
Modern Real-Time
Rendering Techniques

Louis Bavoil
NVIDIA

Outline

• Practical real-time rendering algorithms for:

– DirectX 11 Tessellation

– Transparency

• Particle Rendering

• Order Independent Transparency

– Post-Processing Effects

• Screen Space Ambient Occlusion

• Depth Of Field

DirectX 11 Tessellation

Geometric Detail in Games

• Pixels are meticulously shaded

– But geometric detail is modest

Geometric Detail in Films

• Pixels are meticulously shaded

– And geometric detail is substantial

• Dynamic tessellation +

displacement mapping

– Defacto standard for film rendering

– Enables richer content and animation

Displacement Mapping

© Kenneth Scott, id Software 2008

Input control cage After tessellation After tessellation +

displacement mapping

DX11 Tessellation Pipeline

• Hull shader
– Runs pre-expansion

– Input = 1 patch (control points)

• Domain shader
– Runs post-expansion

– Input = 1 tessellated vertex

– Can perform displacement mapping

– Can shade at intermediate frequency
between vertices and pixels

• Fixed-function tessellation stage
– Configured by LOD output from hull shader

– Produces triangles or lines

Hull

Tessellator

Domain

Primitive
Assembly

Geometry

Vertex

Patch
Assembly

Expands

geometry

on the GPU

• Memory footprint & bandwidth savings

– Store coarse geometry, expand on-demand

– Enables higher geometry throughput

• Computational efficiency

– Dynamic Level Of Detail (LOD)

– Animate coarse geometry pre-expansion

• Scalability

– Dynamic LOD allows for performance/quality tradeoffs

– Scale into the future – resolution, compute power

DX11 Tessellation Benefits

DX11 Tessellation On/Off

Unigine Corp. © 2005-2010. All rights reserved

Tessellation in Metro 2033

Displacement mapping enables film-

level geometric complexity in real-time

Screenshots from Metro 2033
© THQ and 4A Games

More Tessellation Use Cases

Tessellation Algorithms

• For subdivision surfaces

– “Phong Tessellation”
[Boubekeur and Alexa 08]

– See GDC 2010 slides
[Ni 10]

• For hair strands

– See SIGGRAPH 2010 slides
[Tariq and Yuksel 10] © THQ and 4A Games

Phong Tessellation

Hair Video

18,000 rendered strands on the GPU from a few 100 simulated strands

Grass Video

Island Video

Particle Rendering

Rendering Particles

• Particle = camera-facing

quad with texture

– Useful for rendering smoke,

steam, snow, waterfalls, etc

• Typically bottlenecked by

raster ops or pixel shading

– Possible optimization =

low-resolution rendering

From Batman: Arkham Asylum

© Square Enix

BATMAN: TM & © DC Comics. (s10)

Low-Resolution Particles

• Render particles into off-
screen low-res render target
– E.g. half or quarter resolution

• Need to perform depth test
against opaque depth buffer
– In the pixel shader

– And/or using a downscaled
hardware depth buffer

• Main issue: blocky artifacts
due to low-res depth test

Full-res particles

[Cantlay 07]

Low-res particles

Fixing Blocky Artifacts

• Downscale depths using a max filter

– Helps but doesn’t remove all z-test artifacts

• Mixed resolution rendering

– Can fix all artifacts

– But refinement pass is expensive

• Joint Bilateral Upsampling

– Can use a 2x2 kernel with

• Spatial weights = bilinear weights (hard coded)

• Range weights = exp(-σ.(zhalfres – zfullres)
2)

– May cause artifacts for island pixels

• If all weights are close to zero

[Cantlay 07]

[Kopf et al. 07]

[Shopf 09]

Low-res particles

Nearest-Depth Filter

• 2x2 upsampling filter used in Batman: Arkham Asylum

– For the low-resolution particles (half-res and quarter-res)

• Step 1: fetch linear depths

– Fetch the full-res depth zc at center uvc

– Fetch the nearest 2x2 low-res depths zsample

– For each sample, keep track of uvmin with minimum |zsample – zc|

• Step 2: fetch low-res color

– If |zsample – zc| < ε for all samples

• Then fetch low-res texture with bilinear filtering at uvc

• Else fetch low-res texture with point filtering at uvmin

BATMAN: TM & © DC Comics. (s10)

Shadowing Particles

• Particles can…

– Receive opaque shadows

• From opaque objects using

regular shadow mapping

– Cast and receive volumetric

shadows from particles

• With Fourier Opacity Mapping

• Fourier Opacity Mapping (FOM)

– Used in Batman: Arkham Asylum

Fourier Opacity Mapping

[Jansen and Bavoil 10]

BATMAN: TM & © DC Comics. (s10)

FOM Video

Order Independent Transparency

Alpha Blending

• Alpha Blending

– Useful for rendering alpha-blended vegetation, semi-

transparent objects, etc.

