


Direct3D 11 Performance 
Tips & Tricks

Holger Gruen AMD ISV Relations
Cem Cebenoyan NVIDIA ISV Relations



Agenda

 Introduction
 Shader Model 5
 Resources and Resource Views
 Multithreading
 Miscellaneous
 Q&A



Introduction

 Direct3D 11 has numerous new 
features

 However these new features need 
to be used wisely for good 
performance

 For generic optimization advice 
please refer to last year‘s talk 
http://developer.amd.com/gpu_as
sets/The A to Z of DX10 
Performance.pps

http://developer.amd.com/gpu_assets/The A to Z of DX10 Performance.pps�
http://developer.amd.com/gpu_assets/The A to Z of DX10 Performance.pps�
http://developer.amd.com/gpu_assets/The A to Z of DX10 Performance.pps�


Shader Model 5 (1)

 Use Gather*/GatherCmp*() for 
fast multi-channel texture fetches
 Use smaller number of RTs while still 

fetching efficiently
 Store depth to FP16 alpha for SSAO

 Use Gather*() for region fetch of 
alpha/depth

 Fetch 4 RGB values in just three ops
 Image post processing



Fetch 4 RGB values in 
just three texture ops

SampleOp0

red0

blue0
alpha0

red1
green1
blue1
alpha1

red2
green2
blue2
alpha2

red3
green3
blue3
alpha3

green0

red0 green0 blue0 alpha0

SampleOp1 red1 green1 blue1 alpha1

SampleOp2 red2 green2 blue2 alpha2

SampleOp3 red3 green3 blue3 alpha3

GatherRed
GatherGreen
GatherBlue

red2 red3 red1 red0

green2 green3 green1

blue2 blue3 blue1 blue0



Shader Model 5 (2)

 Use ‘Conservative Depth’ to keep 
early depth rejection active for fast 
depth sprites
 Output SV_DepthGreater/LessEqual 

instead of SV_Depth from your PS
 Keeps early depth rejection active even 

with shader-modified Z
 The hardware/driver will enforce legal 

behavior
 If you write an invalid depth value it will 

be clamped to the rasterized value



Depth Sprites under 
Direct3D 11

Scene
Geometry

drawn first

Depth sprite 
for a sphere

Direct3D 11 can fully cull this depth sprite if 
SV_DepthGreaterEqual is output by the PS



Shader Model 5 (3)
 Use EvaluateAttribute*() for fast 

shader AA without super sampling
 Call EvaluateAttribute*() at subpixel positions

 Allows shader AA for procedural materials
 Input SV_COVERAGE to compute a color for 

each covered subsample and write average 
color
 Slightly better image quality than pure MSAA

 Output SV_Coverage for MSAA alpha-test
 This feature has been around since 10.1
 EvaluateAttribute*() makes implementation 

simpler 
 But check if alpha to coverage gives you what 

you need already, as it should be faster.



Shader Model 5 (4)

 A quick Refresher on UAVs and 
Atomics
 Use PS scattering and UAVs wisely
 Use Interlocked*() Operations wisely
 See DirectCompute performance 

presentation!



Shader Model 5 (5)

 Reduce stream out passes
 Addressable stream output 
Output to up to 4 streams in one pass
 All streams can have multiple elements 

 Write simpler code using Geometry 
shader instancing

 Use GSInstanceID instead of loop





Shader Model 5 (6)

 Force early depth-stencil testing 
for your PS using [earlydepthstencil]
 Can introduce significant speedup 

specifically if writing to UAVs or 
AppendBuffers
 AMD‘s OIT demo uses this

 Put ‘[earlydepthstencil]’ above your 
pixel shader function declaration to 
enable it



Early Depth Stencil and 
OIT

Opaque Geometry
drawn first

Transparent Geometry
Drawn after all 

opaque Geometry

A ‘[earlydepthstencil]’ pixel shader that 
writes OIT color layers to a UAV only will 
cull all pixels outside the purple area!

