The CUDA architecture

The Art of performance optimization

wbraithwaite@nvidia.com
Overall optimization strategies

- Maximize parallel execution
 - Exposing data parallelism in algorithms
 - Overlap memory access with computation
 - Keep the hardware busy

- Maximize memory bandwidth
 - Access data efficiently

- Maximize instruction throughput
 - Use as few clock cycles as possible
The Art of Performance Optimization

- Exploiting parallelism
- Sending data to the device
- CUDA architecture refresher
- Execution configuration
- Speeding up memory access
- Instruction optimization
Amdahl's Law – Example

- $P = \text{parallel proportion}$
- $N = \text{number of procs}$

Assume $N \rightarrow \infty$

Only $\frac{3}{4}$ of program can be parallelized

$S = 4$

The maximum speedup can only be 4x
Theoretical Bandwidth

Device Bandwidth of GTX 280

\[1107 \times 10^6 \times \frac{512}{8} \times 2 / 10^9 = 141.6 \text{ GB/s} \]

Some specs report 132 GB/s

- They use 1024^3 B/GB conversion rather than 10^9
Effective Bandwidth

Effective Bandwidth (GB/s) =
\[
\frac{(B_R + B_W) \times 10^9}{\text{time}}
\]

Example of copying array of N floats

\[
\frac{N \times \text{sizeof(float)} \times 2}{\text{num_seconds} \times 10^9} = \text{GB/s}
\]

Array size (bytes)

Our goal is to make effective bandwidth as close to theoretical bandwidth as possible
NVIDIA GPUs have dedicated memory
- nearly 10X the bandwidth of CPU memory, this is a tremendous advantage
- 141 GB/s peak (GTX 280) vs. 6 GB/s peak (PCI-e x16 Gen2)

Developers may be discouraged by the overhead of transferring data between Host and Device

Some ways to fix this:
- Avoid it...
- Make it faster...
- Hide it...
Host ↔ Device – Minimize transfers

- Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory.
- Sometimes it’s better to recompute than to cache.
- Even low-parallelism computations can sometimes be faster than transferring back and forth.
- Use graphics interoperability...
Graphics Interop – Overview

- OpenGL buffer objects can be mapped into the device's address-space
 - Direct3D9 Vertex objects can also be mapped (see programming guide for details)
 - Data is accessed like global memory in the kernel
 - Can remove host ↔ device transfer entirely
 - Automatic DMA from Tesla to Quadro (currently via host)

- Image data can be displayed from PBOs
 - using glDrawPixels / glTexImage2D
 - Requires high-speed copy in video memory

See SDK!
postProcessGL
simpleGL...
Graphics Interop – Details

- Register a buffer object with CUDA-C
 - `cudaGLRegisterBufferObject(GLuint buffObj)`
- Map a registered buffer object to device memory
 - `cudaGLMapBufferObject(void** devPtr, GLuint buffObj)`
 - Returns an address in global memory
- Use returned memory address in your kernel
- Unmap the buffer object prior to use by OpenGL
 - `cudaGLUnmapBufferObject(GLuint buffObj)`
- Unregister the buffer object
 - `cudaGLUnregisterBufferObject(GLuint buffObj)`
 - Only needed if the buffer is a render-target
- Use the buffer object in your OpenGL code...
Graphics Interop – Example

Dynamic CUDA-generated texture:

```c
// setup code:
cudaGLRegisterBufferObject(pbo);

// CUDA texture generation code:
unsigned char *d_buffer;
cudaGLMapBufferObject((void**) &d_buffer, pbo);
prep_texture_kernel<<<...>>>(d_buffer);
cudaGLUnmapBufferObject(pbo);

// OpenGL rendering code:
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
glBindTexture(GL_TEXTURE_2D, tex);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 256, 256, GL_BGRA, GL_UNSIGNED_BYTE, 0);
```
Graphics Interop – Example

Frame Post-processing by CUDA:

```c
// OpenGL rendering code:
// ...

// CUDA post-processing code:
unsigned char *d_buffer;
cudaGLRegisterBufferObject(pbo);
cudaGLMapBufferObject((void**) &d_buffer, pbo);
post_process_kernel<<<...>>>(d_buffer);
cudaGLUnmapBufferObject(pbo);
cudaGLUnRegisterBufferObject(pbo);
```
GLuint vbo_pos;
glGenBuffers(1, vbo_pos);
glBindBuffer(GL_ARRAY_BUFFER, &vbo_pos);
glBufferData(GL_ARRAY_BUFFER, N_POINTS*4*sizeof(float), 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
cudaGLRegisterBufferObject(vbo_pos);

// LOOP:
float4 *d_pos;
cudaGLMapBufferObject((void**)&d_pos, vbo_pos);
move_points_kernel<<<N_POINTS/256, 256>>>(d_pos);
cudaGLUnmapBufferObject(vbo_pos);

glBindBuffer(GL_ARRAY_BUFFER, &vbo_pos);
glVertexPointer(4, GL_FLOAT, 0, 0);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, N_POINTS);
glDisableClientState(GL_VERTEX_ARRAY);
Host ↔ Device – Making it faster!

- Group transfers
 - One large transfer much better than many small ones

- Use Page-locked memory...
Host ↔ Device – Page-locked memory

- Prevents OS from paging host memory
 - Allows PCI-e DMA to run at full speed
 - ≈ 3 GB/s (PCI-e x16 Gen1) or 6 GB/s (PCI-e x16 Gen2)

WARNING:
- Allocating too much page-locked memory can reduce system performance

CUDA-C:
- Instead of `malloc(...)`, use `cudaHostAlloc(...)`

OpenCL:
- Use `CL_MEM_ALLOC_HOST_PTR` in `clCreateBuffer`
Host ↔ Device – Performance

Graph showing bandwidth (MB/s) vs. transfer size (MB). The graph compares different transfer scenarios:
- Host to Device Pinned
- Device to Host Pinned
- Host to Device Pageable
- Device to Host Pageable

The x-axis represents the transfer size (MB), starting from 0.001 to 10 MB, while the y-axis shows the bandwidth in MB/s, ranging from 0 to 6000 MB/s.
CUDA-C has option of Write-Combining

memory is not snooped which can improve performance by up to 40%

WARNING:

