

DirectCompute
Performance on DX11
Hardware

Nicolas Thibieroz, AMD
Cem Cebenoyan, NVIDIA

Why DirectCompute?
 Allow arbitrary programming of GPU

 General-purpose programming
 Post-process operations
 Etc.

 Not always a win against PS though
 Well-balanced PS is unlikely to get

beaten by CS
 Better to target PS with heavy TEX or

ALU bottlenecks
 Use CS threads to divide the work and

balance the shader out

Feeding the Machine

 GPUs are throughput oriented
processors
 Latencies are covered with work

 Need to provide enough work to
gain efficiency

 Look for fine-grained parallelism in
your problem

 Trivial mapping works best
 Pixels on the screen
 Particles in a simulation

Presenter
Presentation Notes
This is really the central thing to direct compute performance.
Remember that the GPU is a massively parallel machine, focused on throughput computing.
Throughput computing meaning we try to maximize amount of work done per unit time, rather than minimizing the amount of time it takes to process unit work (this is what CPUs do).
A consequence of this is that GPUs need enough work to chew on to reach their full efficiency.
If you don’t provide enough work for the GPU to process, performance will suffer.
Thus it is important to design your algorithms around the idea of fine-grained paralellism. Think of having threads each processing individual pixels on screen, or individual particles in a large-scale particle simulation.
Fine-grained parallelism means individual tasks are relatively small in terms of code size and execution time.
Remember that GPU threads are very lightweight, and can context-switch at virtually no cost. Most problems will have a trivial decomposition, mapping threads to individual elements in the input data set.
Think of each thread processing a single pixel on the screen, or a single particle in a large-scale simulation.
Think fine-grained parallelism, meaning lots of lightweight worker threads, context switching at virtually no cost.

Feeding the Machine (2)

 Still can be advantageous to run a
small computation on the GPU if it
helps avoid a round trip to host
 Latency benefit
 Example: massaging parameters for

subsequent kernel launches or draw
calls

 Combine with DispatchIndirect() to
get more work done without CPU
intervention

Presenter
Presentation Notes
While keeping all of the above in mind, it is still worthwhile to consider running a small computation on the GPU if it helps to avoid costly readback to host and a bunch of driver work.
With DrawIndirect or DispatchIndirect you can have GPU doing more work autonomously, without CPU being involved in the process

Scalar vs Vector

 NVIDIA GPUs are scalar
 Explicit vectorization unnecessary

Won’t hurt in most cases, but there are
exceptions

 Map threads to scalar data elements
 AMD GPUs are vector

 Vectorization critical to performance
 Avoid dependant scalar instructions

 Use IHV tools to check ALU usage

Presenter
Presentation Notes
One important thing to remember is that NVIDIA GPUs are scalar, so it’s not necessary to explicitly vectorize your kernels.
While generally it doesn’t hurt either, there are cases where operating on vector data in global memory actually hurts memory efficiency.
Input/output is scalar, too
Operating on vectors can sometimes hurt performance
AMD GPUs operate on vectors so it is essential that the algorithm makes good use of vectorization and avoids dependant scalar instructions.
Vectorization or not is a conflicting advice between IHV vendors; you may want to consider using an IHV-specific variants of the same shader, or using the version that overall runs the best on both HWs.

CS5.0 >> CS4.0
 CS5.0 is just better than CS4.0
 More of everything

 Threads
 Thread Group Shared Memory
 Atomics
 Flexibility
 Etc.

 Will typically run faster
 If taking advantage of CS5.0 features

 Prefer CS5.0 over CS4.0 if
D3D_FEATURE_LEVEL_11_0 supported

Presenter
Presentation Notes
Thread Group Shared Memory: including better access (not limited to writing to its own thread). LDS size limit depends on thread size.
Flexibility: CS4.0 doesn’t support Typed Texture output so a 1D->2D conversion is required; this isn’t true for CS5.0
CS4.x on R7x0: number of threads should be a pow2 otherwise performance will suffer greatly. 768 is bad, 64, 128, 256 and 512 are good.

Thread Group Declaration

 Declaring a suitable number of thread
groups is essential to performance
 numthreads(NUM_THREADS_X, NUM_THREADS_Y, 1)

void MyCSShader(...)

 Total thread group size should be above
hardware’s wavefront size
 Size varies depending on GPUs!
 ATI HW is 64 at max. NV HW is 32.

 Avoid sizes below wavefront size
 numthreads(1,1,1) is a bad idea!

