
© 2009 NVIDIA Corporation

SIGGRAPH Asia 2009 GPU Computing master Class
Future Direction in GPU Computing

Toru Baji / NVIDIA Solution Architect 16th Dec., 2009

© 2009 NVIDIA Corporation

Content
Why GPU Computing?

Single-threaded CPU performance is no longer scaling
CUDA can exploit “ Performance = Parallelism”

Evolution of NVIDIA GPU
Key Milestone in GPU Computing ‘Fermi’

Processor / Memory Architecture
Enhanced Thread Management
CUDA3.0
Integrated Development Environment ‘Nexus’

An NVIDIA ExaScale Machine in 2017
Conclusion

© 2009 NVIDIA Corporation

Single-threaded CPU performance is no longer scaling (1)
Moore’s Law

In 1965, Gordon Moore
predicted the number of Tr will
grow at the rate of:
x 2 / year
later revised to
x 2 / 18-months

No prediction of CPU
performanceMoore, Electronics 38(8) April, 1965

© 2009 NVIDIA Corporation

Single-threaded CPU performance is no longer scaling (2)
The End of ILP (Instruction Level Parallelism) Scaling

The increase in Tr counts was used to increasing the parallelism of the CPU
instruction execution (e.g. superscalar, pipeline) and other speed-ups

Bill Dally et al., the Last Classical Computer, ISAT Study, 2001

CPU Performance: ps/inst

Performance is measured as
the time required to execute
one instruction (ps/inst)

© 2009 NVIDIA Corporation

Single-threaded CPU performance is no longer scaling (3)
Explicit Parallelism is Now Attractive

Bill Dally et al., the Last Classical Computer, ISAT Study, 2001

Explicit Parallelism
Gap is Growing

The increase in Tr counts is used to increasing the number of processors

© 2009 NVIDIA Corporation

CUDA can exploit Performance = Parallelism
Now it is clear that “ Performance = Parallelism”

Then what is required to exploit this Parallelism?
Many efficient processors
A programming system that abstract the parallelism

“CUDA (Compute Unified Device Architecture”
GPU has hundreds of full-featured processors
Multi-threading architecture use the best of those massive parallel cores
CUDA starts from extension to the familiar C-language, and now expanded
to Fortran, OpenCL and direct Compute
CUDA can isolate the programmer from the details of parallel programming

© 2009 NVIDIA Corporation

CUDA GPU Computing Visual Demo
separate animation tool used

Hierarchical thread
definition

Scalability to n-SMs Hide memory Latency

© 2009 NVIDIA Corporation

Ease of Programming and Performance Increase
Ease of programming represented as “Development time”
Performance achievement measured in GFLOPS

Source: Nicolas Pinto, MIT

GPU with CUDA

Cell Processor

CPU & SSE-SIMD

High-level algorithm
Development tool on CPU

© 2009 NVIDIA Corporation

Evolution of NVIDIA GPU - Number of Cores

2
1

4

8

16

32

64

128

256
512

1024
FERMI 512

C1060 240

C870 128
GTX285 240

GTX260 216
GTX250 128

GTX240 112

GeForce
GT2XX

Tesla

9800GTX 128

9600GT 64

GeForce
9XXX

9500GT 32

9400GT 16

GeForce
8XXX

8800GTX 128

8800GS 96

8600GTS 32

8500GT 16

8300GT 8

7900GT 8+16

7800GT 6+16

GeForce
7XXX

7600GT 5+12

7500GT 3+4

7300SE 2+2
7050SE 1+4

GeForce
6XXX

6800G
T 6+16
6800 5+126800X

T 4+8
6200 3+4

6200 1+2

GeForce
5XXX

FX590
0 3+8

FX570
0 3+2

FX560
0 1+2

GeForce
4XXX

GeForce
3XXX

Ti4800 2+4

Ti4000 0+2

Ti500 1+4

Programmable Shader

Number of programmable shaders / die

Vertex Shader + Pixel Shader

Unified Shader

Unified Shader

- Vertical axis shows the number of cores, but not the
performance
- Only major products are shown

CUDA, OpenCL, DirectX Compute etc

Fermi

Tesla Architecture

Fermi Architecture

© 2009 NVIDIA Corporation

Gap of GPU-CPU Performance, Mem-BW is growing

8x double precision
ECC

L1, L2 Caches

1 TF Single Precision
4GB Memory

NVIDIA GPU
X86 CPU

1000

100

© 2009 NVIDIA Corporation

Key Milestone in GPU Computing ‘Fermi’