Projection Plane



Shader Model 5 (7)

 Use the numerous new intrinsics 
for faster shaders
 Fast bitops – countbits(), 

reversebits() (needed in FFTs), etc.
 Conversion instructions - fp16 to fp32 

and vice versa (f16to32() and f32to16())
 Faster packing/unpacking

 Fast coarse deriatives (ddx/y_coarse)

 ...




Shader Model 5 (8)

 Use Dynamic shader linkage of 
subroutines wisely
 Subroutines are not free

 No cross function boundary optimizations
 Only use dynamic linkage for large 

subroutines
 Avoid using a lot of small subroutines







Resources and Resource 
Views (1)
 Reduce memory size and 

bandwidth for more performance
 BC6 and BC7 provide new capabilities

 Very high quality, and HDR support
 All static textures should now be 

compressible



BC7 image quality

BC7 
Compressed

BC1 
Compressed

Original 
Image

Presenter
Presentation Notes

BC7 was designed to be highly adaptable to different image types, unlike BC1 which was geared towards natural images
As a result BC7 can accept pretty much all types of input textures and should give high quality output
BC6H uses similar techniques, but adapted for HDR content.

Research on the best possible compressor is still very much ongoing, but high quality can be achieved pretty easily

In this example BC7 manages to compress the image with highly acceptable quality.
BC1 not so much 



Resources and Resource 
Views (2)
 Use Read-Only depth buffers to 

avoid copying the depth buffer
 Direct3D 11 allows the sampling of a 

depth buffer still bound for depth 
testing
 Useful for deferred lighting if depth is part 

of the g-buffer
 Useful for soft particles

 AMD: Using a depth buffer as a SRV 
may trigger a decompression step
Do it as late in the frame as possible



Free Threaded Resource 
Creation
 Use fast Direct3D 11 asynchronous 

resource creation
 In general it should just be faster and 

more parallel
 Do not destroy a resource in a 

frame in which it’s used
 Destroying resources would most 

likely cause synchronizing events
 Avoid create-render-destroy 

sequences



Display Lists (aka command lists 
created from a deferred context)

 First make sure your app is multi-
threaded well

 Only use display lists if command 
construction is a large enough 
bottleneck

 Now consider display lists to express 
parallelism in GPU command 
construction

 Avoid fine grained command lists

 Drivers are already multi-threaded



Deferred Contexts

 On deferred contexts Map() or 
UpdateSubResource() will use extra 
memory
 Remember, all initial Maps need to use 

DISCARD semantic

 Note that on a single core system a 
deferred context will be slower than just 
using the immediate context
 For dual core, it is also probably best to just 

use the immediate context
 Don’t use Deferred Contexts unless 

there is significant parallelism



Miscellaneous

 Use DrawIndirect to further lower 
your CPU overhead
 Kick off instanced draw calls/dispatch 

using args from a GPU written buffer
 Could use the GPU for limited scene traversal 

and culling

 Use Append/Consume Buffers for 
fast ’stream out‘

 Faster than GS as there are no input ordering 
constraints

 One pass SO with ’unlimited‘ data amplification



Questions?

holger.gruen@amd.com
cem@nvidia.com


	Slide Number 1
	Direct3D 11 Performance Tips & Tricks
	Agenda
	Introduction
	Shader Model 5 (1)
	Fetch 4 RGB values in just three texture ops
	Shader Model 5 (2)
	Depth Sprites under Direct3D 11
	Shader Model 5 (3)
	Shader Model 5 (4)
	Shader Model 5 (5)
	Shader Model 5 (6)
	Early Depth Stencil and OIT
	Shader Model 5 (7)
	Shader Model 5 (8)
	Resources and Resource Views (1)
	BC7 image quality
	Resources and Resource Views (2)
	Free Threaded Resource Creation
	Display Lists (aka command lists created from a deferred context)�
	Deferred Contexts
	Miscellaneous
	Questions?