- Not cached = FAST write, but SLOW host read

```c
cudaHostAlloc((void**)&h_data, num_bytes, cudaHostAllocWriteCombined);
```
Host ↔ Device – Hiding it

- Asynchronous API
- Data Acquisition example
- CUDA Streams
- Zero Copy
Typical Approach

1. Copy Data from CPU Memory to GPU Memory
2. Run CUDA Kernel(s)
3. Copy Data from GPU Memory to CPU Memory

- PCIe (5 GB/s)
- CPU Memory
- GPU Memory
- Chipset (60-80 GB/s)
- CPU
- GPU
- 5-10 GB/s
Synchronous Functions

- **Standard CUDA C functions are Synchronous**
 - Trade-off between CPU cycles and response speed
 - `cudaDeviceSetFlags(...)`
 - `cudaDeviceScheduleSpin`,
 - `cudaDeviceScheduleYield`,
 - `cudaDeviceBlockingSync`

- **Runtime API: Kernel launches are Asynchronous**

- **Synchronous functions block on any prior asynchronous kernel launches**
 - `cudaMemcpy(...)`
 - `kernel<<<grid, block>>>(...)`
 - `cudaMemcpy(...)`

 - Doesn’t return until copy is complete
 - Returns immediately
 - Waits for `kernel` to complete, then starts copying. Doesn’t return until copy is complete.
Asynchronous API

- All memory operations can also be asynchronous, and return immediately
- Copies & Kernels are queued up in the GPU
- Any launch overhead is overlapped
Asynchronous API – Caveats

- Memory must be allocated as page-locked using cudaHostAlloc()

- Synchronous calls should be done outside critical sections — some of these are expensive!
 - Initialization
 - Memory allocations
 - Stream / Event creation
 - Interop resource registration

PINNED memory allows direct DMA transfers by the GPU to and from system memory. It’s locked to a physical address
Asynchronous API – Example

cudaMemcpyAsync(void* dst,
void* src,
size_t count,
enum cudaMemcpyKind kind,
cudaStream_t stream)

// cpu does work here...

cudaThreadSynchronize();

Returns immediately
Returns immediately
Returns immediately
Waits for everything on the GPU to finish, then returns

More on streams soon, for now assume stream = 0
Using Events – Example

cudaEvent_t HtoDdone;

cudaEventCreate(&HtoDdone, 0);
cudaMemcpyAsync(d_dest, h_source, bytes, cudaMemcpyHostToDevice, 0);
cudaEventRecord(HtoDdone);

myKernel<<<grid,block>>>(...);

cudaMemcpyAsync(d_dest, h_source, bytes, cudaMemcpyDeviceToHost, 0);

// cpu can do stuff here

cudaEventSynchronize(HtoDdone);

// The first memory copy is done,
// so the memory at source could be
// used again by the CPU

cudaThreadSynchronize();

Waits just for everything before
cudaEventRecord(HtoDdone)
to complete, then returns

Waits for everything on the
GPU to finish, then returns
Acquiring Data From an Input Device

No Overlap: Acquire, Transfer, & Compute frame[i]
Overlap Acquisition With Transfer

2-way Overlap:
Acquire frame\([i]\)
Transfer & compute frame\([i-1]\)
Overlap Acquisition With Transfer

- Use 2 pinned CPU buffers, ping-pong between them

```c
int buf = 0;
void* d_framebuf;
void* h_framebuf[2];
// Allocate buffers...

while (!done)
{
    cudaMemcpyAsync(d_framebuf, h_framebuf[(buf+1)%2], size,
                    cudaMemcpyHostToDevice, 0);

    myKernel1<<<...>>>(d_framebuf);
    // ... other GPU stuff, all asynchronous

    AcquireFrame(h_framebuf[buf]);
    // ... other CPU stuff

    cudaThreadSynchronize();
    buf++; buf%=2;
}
```
CUDA Streams

- NVIDIA GPUs with Compute Capability >= 1.1 have a dedicated DMA engine.
- DMA transfers over PCIe can be concurrent with CUDA kernel execution.*
- Streams allows independent concurrent in-order queues of execution:
 - `cudaStream_t, cudaStreamCreate()`
- Multiple streams exist within a single context, they share memory and other resources.

*1D Copies only! `cudaMemcpy2DAsync` cannot overlap.
Stream Parameter

- All Async function varieties have a stream parameter

- Runtime Kernel Launch
 - \(<\langle GridSize, BlockSize, SMEM Size, Stream\rangle>\rangle\)

- Copies & Kernel launches with the same stream parameter execute in-order
CUDA Streams

Independent Tasks:

- TASK A
 - COPY A1
 - KERNEL A1
 - KERNEL A2
 - KERNEL A3
 - COPY A2

- TASK B
 - COPY B1
 - COPY B2
 - KERNEL B1
 - COPY B3
 - COPY B4

Scheduling on GPU:

- Copy Engine
 - COPY A1
 - COPY B1
 - COPY B2
 - COPY B3
 - COPY B4

- Compute Engine
 - KERNEL A1
 - KERNEL A2
 - KERNEL A3
 - KERNEL B1

Time
Avoid Serialization!

WRONG WAY!

CudaMemcpyAsync(A1..., StreamA);
KernelA1<<<..., StreamA>>>();
KernelA2<<<..., StreamA>>>();
KernelA3<<<..., StreamA>>>();
CudaMemcpyAsync(A2..., StreamA);

CudaMemcpyAsync(B1..., StreamB);
CudaMemcpyAsync(B2..., StreamB);
KernelB1<<<..., StreamB>>>();
CudaMemcpyAsync(B3..., StreamB);
CudaMemcpyAsync(B4..., StreamB);

- Engine queues are filled in the order code is executed
CORRECT WAY!