Improved peak performance

Improved throughput efficiency

Broader applicability

Full integration within modern
software development
environment

D
R

A
M

 I/
F

D
R

A
M

 I/
F

H
O

ST
 I/

F
H

O
ST

 I/
F

G
ig

a
Th

re
ad

D
R

A
M

 I/
F

D
R

A
M

 I/
F D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F

L2L2

© 2009 NVIDIA Corporation

SM Multiprocessor Architecture
Register FileRegister File

SchedulerScheduler

DispatchDispatch

SchedulerScheduler

DispatchDispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K Configurable64K Configurable
Cache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

Instruction CacheInstruction Cache

32 CUDA cores per SM (512 total)

8x peak FP64 performance
50% of peak FP32 performance

Dual Thread Scheduler

64 KB of RAM for shared memory
and L1 cache (configurable)

FP32FP32 FP64FP64 INTINT SFUSFU LD/STLD/ST
Ops / clkOps / clk 3232 1616 3232 44 1616

© 2009 NVIDIA Corporation

IEEE 754-2008 Floating Point

IEEE 754-2008 results
64-bit double precision
32-bit single precision
full-speed denormal operands & results
NaNs, +/- Infinity

IEEE 754-2008 rounding
nearest even, zero, +inf, -inf

IEEE 754-2008 Fused Multiply-Add (FMA)
D = A*B + C;
No loss of precision
IEEE divide & sqrt use FMA

© 2009 NVIDIA Corporation

Cached Memory Hierarchy

Configurable L1 cache per SM
16KB L1$ / 48KB Shared Memory
48KB L1$ / 16KB Shared Memory

Shared 768KB L2 cache
Motivation:

Caching captures locality, amplifies
bandwidth
Caching more effective than Shared
Memory RAM for irregular or
unpredictable access

Ray tracing, sparse matrix multiply,
physics kernels …

Caching helps latency sensitive cases

© 2009 NVIDIA Corporation

Larger, Faster Memory Interface

GDDR5 memory interface
2x improvement in peak speed over GDDR3

Up to 1 Terabyte of memory attached to GPU
Operate on large data sets

D
R

AM
 I/

F
D

R
AM

 I/
F

G
ig

a
Th

re
ad

H
O

ST
 I/

F
H

O
ST

 I/
F

D
R

AM
 I/

F
D

R
AM

 I/
F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

D
R

AM
 I/F

L2L2

© 2009 NVIDIA Corporation

Unified Load/Store Addressing

© 2009 NVIDIA Corporation

ECC Memory Protection

All major internal memories protected by ECC
Register file
L1 cache
L2 cache

External DRAM protected by ECC

ECC is a must have for many computing applications
Clear customer feedback

© 2009 NVIDIA Corporation

GigaThreadTM Hardware Thread Scheduler

Hierarchically manages tens of thousands of simultaneously active threads

10x faster context switching on Fermi

Overlapping kernel execution

HTS

© 2009 NVIDIA Corporation

Overlapping Kernel Execution

Serial Kernel ExecutionSerial Kernel Execution Parallel Kernel ExecutionParallel Kernel Execution

Ti
m

e
Ti

m
e

Kernel 1Kernel 1 Kernel 1Kernel 1 Kernel 2Kernel 2

Kernel 2Kernel 2 Kernel 3Kernel 3

Kernel 3Kernel 3

KerKer
44

nelnel Kernel 5Kernel 5

Kernel 5Kernel 5

Kernel 4Kernel 4

Kernel 2Kernel 2

Kernel 2Kernel 2

© 2009 NVIDIA Corporation

GigaThread Streaming Data Transfer Engine

Dual DMA engines

Simultaneous CPU GPU
and GPU CPU data transfer

Fully overlapped with CPU/GPU processing

SDT

SDT

Kernel 0
Kernel 1

Kernel 2
Kernel 3

CPUCPU

CPUCPU

CPUCPU

CPUCPU

SDT0

SDT0

SDT0

SDT0

GPUGPU

GPUGPU

GPUGPU

GPUGPU

SDT1

SDT1

SDT1

SDT1

© 2009 NVIDIA Corporation

G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point - 30 FMA ops/clock 256 FMA ops/clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock

Special Function Units (per SM) 2 2 4

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48/16 KB

L1 Cache (per SM) - - Configurable 16/48 KB

L2 Cache - - 768 KB

ECC Memory Support - - Yes

Concurrent Kernels - - Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

© 2009 NVIDIA Corporation

GPU Computing ApplicationsGPU Computing Applications

CUDA Parallel Computing Architecture

NVIDIA GPUNVIDIA GPU
with the CUDA Parallel Computing Architecturewith the CUDA Parallel Computing Architecture

CC OpenCLOpenCLtmtm Direct Direct
ComputeCompute FortranFortran Java and Java and

PythonPython

OpenCL is trademark of Apple Inc. used under license to the Khronos Group Inc.