 Larger values will generally work well
across a wide range of GPUs
 Better scaling with lower-end GPUs

Presenter
Presentation Notes
Hardware need larger groups to be fully utilized
Avoid sizes below wavefront size: declaring a tg size equalling wavefront size is not ideal either because you want multiple wavefronts “in flight” per SIMD
Total thread group size should be above hardware’s wavefront size: Smallest efficient group size will be implementation dependent
Wavefront: # of threads working in a lockstep, or “actual min HW work size”

Thread Group Usage

 Try to divide work evenly among all
threads in a group

 Dynamic Flow Control will create
divergent workflows for threads
 This means threads doing less work will sit idle

while others are still busy

[numthreads(groupthreads,1,1)]
void CSMain(uint3 Gid : SV_GroupID,

uint3 Gtid: SV_GroupThreadID)

{

...

if (Gtid.x == 0)

{

// Code here is only executed for one thread

}

}

!

Presenter
Presentation Notes
E.g. Reduction algorithm whereby one thread only in the group does the addition will make all other threads idle

Mixing Compute and Raster
 Reduce number of transitions

between Compute and Draw calls
 Those transitions can be expensive!

Compute A
Compute B
Compute C
Draw X
Draw Y
Draw Z

Compute A
Draw X
Compute B
Draw Y
Compute C
Draw Z

>>

Unordered Access Views
 UAV not strictly a DirectCompute resource

 Can be used with PS too
 Unordered Access support scattered R/W

 Scattered access = cache trashing
 Prefer grouped reads/writes (bursting)
 E.g. Read/write from/to float4 instead of float
 NVIDIA scalar arch will not benefit from this

 Contiguous writes to UAVs
 Do not create a buffer or texture with UAV

flag if not required
 May require synchronization after render ops
 D3D11_BIND_UNORDERED_ACCESS only if needed!

 Avoid using UAVs as a scratch pad!
 Better use TGSM for this

Presenter
Presentation Notes
Only way to write data out from a CS.
Contiguous writes to UAVs: 2D UAVs: write to x then y
		 3D UAVs: write to x then y then z

Buffer UAV with Counter
 Shader Model 5.0 supports a counter on

Buffer UAVs
 Not supported on textures
 D3D11_BUFFER_UAV_FLAG_COUNTER flag in
CreateUnorderedAccessView()

 Accessible via:
 uint IncrementCounter();
 uint DecrementCounter();

 Faster method than implementing manual
counter with UINT32-sized R/W UAV
 Avoids need for atomic operation on UAV

 See Linked List presentation for an
example of this

 On NVIDIA HW, prefer Append buffers

Presenter
Presentation Notes
Counter capability on non-Append Buffers wasn’t supported in first versions of DX11.

Append/Consume buffers

 Useful for serializing output of a
data-parallel kernel into an array
 Can be used in graphics, too!
 E.g. deferred fragment processing

 Use with care, can be costly
 Introduce serialization point in the API
 Large record sizes can hide the cost of

append operation

Atomic Operations
 “Operation that cannot be

interrupted by other threads until it
has completed”
 Typically used with UAVs

 Atomic operations cost performance
 Due to synchronization needs

 Use them only when needed
 Many problems can be recast as more

efficient parallel reduce or scan
 Atomic ops with feedback cost even

more
E.g. Buf->InterlockedAdd(uAddress, 1,

Previous);

Presenter
Presentation Notes
Due to synchronization needs: the HW need to ensure the new data will now be used should another thread read from this location, i.e. We need to maintain coherency
Atomic ops with feedback cost even more e.g.: avoid using the returned value (i.e. The value in memory prior to the operation taking place)

Thread Group Shared Memory

 Fast memory shared across threads
within a group
 Not shared across thread groups!
 groupshared float2 MyArray[16][32];

 Not persistent between Dispatch() calls
 Used to reduce computation

 Use neighboring calculations by storing
them in TGSM

 E.g. Post-processing texture instructions

Presenter
Presentation Notes
Not shared across thread groups!: Non-persistent: TGSM contents do not persist between dispatches

TGSM Performance (1)
Access patterns matter!
Limited number of I/O banks
32 banks on ATI and NVIDIA HW

Bank conflicts will reduce
performance

TGSM Performance (2)
 32 banks example

 Each address is 32 bits
 Banks are arranged linearly with addresses:

0 1 2 3 4 ... 31 32 33 34 35 ...