– Requires depth-sorted order

• Back to front or front to back

• Sorting triangles

– Can be expensive to do for all triangles

– Not correct if triangles intersect one another

Depth Peeling

• Depth peeling and dual depth peeling

– Captures color layers in depth-sorted order

– Blends layers on the fly

[Everitt 01]

[Bavoil and Myers 08]First layer Second layer

A-Buffers

• A-Buffer = list of fragments per pixel [Carpenter 84]

• Approach: capture all the translucent fragments in
rasterization order, not in depth order

– Stencil-Routed K-Buffer [Myers and Bavoil 07]

– Per-Pixel linked Lists [Gruen and Thibieroz 10]

– CUDA rasterization [Liu et al. 10]

• Issue: video memory

– Need to store all the fragments before processing them

Stochastic Transparency

• Stochastic Transparency [Enderton et al. 10]

– Extension of alpha to coverage

– Pros: No sorting needed, naturally works with MSAA

– Con: Noisy output

With 8 MSAA samples per pixel

k-NSS

• k-NSS = k Nearly-Sorted Sequences

– Used for volume rendering of tetrahedral meshes

• [Callahan et al. 05] [Bavoil et al. 07]

– Hybrid algorithm

• Object space: Sort triangles by centroid depth

• Image space: Reorder fragments in a sliding window of size k

– Assuming that fragments are no more than k out-of-order

– Pixel shader outputs nearest or farthest fragment from k-buffer

– Fragments are blended on the fly using fixed-function alpha blending

• With DX11 ps_5_0 pixel shaders

– Can implement k-NSS fragment sorting

• Using InterlockedMin in pixel shader

• Similar to “multi depth test” from [Liu et al. 10]

Screen Space Ambient Occlusion

Ambient Occlusion (AO)

• AO can be defined as the fraction of sky seen from each point

• Gives perceptual clues of curvature and spatial proximity

Without AO With AO

SSAO

• SSAO = Screen Space Ambient Occlusion

• Approach introduced concurrently by

– [Shanmugam and Orikan 07]

– Crytek [Mittring 07] [Kajalin 09]

• Post-processing pass

– Use depth buffer as representation of the scene

– Can multiply SSAO over shaded colors

HBAO

• HBAO = Horizon-Based Ambient Occlusion

– SSAO algorithm developed by NVIDIA

– [Bavoil and Sainz 08] [Bavoil and Sainz 09]

• Normal-Free HBAO
– “Low Quality” mode in DX10 SDK SSAO sample

– Input = view-space depths only (no normals needed)

– Integrates AO in the full sphere

– Used in Battlefield: Bad Company 2 [Andersson 10]

With and Without Normals

HBAO with normals Normal-Free HBAO

HBAO OFF
From Battlefield: Bad Company 2 © EA/DICE

HBAO ON
From Battlefield: Bad Company 2 © EA/DICE

HBAO Performance

• Typical parameters

– Normal-free HBAO pass

• Half-res, 8x6 depth samples per AO pixel

• Max footprint width = 5% of screen width

– Blur passes (horizontal + vertical)

• Full-res, fetch packed (ao,z)

• Blur radius = 20 pixels to remove flickering

– MSAA disabled for SSAO passes

• SSAO aliasing is rarely objectionable

• Typical 1920x1200 performance on GeForce GTX460

– Total HBAO cost ~= 5 ms

• 2.3 ms for occlusion pass

• 2.8 ms for blur passes

Other SSAO Algorithms

• “Crytek Algorithm” [Kajalin 09]

– Used in Crysis

– Uses 3D sample points around surface point

• “Volumetric Obscurance” [Loos and Sloan 10]

– Used in the game Toy Story 3 [Ownby et al. 10]

– Similar to “Volumetric AO” [Szirmay-Kalos et al. 10]

– Uses 2D sample points around pixel (like HBAO)