CudaMemcpyAsync(A1..., StreamA);
KernelA1<<<..., StreamA>>>()
KernelA2<<<..., StreamA>>>()
KernelA3<<<..., StreamA>>>()
CudaMemcpyAsync(B1..., StreamB);
CudaMemcpyAsync(B2..., StreamB);
CudaMemcpyAsync(B2..., StreamB);
CudaMemcpyAsync(A2..., StreamA);
CudaMemcpyAsync(B2..., StreamB);
CudaMemcpyAsync(B2..., StreamB);
Revisit Our Data I/O Example

3-way Overlap:
Acquire frame[i]
Transfer frame[i-1]
Compute frame[i-2]
3-Way Overlap

- As before, allocate two host buffers
- Also allocate two device buffers

```c
int buf = 0; // current buffer
void* h_framebuf[2];
void* d_framebuf[2];
cudaStream_t copyStream; // stream for copy
cudaStream_t compStream; // stream for compute

// Allocate Buffers
cudaHostAlloc(&(h_framebuf[0]),size,0);
cudaHostAlloc(&(h_framebuf[1]),size,0);
cudaMalloc(&(d_framebuf[0]),size,0);
cudaMalloc(&(d_framebuf[1]),size,0);

// Create Streams
cudaStreamCreate(&copyStream,0);
cudaStreamCreate(&compStream,0);
```
while (!done)
{
 cudaMemcpyAsync(d_framebuf[buf],
 h_framebuf[(buf+1)%2],size,
 cudaMemcpyHostToDevice,
 copyStream);

 myKernel1<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%2]);
 myKernel2<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%2]);
 // ... other GPU stuff, all asynchronous

 AcquireFrame(h_framebuf[buf]);
 // ... other CPU stuff

 cudaThreadSynchronize();
 buf++; buf%=2;
}
What About Readback?

3-way Overlap:
Acquire frame[i]
Transfer frame[i-1]
Readback frame[i-3]
Compute frame[i-2]
while (!done)
{
 cudaMemcpyAsync(d_framebuf[buf], h_framebuf[(buf+1)%3], size,
 cudaMemcpyHostToDevice, copyStream);

 cudaMemcpyAsync(d_framebuf[buf+2], h_framebuf[(buf+2)%3], size,
 cudaMemcpyDeviceToHost, copyStream);

 kernel1<<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%3]…);
 kernel2<<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%3]…);
 // ... other GPU stuff, all asynchronous

 AcquireFrame(h_framebuf[buf]);
 // ... other CPU stuff

 cudaThreadSynchronize();
 buf++; buf%=3;
}
4-Way Overlap?

- FUTURE hardware adds a 2nd copy engine!
 - Simultaneous upload and downloading
 - Simply add another stream
 - still works with prior hardware, just serialized

```c
... cudaMemcpyAsync(d_framebuf[buf], h_framebuf[(buf+1)%3], size, cudaMemcpyHostToDevice, uploadStream);

cudaMemcpyAsync(d_framebuf[buf+2], h_framebuf[(buf+2)%3], size, cudaMemcpyDeviceToHost, downloadStream);
...```

NVIDIA Confidential
Host Memory Mapping – Zero-Copy

- The easy way to achieve copy/compute overlap!
- Access host memory directly from device code
  - Transfers implicitly performed as needed by device code
  - Introduced in CUDA 2.2
- Check `canMapHostMemory` field of `cudaDeviceProp` variable
- All setup is done on host using mapped memory

```c
cudaSetDeviceFlags(cudaDeviceMapHost);
...
cudaHostAlloc((void**)&a_h, nBytes, cudaMemcpyHostAlloc);
cudaHostGetDevicePointer((void**)&a_d, (void*)a_h, 0);
for (i=0; i<N; i++)
 a_h[i] = i;
increment<<<grid, block>>>(a_d, N);
```

See SDK samples!
Zero Copy guidelines

- Easier and faster alternative to using Async API
- Data is transferred over the PCIe bus automatically, but it’s slow
  - Use when data is only read/written once
  - Use for small amounts of data (new variables, CPU/GPU communication)
  - Use when compute/memory ratio is very high and occupancy is high, so latency over PCIe is hidden
  - Coalescing is critically important

- Zero copy will be a win for integrated devices
  - you can check this using the `integrated` property in `cudaDeviceProp`

Note: For Ion™ and other Unified Memory Architecture (UMA) GPUs zero-copy eliminates data transfer altogether!
GPU Memory architecture

- Host memory
  - 6 GB/s peak (PCIe x16 Gen2)
- Global / Local device memory
  - 4GB
  - high latency, 141 GB/s peak
- Constant memory
  - 64 KB read-only
  - cached
- Texture memory
  - read-only
  - spatially cached
- Shared memory
Hierarchical thread structure

Individual **THREADS** operate on data elements.

The unit of parallelism.

Negligible cost for creation, switching, and overhead.

Threads are grouped into **BLOCKS**, which can synchronize and cooperate.

A **GRID** contains multiple blocks and covers the entire data set.
Execution Model

**Programming model:**
- THREAD
- BLOCK
- GRID

**Hardware:**
- Scalar Processor
- Streaming Multiprocessor
- Device

- **Threads are executed by scalar processors**
- **BLOCKS are executed on multiprocessors**
  - BLOCKS do not migrate
  - Several concurrent BLOCKS can reside on one SM.
    - This is limited by SM resources
- **A kernel is launched as a GRID of BLOCKS**
  - Only one kernel can execute on a device at one time
WARPS

- BLOCKS divide into groups of threads called WARPS
- The unit of scheduling
- All threads in warp perform same instruction (SIMT)
- Using many warps can hide memory latency
- warpSize = 32 threads
Latency hiding – single-threaded

The time saved from maths performance increase is small because memory latency is the limiting factor.

\[
\text{Time saved} = \text{Computation time} - \text{Memory latency}
\]

M = Memory latency
C = Computation time
Latency hiding – multi-threaded

We must try to ensure that the processor is always doing work

- M = Memory latency
- C = Computation time

Warps

Time

stall
Latency hiding – multi-threaded

To hide latency we can increase the amount of warps

- M = Memory latency
- C = Computation time

![Diagram showing warps and time]
Latency hiding – Example

- Instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy.

How many warps to hide global memory access?

- We need 100 (400/4) arithmetic instructions to hide the latency.
- e.g. Assume the code has 8 instructions (8*4 cycles) for each global memory access (~400 cycles).
- $100 / 8 \approx 13$ warps.
Latency hiding – Example

- Read-after-write register dependency
  - Instruction’s result can be read ~24 cycles later

**KERNEL CODE:**

