects the camera directly to the
3D unit for processing effects
“3D Camera” demo

GPU-based shader/FBO “pipeline”
FBOs to pass images stage-to-stage
Supports 1-4-channel images
Allows for 8 bit fixed-point or 16-bit
floating point buffers between stages

Output can be:
Drawn to the screen
Sent to the image/video encoder

GPU Image Processing Pipeline

3D Unit
Rendered
Images

Camera

Camera Stream
EGLImage Textures

Shader-based
Image processing
FBO Loop/Pipeline

JPEG/MPEG
Encoder

FBO Stream
EGLImage Textures

Application: Augmented Reality

Natural Feature Tracking
Camera position inferred from
recognizing the game board in
the real world
No barcodes, etc

Camera image used
On CPU for tracking
On GPU for rendering

Augmented Reality Imaging Pipeline

3D Unit

Rendered
Images

Camera

Camera Stream
640x480 EGLImage Textures

3D Game Objects
(3D Geometry,
Textures, etc)

AR System
(NFT tracker)

Game/Rendering Logic
(ARhrrrr!)

Shader-based
RGB-to-Luma/

Downsize/Process
FBO Loop

Read-back of
320x240 8bpp
Luma Image

Direct use of full-sized camera
texture for visible image

Camera-to-World
Transform

Note that this is merely one possible pipeline…

Alternate AR Imaging Pipeline

No need to stall the GPU for a read-back
But synchronization of the streams a challenge

3D Unit

Rendered
Images

Camera
Camera Stream

640x480 EGLImage Textures

3D Game Objects
(3D Geometry,
Textures, etc)

AR System
(NFT tracker)

Game/Rendering Logic
(ARhrrrr!)

320x240 YUV
Buffer Stream

Direct use of full-sized camera
texture for visible image

Camera-to-World
Transform

Camera
Preview

Port

Camera
Capture

Port

Augmented Reality Video Demo

Zombies Augmented Reality game, “ARhrrrr!”
Camera-based AR with CPU-based tracking
Natural feature tracking of a physical map

Created by
Augmented Environments Lab, GA Tech (Blair MacIntyre)
Savannah College of Art and Design (Tony Tseng)
T U Graz (Daniel Wagner)

Details at NVIDIA’s 2009 GTC site and the
Augmented Environment Lab’s site

PerfHUD ES

Mobile-centric NV PerfHUD
Renders stats and graphs on a separate host PC

Minimizes overhead on mobile device
Allows for more screen real estate for feedback
Most mobile dev is done with a host PC, anyway

Works on Android, Linux and WinCE targets
Includes/Supports

Stats graphs (memory, frame time, driver time, draw calls)
Directed tests (2x2 textures, ignore draw/all calls, etc)
Frame profiling
Frame debugger

Handy PerfHUD ES Features (2)

Call Trace / Frame Debugger Mode
Full list of state calls in frame (redundancy checking)
Frame “scrubbing”
Partial-frame (frame-to-call) views including FBOs

Color buffer
Depth buffer

Handy PerfHUD ES Features

Performance Dashboard Mode
Ultra-fast top-level performance triage

Hit the common, top-level issues quickly
1. Ignore all calls (are we just app-limited?)
2. Null fragment shader (are we shader-heavy?)
3. 2x2 textures (are we memory-bound?)
4. Disable primitive batches by histogram

Break-on-GL-error
For those rare (ahem) cases where your code isn’t
checking each call

Tegra Developers’ Site

http://developer.nvidia.com/tegra

OS Support packs
Android
Windows CE
Linux (coming soon)

SDK’s, demos, apps
Docs
Development Tools
Public support forums/community
Access to the Tegra board store

http://developer.nvidia.com/tegra�

	Tegra - Developing Killer Content for Advanced Mobile Platforms
	Agenda
	What is Tegra?
	Tegra Basic Feature Blocks
	Operating Systems
	Markets and Products
	Tegra 250 Developers’ Kit
	User Experience
	Platform Integration
	Platform Integration: Android
	Android Activity States
	Android and “Paused” Activities
	Static Data and Activity Lifespan
	Power Management
	Power Management: Android
	Multimedia Quality
	Khronos APIs
	EGL
	EGL Config Confusions
	OpenGL ES 2.0
	OpenGL Optimizations
	OpenGL Optimizations (2)
	3D Game Demos
	OpenMAX IL
	Multimedia Integration
	OpenGL ES + OpenMAX + EGLImage
	Application: GPU Image Processing
	GPU Image Processing Pipeline
	Application: Augmented Reality
	Augmented Reality Imaging Pipeline
	Alternate AR Imaging Pipeline
	Augmented Reality Video Demo
	PerfHUD ES
	Handy PerfHUD ES Features (2)
	Handy PerfHUD ES Features
	Tegra Developers’ Site