• Other algorithms can also do color bleeding
– More expensive due to additional color fetches

Cross Bilateral Filter

• To remove noise and flickering

Unfiltered SSAO With blur radius = 15 pixels

Typical SSAO Pipeline

Render opaque

geometry

Render SSAO

Horizontal Blur

Vertical Blur

Modulate Color

view-space

depths

colors noisy AO Input = view-space depths

Output = SSAO image

SSAO Performance

• General recommendations for SSAO

– Keep the kernel footprint tight

• To minimize texture cache misses

• By sourcing low-resolution depth texture

• By clamping the radius in screen space

– Try using temporal filtering

• Allows reducing the number of samples per frame in

the SSAO and blur shaders

Temporal Filtering

• Spatial filtering limitations

– Performance: blur radius >= 20 pixels may be required to
remove all noise and flickering

– Quality: blurring removes high-frequency details

• Temporal filtering [Smedberg and Wright 09] [Soler et al. 10]

– Performance: one texture lookup from previous frame

– Use different noise textures from frame to frame

– Can do spatial filter followed by temporal [Herzog et al. 10]

– For SLI perf, need to avoid inter-frame dependencies

Temporal Filtering Video

Depth Of Field

DOF Use Cases in Games

cut scenes

From Metro2033, © THQ and 4A Games

aiming

From Call of Duty 4, © Activision and Infinity Ward

weapon reloading

From Metro2033, © THQ and 4A Games

DOF Algorithms

• Survey available in GPU Gems [Demers 04]

• Layered DOF
– Assumes objects can be sorted in layers

• Not always applicable

– Blur background (or foreground) separately
• With fixed-size kernel

– Issue with transitions between blur / sharp

• Gather-based DOF
– Variable blur radius

• Function of depth and camera parameters

– Filter colors using depth-dependent weights
• To avoid bleeding across edges

– Main drawback: limited blur radius
© THQ and 4A Games

[Demers 04]

Diffusion Depth Of Field

• “Diffusion Depth Of Field”

– Heat diffusion simulation

• [Kass et al. 06]

– Unlimited blur size

– Used in Metro 2033

• Can use DirectCompute

– For solving tri-diagonal

systems in parallel

• [Zhang et al. 10]

– 8 ms / frame in 1600x1200

on GeForce GTX480

• [Sakharnykh 10]
Screenshot from Metro 2033 © 4A Games, Inc

From Metro2033, © THQ and 4A Games

Diffusion Depth Of Field

Bokeh Filters

• The Bokeh effect

– “Bokeh” is the Japanese word for blur

– Refers to the blurred shape of light sources

– Can take various shapes

– It is a very well know effect used in films

• Bokeh filters require a non separable

convolution for shapes other than circles

– Can benefit from CUDA shared memory

CUDA Bokeh in Just Cause 2

Original

With Bokeh

From Just Cause 2 © Eidos and Avalanche Studios

Conclusion

• Discussed variety of rendering techniques
– Taking advantage of latest GPUs

– Tessellation, transparency, and post-processing effects
(SSAO, depth of field)

• Acknowledgments
– EA / DICE, Square Enix / Rocksteady Studios, THQ / 4A

Games, Eidos / Avalanche Studios, Unigine Corp

– NVIDIA Developer Technology Group

– Eric Enderton for OIT discussions

– FGO organizers

Questions?

lbavoil@nvidia.com
© Square Enix and Rocksteady Studios

© THQ and 4A Games

© THQ and 4A Games

References

• DirectX 11 Tessellation
– [Tariq and Yuksel 10] S. Tariq, C. Yuksel, “Advanced Techniques in Real Time Hair

Rendering and Simulation”, SIGGRAPH 2010 Course

– [Ni 10] Tianyun Ni, “Enriching Details using Direct3D 11 Tessellation”, GDC 2010 Talk

– [Boubekeur and Alexa 08] Tamy Boubekeur, Marc Alexa, “Phong Tessellation”,
SIGGRAPH Asia 2008

• Particle Rendering
– [Jansen and Bavoil 10] Jon Jansen, Louis Bavoil, “Fourier Opacity Mapping”, I3D 2010

– [Shopf 09] Jeremy Shopf, “Mixed Resolution Rendering”, GDC 2009

– [Kopf et al. 07] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint Bilateral
Upsampling”, SIGGRAPH 2007