```plaintext
x = y + 5;
z = x + 3;
```

**PTX CODE:**

```plaintext
add.f32 $f3, $f1, $f2
add.f32 $f5, $f3, $f4

s_data[0] += 3;
```

**PTX CODE:**

```plaintext
ld.shared.f32 $f3, [$r31+0]
add.f32 $f3, $f3, $f4
```

- To completely hide the latency:
  - We need at least 6 warps (24 / 4) per multiprocessor
Occupancy

- **Occupancy** =  
  - Number of warps running concurrently on a multiprocessor divided by hardware-limit of max possible number of simultaneous warps

- **Max warps** = 32  
  - (24 on older hardware, CC <= 1.1)

- To hide GMEM latency on CC 1.2, we need at least:  
  - \(\frac{13}{32} = 40\%\) occupancy

- To hide register dependency on CC 1.1, we need:  
  - \(\frac{6}{24} = 18.75\%\) occupancy
Increase occupancy to achieve latency hiding

Occupancy is limited by SM resource usage:

- Registers = 64KB = 16384
  - (32K on older hardware = 8192 registers)
- Shared memory = 16KB
- Scheduling hardware
  - max running warps per SM = 32
  - max blocks per SM = 8
Occupancy – Register pressure

- Increase warps by running more threads per SM
  - Get as many threads (and blocks) able to run as possible

- Limiting Factors:
  - Number of registers per kernel
    - 64KB per SM, partitioned among concurrent threads
  - Amount of shared memory
    - 16KB per SM, partitioned among concurrent blocks
    - kernel parameters go in Shared Memory – consider using constant memory instead

\[ R = \text{registers required by kernel} \]
\[ R_{\text{max}} = \text{maximum registers per SM (16384)} \]
\[ \text{actual required registers} = \text{ceil}(R * \text{ceil}(\text{BLOCK\_SIZE}, 32), R_{\text{max}} / 32) \]
SM partitions registers and local memory for all active blocks:

- If every thread uses 10 registers and every block has 256 threads:
  - Each block uses 256*10 = 2560 registers.
  - $8192 / 2560 = 3.2 \rightarrow 3$ blocks
  - $(256*3 = 768) / 32 \rightarrow 24$ warps can run
  - $(24 / 24) \rightarrow 100\%$ occupancy can be achieved

- However, if every thread uses 17 registers:
  - $8192 / (256*17) = 1.9 \rightarrow 1$ block
  - $(256*1 = 256) / 32 \rightarrow 8$ warps can run
  - So occupancy is reduced to $(8 / 24 =) 33\%$

- But, if block has 128 threads:
  - since $8192 / (128*17 = 2176) = 3.8 \rightarrow 3$ blocks (of 128 threads)
  - occupancy can be $((384/32) / 24) \rightarrow 50\%$
Determining resource usage

Compile the kernel with the \texttt{-cubin} flag

Open the .cubin file with a text editor:

\begin{verbatim}
architecture \{sm_10\}
abiversion \{0\}
modname \{cubin\}
\textbf{code} \{
    \textbf{name} = MyKernel
    \textbf{lmem} = 0
    \textbf{smem} = 68
    \textbf{reg} = 20
    \textbf{bar} = 0
    \textbf{bincode} \{
        0xa0004205 0x04200780 0x40024c09 0x00200780
        ...
    \}
\end{verbatim}

Or compile with \texttt{--ptxas-options=-v}
PTX – GPU assembly

- Compile with `-keep` or `-ptx`
- Interleaved code: `--opencc-options -LIST:source=on`
- Useful to check