C++C++

© 2009 NVIDIA Corporation

CUDA C 3.0

Unified addressing for C and C++ pointers
Global, shared, local addresses
Enables 3rd party GPU callable libraries, dynamic linking
One 40-bit address space for load/store instructions

Compiling for native 64-bit addressing

IEEE 754-2008 single & double precision
C99 math.h support

© 2009 NVIDIA Corporation

NVIDIA Integrated Development Environment
Code-named ‘Nexus’

Industry’s 1st IDE for massively parallel applications

Accelerate development of CPU + GPU
co-processing applications

Complete Visual Studio-integrated development environment
C, C++, OpenCL, & DirectCompute platforms
DirectX and OpenGL graphics APIs

© 2009 NVIDIA Corporation

© 2009 NVIDIA Corporation

D
R

A
M

 I/
F

D
R

A
M

 I/
F

H
O

ST
 I/

F
H

O
ST

 I/
F

G
ig

a
Th

re
ad

D
R

A
M

 I/
F

D
R

A
M

 I/
F D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F

L2L2

Fermi Summary

Third generation CUDA architecture

Improved peak performance

Improved throughput efficiency

Broader applicability

Full integration within modern development environment

© 2009 NVIDIA Corporation

Future: ExaScale Computing
ExaScale (10^18) is the next milestone following

PetaScale (10^15) computing

DARPA, HP, France and others are planning for

ExaScale computing facilities.

DARPA report (28th Sept., 2008) described four

major challenges (Power consumption, memory,

Concurrency/Locality, Resiliency)

DARPA reports that the number one issue is

Power. Extrapolation of Power indicates over

100MW for Exaflop. Available at
www.darpa.mil/personnel/docs/ExaScale_Study_Initial.pdf

© 2009 NVIDIA Corporation

A Possible NVIDIA ExaScale Machine in 2017
by Bill Dally: Chief Scientist & Sr. VP of Research, NVIDIA
A projection based on Moore’s Law and does not represent a committed roadmap

GPU Node (GPU + CPU + memory + supply) ~300W
2,400 throughput-cores (7,200FPUs), 16 CPUs – single chip
40TFLOPS (SP), 13TFLOPS (DP)

Node Memory
128GB DRAM, 2TB/s bandwidth
512GB Phase-change Flash for checkpoint and scratch

Cabinet ~100kW
384-Nodes 15.7PFLOPS (SP), 50TB DRAM
Dragonfly network – 1TB/sec node bandwidth

System ~ 10MW
128 cabinets – 2 ExaFLOPS (SP), 6.8PB DRAM
Dragonfly network with active optical links

© 2009 NVIDIA Corporation

Conclusion

Performance of Single-threaded processor is saturating

Performance = Parallelism

NVIDIA are committed to offer massive parallel GPUs for now and

beyond

CUDA GPU computing abstracts parallel programming

‘Fermi’ is the key milestone in GPU Computing

© 2009 NVIDIA Corporation

Thank you for your attention

	Slide Number 1
	Content
	Single-threaded CPU performance is no longer scaling (1)�Moore’s Law
	Single-threaded CPU performance is no longer scaling (2)�The End of ILP (Instruction Level Parallelism) Scaling
	Single-threaded CPU performance is no longer scaling (3)�Explicit Parallelism is Now Attractive
	CUDA can exploit Performance = Parallelism
	CUDA GPU Computing Visual Demo�separate animation tool used
	Ease of Programming and Performance Increase
	Evolution of NVIDIA GPU - Number of Cores
	Gap of GPU-CPU Performance, Mem-BW is growing
	Key Milestone in GPU Computing ‘Fermi’
	SM Multiprocessor Architecture
	IEEE 754-2008 Floating Point
	Cached Memory Hierarchy
	Larger, Faster Memory Interface
	Unified Load/Store Addressing
	ECC Memory Protection
	GigaThreadTM Hardware Thread Scheduler
	Overlapping Kernel Execution
	GigaThread Streaming Data Transfer Engine
	Slide Number 21
	CUDA Parallel Computing Architecture
	CUDA C 3.0
	NVIDIA Integrated Development Environment�Code-named ‘Nexus’
	Slide Number 25
	Fermi Summary
	Future: ExaScale Computing
	A Possible NVIDIA ExaScale Machine in 2017�by Bill Dally: Chief Scientist & Sr. VP of Research, NVIDIA�A projection based on Moore’s Law and does not represent a committed roadmap�
	Conclusion
	Slide Number 30