– [Cantlay 07], Iain Cantlay, “High-Speed, Off-Screen Particles”, GPU Gems 3

References

• Order-Independent Transparency (OIT)
– [Enderton et al. 10] E. Enderton, E. Sintorn, P. Shirley, D. Luebke, “Stochastic

Transparency”, I3D 2010

– [Gruen and Thibieroz 10] H. Gruen and N. Thibieroz, “OIT and Indirect Illumination using
DX11 Linked Lists”, GDC 2010

– [Liu et al. 10] Liu, Huang, Liu, Wu, “FreePipe: a programmable parallel rendering
architecture for efficient multi-fragment effects”, I3D 2010

– [Bavoil and Myers 08] L. Bavoil and K. Myers, “Order Independent Transparency with
Dual Depth Peeling”, Technical report, NVIDIA, 2008

– [Myers and Bavoil 07] "Stencil Routed A-Buffer", Kevin Myers, Louis Bavoil, ACM
SIGGRAPH Technical Sketch Program, 2007

– [Bavoil et al. 07] L. Bavoil, S. P. Callahan, A. Lefohn, J. L. D. Comba, C. T. Silva, “Multi-
Fragment Effects on the GPU using the k-Buffer”, I3D 2007

– [Callahan et al. 05] S. P. Callahan, M. Ikits, J. L. D. Comba, C. T. Silva, “Hardware-Assisted
Visibility Sorting for Unstructured Volume Rendering”, IEEE TVCG, 2005

– [Everitt 01] C. Everitt, “Interactive order-independent transparency”, Technical report,
NVIDIA, 2001

– [Carpenter 84] L. Carpenter, “The A-buffer, an antialiased hidden surface method”,
SIGGRAPH 1984

References

• Screen Space Ambient Occlusion (SSAO)
– [Andersson 10] J. Andersson, “Bending the Graphics Pipeline”, SIGGRAPH 2010 Course

– [Loos and Sloan 10] Loos, Sloan, “Volumetric Obscurance”, I3D 2010

– [Szirmay-Kalos et al. 10] Szirmay-Kalos, Umenhoffer, Tóth, Szécsi, Sbert, “Volumetric
Ambient Occlusion”, Technical Report, 2010

– [Ownby et al. 10] J-P. Ownby, R. Hall and C. Hall, “Rendering techniques in Toy Story 3”,
SIGGRAPH 2010 Course

– [Kajalin 09] V. Kajalin, “Screen Space Ambient Occlusion”, ShaderX 7, 2009

– [Bavoil and Sainz 09] L. Bavoil, M. Sainz, “Image-Space Horizon-Based Ambient
Occlusion”, ShaderX 7, 2009

– [Bavoil and Sainz 08] L. Bavoil, M. Sainz, “Image-Space Horizon-Based Ambient
Occlusion”, SIGGRAPH 2008 Talk

– [Shanmugam and Arikan 07] P. Shanmugam, O. Arikan, “Hardware accelerated ambient
occlusion techniques on GPUs”, I3D 2007

– [Mittring 07] Mittring, “Finding next gen: Cry Engine 2”, SIGGRAPH 2007 Course

References

• Temporal Filtering

– [Herzog et al. 10] Herzog, Eisemann, Myszkowski, Seidel, “Spatio-temporal upsampling

on the GPU”, I3D 2010

– [Soler et al. 10] C. Soler, O. Hoel, F. Rochet, N. Holzschuch, “A Deferred Shading

Algorithm for Real-Time Indirect Illumination”, SIGGRAPH 2010 Talk

– [Smedberg and Wright 09] N. Smedberg, D. Wright, “Rendering Techniques in Gears of

War 2”, GDC 2009

• Depth Of Field

– [Sakharnykh 10] N. Sakharnykh, “Depth of Field using DirectX Compute”, KRI Conference

Talk, May 2010

– [Zhang et al. 10] Y. Zhang, J. Cohen, J. D. Owens, “Fast Tridiagonal Solvers on the GPU”,

Principles and Practice of Parallel Programming (PPoPP), 2010

– [Kass et al. 06] M. Kass, A. Lefohn, J. Owens, “Interactive Depth of Field Using Simulated

Diffusion”, Pixar Technical Report, 2006

– [Demers 04] J. Demers, “Depth of Field: A Survey of Techniques”, GPU Gems, 2004