```
1284 st.shared.u32 [%r63+12], %r78; // id:493 smemf+0x0
1285 @%!pi bca $Lt_4_77; //
1286 add.u32 %r79, %r2, 1; //
1287 mul4.io.u32 %r80, %r16, %r79; //
1288 add.u32 %r81, %r8, %r60; //
1289 cvt.rn.f32.u32 %f53, %r81; //
1290 mov.f32 %f54, 0fed000000; // -2
1291 add.f32 %f55, %f53, %f54; //
1292 mov.f32 %f55, %f35; //
1293 mov.f32 %f57, 0f00000000; // 0
1294 mov.f32 %f58, 0f00000000; // 0
1295 tex.2d.v4.u32.f32 (%r82,%r83,%r84,%r85),[normFloatTex,(%f55,%f56,%f57,%f58)];
1296 .loc 2 556 0
1297 // 552 if(threadIdx.x < 4)
1298 // 553
1299 // 554
1300 // 555 sidx = __umul24(blockDim.y*threadIdx.y,swcm_pitch) + blockIdx.x + threadIdx.x;
1301 // 556 smemf[sidx] = tex2D(normFloatTex,(float)__umul24(bDimX4,blockIdx.x+1)+threadIdx.x)-2.0f, Ytex);
1302 mov.m32 %r86, %r82; //
1303 add.u32 %r87, %r18, %r60; //
1304 add.u32 %r88, %r8, %r67; //
1305 mul4.io.u32 %r89, %r68, 4; //
1306 add.u32 %r90, %r1, %r69; //
1307 st.shared.u32 [%r90+4], %r86; // id:494 smemf+0x0
1308 $Lt_4_77:
```
Minimizing register pressure

To maximize occupancy compiler will minimize register usage

Use compiler option: `-maxrregcount=<N>`

- N = desired maximum registers / kernel

**WARNING:**

- At some point, “spilling” into Local memory may occur
- LMEM is located in slow device memory
- Large arrays & structures are stored in LMEM
- Check `.cubin` file for LMEM usage

By default nvcc forces *all* device code to be inline

- Use `__noline__` function qualifier as compiler hint
Grid Size Heuristics

- # of blocks > # of multiprocessors
  - So all multiprocessors have at least one block to execute

- # of blocks / # of multiprocessors > 2
  - Multiple blocks can run concurrently in a multiprocessor
  - Blocks that aren’t waiting at a __syncthreads() keep the hardware busy

- # of blocks > 100 to scale to future devices
  - Blocks executed in pipeline fashion
  - 1000 blocks per grid will scale across multiple generations
Block Size Heuristics

More threads per block = fewer registers per thread
- Kernel invocations can fail if too many registers are used

Use occupancy heuristic
- More threads per block = better memory latency hiding

Choose threads per block as a multiple of warp size
- Avoid wasting computation on under-populated warps

Help hardware thread scheduler minimize register bank conflicts
- Use multiple of 64 threads for best efficiency

Heuristics
- Minimum of 64 threads per block (allows 2 warps)
- 192 or 256 threads is a better choice
  - Usually still enough registers to compile and invoke successfully
Occupancy – Conclusions

- After some point (e.g. 50%), further increase in occupancy won’t lead to performance increase
- So occupancy calculation in realistic case is complicated, thus…
CUDA GPU Occupancy Calculator

Click here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit https://developer.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs.
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

CUDA Occupancy Calculator

Varying Block Size

Varying Register Count

Varying Shared Memory Usage
Execution Configuration – Summary

- Use optimal number of threads per block
  - More warps per block, deeper pipeline
    - hides latency, gives better SM occupancy
    - at least 192 hides read after write dependency
  - Limited by available resources

- Maximize concurrent blocks on SM
  - Multiple blocks keep SM busy when waiting for synchronization
  - Can be a trade-off for shared memory usage
    - Less than 8KB shared memory per block allows more than one block to run
Occupancy != Performance

- Increasing occupancy does not necessarily increase performance

  BUT...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
  - It all comes down to arithmetic intensity and available parallelism
Optimize Memory Access – Outline

- Optimize Global Memory access
- Using Shared Memory
- Using Texture & Constant Memory
Global Memory

- Global memory is not cached

- Highest latency instructions
  - 400-600 clock cycles
  - Launching more threads can help hide this latency

- Likely to be a bottleneck
  - Optimizations can greatly increase performance

- Important to minimize accesses
  - Use 64 / 128-bit load/store instructions...
  - Coalesce global memory accesses...
Variables must have a size of 4, 8, or 16 bytes, and must be aligned to a multiple of their size

Use -ptx flag of nvcc to inspect instructions:

4 byte load and store:  
\[ \text{ld.global.f32} \quad \text{st.global.f32} \]
\[ $f1, \ [\text{rd4+0}]; \]
\[ \quad [\text{rd4+0}], \ f2; \]
\[ \ldots \]

8 byte load and store:  
\[ \text{ld.global.v2.f32} \quad \text{st.global.v2.f32} \]
\[ \{f3,f5\}, \ [\text{rd7+0}]; \]
\[ \quad \{\text{rd7+0}\}, \ \{f4,f6\}; \]
\[ \ldots \]

16 byte load and store:  
\[ \text{ld.global.v4.f32} \quad \text{st.global.v4.f32} \]
\[ \{f7,f9,f11,f13\}, \ [\text{rd10+0}]; \]
\[ \quad \{\text{rd10+0}\}, \ \{f8,f10,f12,f14\}; \]
Coalescing (CC <= 1.1)

- Coalescing occurs when a half warp (16 threads) accesses contiguous region of GMEM
  - 16 data elements loaded in one instruction
    - int, float: 64 bytes (fastest)
    - int2, float2: 128 bytes
    - int4, float4: 256 bytes (2 transactions)
- If un-coalesced, hardware issues 16 sequential loads

Global memory can be viewed as composing aligned segments of 16 and 32 words.
Coalescing in CC 1.0 and 1.1

- $k^{\text{th}}$ thread in halfwarp must access $k^{\text{th}}$ word in segment
- not all threads need to participate
- Start address of region must be multiple of region size

Coalesces - 1 transaction:

Permuted - 16 transactions:

Misaligned - 16 transactions:
Coalescing (CC >= 1.2)

- Much improved coalescing capabilities in 10-series architecture
- Hardware combines addresses within a half-warp into one or more aligned segments
  - 32, 64, or 128 bytes
- All threads with addresses within a segment are serviced with a single memory transaction
  - Regardless of ordering or alignment within the segment
Coalescing in CC 1.2 & 1.3

- Any pattern of access that fits into an aligned segment size
- \# of transactions = \# of accessed segments

- 1 transaction - 64B segment
- 2 transactions - 64B and 32B segments
- 1 transaction - 128B segment
Coalescing – Examples

- Effective bandwidth of small kernels that copy data
  - Effects of offset and stride on performance

Two GPUs
- GTX 280
  - Compute Capability 1.3
  - Peak bandwidth of 141 GB/s
- FX 5600
  - Compute Capability 1.0
  - Peak bandwidth of 77 GB/s
Coalescing – Misaligned Accesses

```c
__global__ void offsetCopy(float* out, float* in, int offset)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 out[i + offset] = in[i + offset];
}
```

Memory access of halfwarp when offset = 1

GTX-280 (compute capability 1.3) drops by a factor of 1.7

FX-5600 (compute capability 1.0) drops by a factor of 8. This is because 32 bytes (minimum transaction size) are fetched for each thread, and we only need 4 bytes. \( \frac{4}{32} = \frac{1}{8} \) performance
Coalescing – Strided Accesses

__global__ void strideCopy(float* out, float* in, int stride)
{
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    out[i * stride] = in[i * stride];
}

Memory access of halfwarp when stride = 2

Large strides often arise in applications. However, strides can be avoided using shared memory.
Coalescing structs of size_t ≠ 4, 8, 16

- Use a “Structure of Arrays” (SoA) instead of “Array of Structures” (AoS)

- If SoA is not viable then...
  - Force structure alignment
    - \texttt{\_\_align\_}(X) where X = 4, 8, or 16

