PHYSICALLY SIMULATED CLOTHING
BY CCP (EVE Online)
USING NVIDIA APEX

Vigfus Omarsson CCP Games
Snorri Sturluson CCP Games
Monier Maher NVIDIA
Outline

- APEX Overview
- APEX Clothing used by CCP
 - Clothing considerations
 - Maya DCC plug-in overview
 - APEX Integration
 - Demos
- APEX Modules
 - APEX Destruction
 - APEX Particles
 - APEX Vegetation
 - APEX Turbulence
What is APEX?

APEX is a “Scalable Dynamics Framework”
- **Scalable**: Content adapts to different hardware capabilities
- **Dynamics**: The way things move and interact
- **Framework**: A structured environment

APEX consists of two major components:
- **Authoring**:
 - High-level authoring of dynamic systems
 - DCC plugins, standalone tools, and game engine plugins
- **Runtime**:
 - A modular SDK – minimal integration into game engine
 - Leverages PhysX for simulations
APEX is Artist Focused

- Artist level abstractions of dynamic systems
 - “Destructible bunker” vs. “collection of bricks”
- Intuitive and easy to use
Why Cloth Simulation?

- Adds variety and secondary motion to animation
- Can increase plausibility in realistic scenes a lot
- The same toolset can also be used to create soft body simulation
Things to be aware of

- Like any other simulation, cloth requires boundaries and “taming”
- Sometimes non-realistic cloth simulation looks better
- Elaborate cloth assets can be quite complex to keep nice at all times
- Iteration and testing are the key
Pipeline Integration

- APEX export was easily integrated into CCP export pipeline
- Use of cloth templates speeds up clothing creation
 - Create once, use often

APEX Cloth Data
Other Model Data
CCP Export
ACA
GR2
RED
Challenges

- Numbers of characters on-screen can’t be controlled in an MMO
 - LODs are a must
- High visual fidelity requires lots of consideration for collision meshes
 - Sitting on furniture – how do you handle that?
 - Characters must affect each other too
APEX integration
Implement a few classes

- **NxResourceCallback**
 - Manage shared objects
- **NxUserRenderResourceManager**
 - Manage vertex and index buffers
- **NxUserRenderer**
 - Perform the rendering
Actors

- Load clothing assets from .aca files
- Create clothing actor from asset
- APEX renders actors through your engine
Debugging aids

- Lots of debugging info to be rendered
 - Useful for the programmers
 - But even more so for cloth authoring
 - Worth spending time to support it all
More debugging aids

- Visual debugger
 - Allows recording of data
 - Analyze simulation without game engine
Maximizing performance

- Cloth simulation is heavy
- GPU can do heavy lifting
- Maximizing parallelism maximizes performance
 - Delay skinning to match up with simulation
 - Rendering lags further behind
 - Syncing audio and other effects with animation may become a bigger issue
Benefits of APEX

- Fast, easily iterated authoring
- Artist friendly
- Tweakable data easily exposed in engine for final tweaking
- Debug preview in engine available
- Easily integrated into game engine
Live Demo
APEX Modules
APEX Destruction

- Fully and partial destructible environments
- PhysXLab tool with preview functionality
- Fully integrated with APEX Particles
- Fracture with noise
- Hierarchical destruction
- Plastic deformation
- Level of Detail
- Scalability
APEX Particles

- Full Collision with PhysX environment
- Force fields (wind, explosions)
- Authorable behavior and effect modifiers
- Renderable as sprites or meshes (with orientation)
- Generic emitter
- Special purpose emitters
 - Air/Ground emitter
 - Weapon emitter
APEX Vegetation / SpeedTree

- Full and partial tree destruction/deformation
- State transition between physical and static trees
- Tight integration with APEX Particles
- Level of Detail
- Fully integrated into SpeedTree® Modeler
 - Automatic generation of tree skeleton
 - Configurable bone and joint system
 - Support for multiple APEX Particle Emitters
APEX Vegetation / SpeedTree
Authoring Pipeline

TGA, PNG, OBJ, STM
Images, meshes

SPM
Procedural Files
Where To Find Us

- NVIDIA - Main Expo Area, Booth 1702
- CCP – Career Pavilion, Booth 2502
- March 11th Sponsored Sessions

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900-1000</td>
<td>Room 310, South Hall</td>
<td>Tegra - Developing Killer Content for Advanced Mobile Platforms</td>
</tr>
<tr>
<td>1330-1430</td>
<td>Room 310, South Hall</td>
<td>Physically Simulated Clothing by CCP (EVE Online) Using NVIDIA APEX</td>
</tr>
<tr>
<td>1500-1600</td>
<td>Room 310, South Hall</td>
<td>Authoring Physically Simulated Destruction with NVIDIA APEX</td>
</tr>
<tr>
<td>1630-1730</td>
<td>Room 310, South Hall</td>
<td>NVIDIA's New Game Development Environment: NVIDIA Parallel Nsight™</td>
</tr>
</tbody>
</table>

- March 12th Presentations

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900-1000</td>
<td>Room 304, South Hall</td>
<td>Taking Fluid Simulation Out of the Box: Particle Effects in Dark Void, Sarah Tariq (NVIDIA), Joe Cruz (VFX)</td>
</tr>
</tbody>
</table>

- Twitter: nvidiadeveloper, Website: http://developer.nvidia.com