0 1 2 3 4 ... 31 0 1 2 3 ...

Address:

Bank:

 TGSM addresses that are 32 DWORD apart use the same
bank

 Accessing those addresses from multiple threads will create
a bank conflict

 Declare TGSM 2D arrays as MyArray[Y][X], and increment
X first, then Y
 Essential if X is a multiple of 32!

 Padding arrays/structures to avoid bank conflicts can help
 E.g. MyArray[16][33] instead of [16][32]

Presenter
Presentation Notes
In a 32-bank system having each thread in a group reference data that is 32 DWORDS apart will be the worst case
So arrange it that thread (0) accesses DWORD (0) Thread 1 accesses DWORD (33) _not_ DWORD (32) etc.
Avoid access using the same bank (exception: all threads in a group of 32 can access the same address in the same bank without conflict)
Declare arrays as MyArray[Y][X] to ensure contiguous access

TGSM Performance (3)
 Reduce access whenever possible

 E.g. Pack data into uint instead of
float4

 But watch out for increased ALUs!
 Basically try to read/write once per

TGSM address
 Copy to temp array can help if it avoids

duplicate accesses!
 Unroll loops accessing shared mem

 Helps compiler hide latency

Presenter
Presentation Notes
Less access is better for performance.
Pack data into uint instead of float4: use bitshift instructions, or f32tof16/f16tof32.
Copy to temp array can help if it avoids duplicate accesses!: for example a blur filter may need to read back the same TGSM addresses multiples to compute blur values for multiple pixels. Copying the required TGSM data segment into temp registers and reading from there instead of TGSM can help performance.

Barriers
 Barriers add a synchronization point

for all threads within a group
 GroupMemoryBarrier()
 GroupMemoryBarrierWithGroupSync()

 Too many barriers will affect
performance
 Especially true if work is not divided

evenly among threads
 Watch out for algorithms using

many barriers

Presenter
Presentation Notes
GroupMemoryBarrierWithGroupSync() used to ensure all LDS read/writes have completed for all threads before the barrier can be passed

Maximizing HW
Occupancy
 A thread group cannot be split

across multiple shader units
 Either in or out
 Unlike pixel work, which can be

arbitrarily fragmented
 Occupancy affected by:

 Thread group size declaration
 TGSM size declared
 Number of GPRs used

 Those numbers affect the level of
parallelism that can be achieved

Presenter
Presentation Notes
Occupancy affected by: ... Intricate relationship between those

Maximizing HW
Occupancy (2)
 Example: HW shader unit:

 8 thread groups max
 32KB total shared memory
 1024 threads max

 With thread group size of 128 threads
requiring 24KB of shared memory can
only run 1 thread group per shader unit
(128 threads) BAD

 Ask your IHVs about GPU Computing
documentation

Maximizing HW
Occupancy (3)
 Register pressure will also affect

occupancy
 You have little control over this
 Rely on drivers to do the right thing 

 Tuning and experimentations are
required to find the ideal balance
 But this balance varies from HW to HW!
 Store different presets for best

performance across a variety of GPUs

Conclusion
 Threadgroup size declaration

essential to performance
 I/O can be a bottleneck
 TGSM tuning is important
 Minimize PS->CS->PS transitions
 HW occupancy is GPU-dependent
 DXSDK DirectCompute samples not

necessarily using best practices atm!
 E.g. HDRToneMapping, OIT11

Presenter
Presentation Notes
Threadgroup size declaration essential to performance: will need some experimentations
I/O can be a bottleneck: Use wider data types, Burst writes >> sparse writes
TGSM tuning is important: watch out for bank conflicts, minimize access

Questions?

Nicolas.Thibieroz@amd.com
cem@nvidia.com

	Slide Number 1
	DirectCompute Performance on DX11 Hardware
	Why DirectCompute?
	Feeding the Machine
	Feeding the Machine (2)
	Scalar vs Vector
	CS5.0 >> CS4.0
	Thread Group Declaration
	Thread Group Usage
	Mixing Compute and Raster
	Unordered Access Views
	Buffer UAV with Counter
	Append/Consume buffers
	Atomic Operations
	Thread Group Shared Memory
	TGSM Performance (1)
	TGSM Performance (2)
	TGSM Performance (3)
	Barriers
	Maximizing HW Occupancy
	Maximizing HW Occupancy (2)
	Maximizing HW Occupancy (3)
	Conclusion
	Questions?