```
struct __align_(16)
{
 float a;
 float b;
 float c;
};
```

See SDK! \texttt{alignedTypes}
Coalescing – Summary

- Coalescing greatly improves throughput
  - Critical for memory-bound kernels

- Reading structs of size other than 4, 8, or 16 bytes breaks coalescing
  - Prefer “Structures of Arrays” over AoS
  - Pad using: __align__(X)

- Strided memory access is inherent in many multidimensional problems
  - Stride is generally large (>> 18)
  - But strided access to global memory can be avoided using SMEM...
Shared Memory

- ~Hundred times faster than global memory
- Cache data to reduce global memory accesses
- Threads can cooperate via shared memory
  - Use one or more threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access
  - Stage loads and stores in shared memory to re-order non-coalesceable addressing

See SDK!
matrixTranspose
Memory Bandwidth

- Effective bandwidth depends on access patterns
- Minimize device memory accesses
  - Much lower bandwidth than on-chip shared memory
- Common CUDA kernel structure:
  1. Load data from global memory to shared memory
  2. __syncthreads()
  3. Process the data in shared memory with many threads
  4. __syncthreads() (if needed)
  5. Store results from shared memory to global memory
- Notes:
  - Steps 2 to 4 may be repeated, looped, etc.
  - Step 4 is not necessary if there is no dependence of stored data on other threads
Caching – MatMult example (C=AxB)

Uncached version:

```c
__global__ void simpleMultiply(float* a,
 float* b,
 float* c,
 int N)
{
 int col = threadIdx.x+blockIdx.x*blockDim.x;
 int row = threadIdx.y+blockIdx.y*blockDim.y;

 float sum = 0.0f;
 for (int i = 0; i < TILE_DIM; i++)
 sum += a[row*TILE_DIM+i] * b[i*N+col];
 c[row*N+col] = sum;
}
```

Every thread corresponds to one entry in C.
Caching – MatMult example (C=AxB)

Uncached version:

```c
__global__ void simpleMultiply(float* a, float* b, float* c, int N)
{
 int col = threadIdx.x + blockIdx.x * blockDim.x;
 int row = threadIdx.y + blockIdx.y * blockDim.y;
 float sum = 0.f;
 for (int i = 0; i < TILE_DIM; i++)
 sum += a[row*TILE_DIM+i] * b[i*N+col];
 c[row*N+col] = sum;
}
```

Consider a warp:
When calculating a row of C, lots of repeated access to the same row of A. Un-coalesced in CC <= 1.1.

Every thread corresponds to one entry in C.
## Caching – MatMult example – Results

<table>
<thead>
<tr>
<th>Optimization</th>
<th>NVIDIA GeForce GTX 280</th>
<th>NVIDIA Quadro FX 5600</th>
</tr>
</thead>
<tbody>
<tr>
<td>No optimization</td>
<td>8.8 GBps</td>
<td>0.62 GBps</td>
</tr>
<tr>
<td>Coalesced using shared memory to store a tile of A</td>
<td>14.3 GBps</td>
<td>7.34 GBps</td>
</tr>
<tr>
<td>Using shared memory to eliminate redundant reads of a tile of B</td>
<td>29.7 GBps</td>
<td>15.5 GBps</td>
</tr>
</tbody>
</table>
Caching – MatMult example (C=AxB)

Cached & coalesced version:

__global__ void coalescedMultiply(float* a, float* b, float* c, int N) {
    __shared__ float aTile[TILE_DIM][TILE_DIM]);
    int col = threadIdx.x+blockIdx.x*blockDim.x;
    int row = threadIdx.y+blockIdx.y*blockDim.y;

    // coalesced load of tile into smem
    int x = threadIdx.x;
    int y = threadIdx.y;
    aTile[y][x] = a[row*TILE_DIM+x];

    // no synchronization required
    float sum = 0.f;
    for (int i = 0; i < TILE_DIM; i++)
        sum += aTile[y][i] * b[i*N+col];
    c[row*N+col] = sum;
}
## Caching – MatMult example – Results

<table>
<thead>
<tr>
<th>Optimization</th>
<th>NVIDIA GeForce GTX 280</th>
<th>NVIDIA Quadro FX 5600</th>
</tr>
</thead>
<tbody>
<tr>
<td>No optimization</td>
<td>8.8 GBps</td>
<td>0.62 GBps</td>
</tr>
<tr>
<td>Coalesced using shared memory to store a tile of A</td>
<td>14.3 GBps</td>
<td>7.34 GBps</td>
</tr>
<tr>
<td>Using shared memory to eliminate redundant reads of a tile of B</td>
<td>29.7 GBps</td>
<td>15.5 GBps</td>
</tr>
</tbody>
</table>
Caching – MatMult example (C=AxB)

__global__ void coalescedMultiply(float* a, float* b, float* c, int N)
{
    __shared__ float aTile[TILE_DIM][TILE_DIM];
    int col = threadIdx.x+blockIdx.x*blockDim.x;
    int row = threadIdx.y+blockIdx.y*blockDim.y;

    // coalesced load of tile into smem
    int x = threadIdx.x;
    int y = threadIdx.y;
    aTile[y][x] = a[row*TILE_DIM+x];

    float sum = 0.f;
    (int i = 0; i < TILE_DIM; i++)
        sum += aTile[y][i] * b[i*N+col];
    c[row*N+col] = sum;
}

Consider a warp:
When calculating a row of C, the entire tile of B is read.
Caching – MatMult example

Cached & coalesced version:

```c
__kernel void sharedABMultiply(__global float* a, __global float* b, __global float* c, int N) {

__shared__ float aTile[TILE_DIM][TILE_DIM]);
__shared__ float bTile[TILE_DIM][TILE_DIM]);
int col = threadIdx.x + blockIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

// coalesced load of tile into smem
int x = threadIdx.x;
int y = threadIdx.y;
aTile[y][x] = a[row * TILE_DIM + x];
bTile[y][x] = b[y * N + col];
// we need to sync block because we are reading from different columns of bTile
barrier(CLK_LOCAL_MEM_FENCE);

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++)
 sum += aTile[y][i] * bTile[i][x];

c[row*N+col] = sum;
}
```
# Caching – MatMult example – Results

<table>
<thead>
<tr>
<th>Optimization</th>
<th>NVIDIA GeForce GTX 280</th>
<th>NVIDIA Quadro FX 5600</th>
</tr>
</thead>
<tbody>
<tr>
<td>No optimization</td>
<td>8.8 GBps</td>
<td>0.62 GBps</td>
</tr>
<tr>
<td>Coalesced using shared memory to store a tile of A</td>
<td>14.3 GBps</td>
<td>7.34 GBps</td>
</tr>
<tr>
<td>Using shared memory to eliminate redundant reads of a tile of B</td>
<td>29.7 GBps</td>
<td>15.5 GBps</td>
</tr>
</tbody>
</table>
Shared memory is divided into banks
- 32-bit words assigned to successive banks
- Number of banks = 16 for CC 1.x
- bank = address % 16

Each bank services one address per cycle
- Memory can service as many simultaneous accesses as it has banks

Simultaneous accesses to a bank result in a bank conflict
- Conflicting accesses are serialized
- Conflicts can only occur within a half-warp
Shared Memory – Bank Addressing

- No Bank Conflicts
  - Linear addressing

- No Bank Conflicts
  - Random 1:1 Permutation

Diagram showing the mapping of threads to banks for both linear addressing and random 1:1 permutation. The threads and banks are connected in a way that ensures no bank conflicts.
Shared Memory – Bank Addressing

- 2-way Bank Conflicts
  - Linear addressing (stride = 2)

- 8-way Bank Conflicts
  - Linear addressing (stride = 8)
Shared Memory - Bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts
  - The fast case:
    - All threads of halfwarp access different banks → no bank conflict
    - All threads of halfwarp read identical address → no bank conflict
  - The slow case:
    - multiple threads in the halfwarp access same bank → bank conflict
    - Must serialize the accesses
    - Cost = max # of simultaneous accesses to a single bank
- Use the bank checker macro in the SDK to check for conflicts
- A 2\textsuperscript{nd} order effect compared to GMEM coalescing
  - No benefit if it costs more instructions to avoid it
Avoiding un-coalesced float3 access

```c
__global__ void calc_float3(float3* in, float3* out) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 float3 v = in[i];
 v.x += 2;
 v.y += 2;
 v.z += 2;

 out[i] = v;
}
```
Avoiding un-coalesced float3 access

- float3 is 12 bytes
- Each thread ends up executing 3 reads
- sizeof(float3) ≠ 4, 8, or 16
- Halfwarp reads three 64B non-contiguous regions
Avoiding un-coalesced float3 access

Similarly, Step3 starting at offset 512
Avoiding un-coalesced float3 access

- Use shared memory to allow coalescing
  - Need `sizeof(float3)*(threads/block)` bytes of SMEM
  - Each thread reads 3 scalar floats:
    - Offsets: 0, (threads/block), 2*(threads/block)
    - These will likely be processed by other threads, so sync

- Processing
  - Each thread retrieves its float3 from SMEM array
    - Cast the SMEM pointer to (float3*)
    - Use thread ID as index
  - Rest of the compute code does not change!
__global__ void calc_float3_smem(float *in, float *out)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;

    __shared__ float smem[256 * 3];
    smem[threadIdx.x + 0] = in[i + 0];
    smem[threadIdx.x + 256] = in[i + 256];
    smem[threadIdx.x + 512] = in[i + 512];

    __syncthreads();
    float3 v = ((float3*)smem)[threadIdx.x];

    v.x += 2;
    v.y += 2;
    v.z += 2;

    ((float3*)smem)[threadIdx.x] = v;
    __syncthreads();

    out[i + 0] = smem[threadIdx.x + 0];
    out[i + 256] = smem[threadIdx.x + 256];
    out[i + 512] = smem[threadIdx.x + 512];
}

Avoiding un-coalesced float3 access

Read the input through SMEM

Compute code is not changed

Write the result through SMEM
Avoiding un-coalesced float3 access

**Experiment:**
- Kernel: read a float, increment, write back
- 3M floats (12MB)
- Times averaged over 10K runs

**12K blocks x 256 threads:**
- 356µs – coalesced
- 357µs – coalesced, some threads don’t participate
- 3,494µs – permuted/misaligned thread access (G80)

**4K blocks x 256 threads:**
- 3,302µs – float3 uncoalesced
- 359µs – float3 coalesced through shared memory
Texture and Constant Memory Performance

Texture partition is cached
- Uses the texture cache also used for graphics
- Optimized for 2D spatial locality
- Best performance when threads of a warp read locations that are close together in 2D

Constant memory is cached
- 4 cycles per address read within a single warp
  - Total cost 4 cycles if all threads in a warp read same address
  - Total cost 64 cycles if all threads read different addresses
Texture overview

Texture is an object for reading data

Benefits:
- Data is cached (optimized for 2D locality)
  - Helpful when coalescing is a problem
- Filtering
  - Linear / bilinear / trilinear
  - Dedicated hardware
- Wrap modes (for “out-of-bounds” addresses)
  - Clamp to edge / repeat
- Addressable in 1D, 2D, or 3D
  - Using integer or normalized coordinates

Usage:
- CPU code binds data to a texture object
- Kernel reads data by calling a fetch function
Textures – Misaligned Accesses

- Texture fetch read
- Coalesced write

```c
__global__ void shiftCopy(float* odata,
 float* idata,
 int offset)
{
 int i = blockIdx.x*blockDim.x+threadIdx.x;
 odata[i] = idata[i + offset];
}
```

```c
texture<float> tex_ref;

__global__ void texShiftCopy(float* odata,
 float* idata,
 int offset)
{
 int i = blockIdx.x*blockDim.x+threadIdx.x;
 odata[i] = tex1Dfetch(tex_ref, i + offset);
}
```
Instruction cycles (per warp) = sum of
- Operand read cycles
- Instruction execution cycles
- Result update cycles

Therefore instruction throughput depends on
- Nominal instruction throughput
- Memory latency
- Memory bandwidth

“Cycle” refers to the multiprocessor clock rate
- 1.35 GHz on the Tesla C870, for example
Instruction Throughput

- In SIMT architecture,
  - $T =$ number of operations per cycle
  - SM instruction throughput = one instruction every $(\text{warpSize} / T)$ cycle

**Maximizing throughput**
- using smaller number of cycles to get the job done
Arithmetic Instruction Throughput

- **integer & float**: add, shift, min, max
- **float**: mul, mad
  - \( T = 8 \) ops per cycle, \( 32 / 8 = 4 \) cycles per warp
  - Integer multiply defaults to 32-bit
    - Requires multiple cycles / warp
    - Use `__mul24()` / `__umul24()` intrinsics for 4-cycle 24-bit integer multiply

- **Integer divide and modulo are more expensive**
  - Compiler will convert literal power-of-2 divides to shifts
    - But we have seen it miss some cases
    - Be explicit in cases where compiler can’t tell that divisor is a power of 2!
  - Useful trick: \( \text{foo} \% n = \text{foo} \& (n-1) \) if \( n \) is a power of 2
Two types of runtime math operations

__func__()
- direct mapping to native hardware ISA
- Fast (16 cycles) but lower accuracy (see prog. guide for details)
- Examples:
  - __sin(x), __exp(x), __pow(x,y)

func()
- compile to multiple instructions, e.g. \texttt{sqrt(x) == x * rsqrt(x)} (20 cycles per warp)
- Slower but higher accuracy (5 ulp or less)
- Examples:
  - \texttt{sin(x), exp(x), pow(x,y)}
- trigonometric funcs
  - WARNING:
    - slower path x > 48039.0f and x > 2147483648.0
    - uses LMEM for intermediate values
Two types of runtime math operations

**native_func()**
- direct mapping to native hardware ISA
- Examples:
  - `native_sin(x)`, `native_exp(x)`, `native_divide(x,y)`

**func()**
- Examples:
  - `sin(x)`, `exp(x)`, `pow(x,y)`
Compile time optimization

- **CUDA-C**
  - `-use_fast_math`
    - coerces all `func()` calls to compile as `__func()`

- **OpenCL**
  - `-cl-fast-relaxed-math`
  - `-cl-mad-enable` permits use of FMADS
Conversion instructions

-Chars and shorts will likely need to be converted to int when used in functions.

-Newer hardware has double precision support.
  -Double precision has additional cost.
  -Be float-safe to avoid using double precision where it is not needed.
  -Add ‘f’ specifier on float literals:
    -`foo = bar * 0.123; // double assumed`
    -`foo = bar * 0.123f; // float explicit`
  -Use float version of standard library functions:
    -`foo = sin(bar); // double assumed`
    -`foo = sinf(bar); // float explicit`
Main performance concern with branching is divergence

- If threads within a single warp take different paths, different execution paths must be serialized.

Avoid divergence when branch condition is a function of thread ID

- Example with divergence:
  ```
 if (threadIdx.x > 2) {...}
  ```
  - Branch granularity < warp size

- Example without divergence:
  ```
 if (threadIdx.x / WARP_SIZE > 2) {...}
  ```
  - Branch granularity is a whole multiple of warp size
Comparison instructions set condition codes (CC)

Instructions can be predicated to write results only when CC meets criterion (CC != 0, CC >= 0, etc.)

Compiler tries to predict if a branch condition is likely to produce many divergent warps
- If guaranteed not to diverge: only predicates if < 4 instructions
- If not guaranteed: only predicates if < 7 instructions

May replace branches with instruction predication

ALL predicated instructions take execution cycles
- Those with false conditions don’t write their output
- Or invoke memory loads and stores
- Saves branch instructions, so can be cheaper than serializing divergent paths
Divergence – Compiler hints

- The compiler unrolls small loops with known trip count
- For more control use: `#pragma unroll <n>`
- Up to the programmer to ensure efficiency

Example:

```c
#pragma unroll 5
for (int i=0; i<n; ++i)
{
 ...
}
```
The Art of Performance Optimization

GPU can achieve great performance on data-parallel computations if you follow a few simple guidelines:

- Minimize, speed up, or hide host-transfer
- Use parallelism efficiently
- Keep memory aligned, access it coalesced, explore other memory spaces
- Maximize instruction throughput
CUDA Visual Profiler

- Uses a special operation mode of the GPU to log important signals
- Best to isolate kernels in a simple application
Profiler facilitates analysis and optimization of CUDA programs by

- Reporting hardware counter values:
  - Number of various bus transactions
  - Branches
  - Effective Parallelism
  - Etc.

- Computing per kernel statistics:
  - Effective instruction throughput
  - Effective memory throughput

- Visually displaying time spent in various GPU calls
  - Requires no instrumentation of the source code

- Works with OpenCL too...
Events are tracked with hardware counters on signals in the chip:

- timestamp
- gld_incoherent
- gld_coherent
- gst_incoherent
- gst_coherent
- local_load
- local_store
- branch
- divergent_branch

- Global memory loads/stores are coalesced (coherent) or non-coalesced (incoherent)
- Local loads/stores
- Total branches and divergent branches taken by threads

- instructions – instruction count
- warp_serialize – thread warps that serialize on address conflicts to shared or constant memory
- cta_launched – executed thread blocks
Profiling on the command line

- **Text file output**
  - **Environment variables:**
    - `CUDA_PROFILE=1`
      - Tells CUDA to calculate and output profiling data
    - `CUDA_PROFILE_CSV=1`
      - Data is exported as csv for loading into spreadsheet or VisualProfiler

```bash
CUDA_PROFILE_LOG_VERSION 1.5
CUDA_DEVICE 1 Quadro CX
CUDA_PROFILE_CSV 1
TIMESTAMPFACTOR fb085cc80547cc8
method,gputime,cputime,occupancy,gld_coherent,gld_incoherent,gst_coherent,gst_incoherent
_Z18integrate_GPU_SMEMP6float3S0_,10.208,42.000,0.500,0,0,0,0
_Z18integrate_GPU_SMEMP6float3S0_,10.048,560.000,0.500,0,0,0,0
_Z18integrate_GPU_SMEMP6float3S0_,10.080,1468.000,0.500,0,0,0,0
... _Z18integrate_GPU_SMEMP6float3S0_,9.472,893.000,0.500,192,0,1152,0
```
Interpreting profiler counters

- Values represent events within a thread warp
- Only targets one multiprocessor
  - Values will not correspond to the total number of warps launched for a particular kernel.
  - Launch enough thread blocks to ensure that the target multiprocessor is given a consistent percentage of the total work.
- Values are best used to identify relative performance differences between unoptimized and optimized code
  - e.g., make the number of non-coalesced loads go from some non-zero value to zero