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OpenCL and the CUDA Architecture

Application 
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OpenCL Portability

Portable code across multiple devices
GPU, CPU, Cell, mobiles, embedded systems, …

NOTE: 

functional portability != performance portability

Different code for each device is necessary to get good 
performance
Even for GPUs from different vendors!
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Anatomy of an OpenCL Application

Host Compute 
Devices

……
…

……
………

………
…

OpenCL Application
Host Code

• Written in C/C++
• Executes on the host

Device Code
• Written in OpenCL C
• Executes on the device

Host code sends commands to the devices:
• to transfer data between host memory and device memories
• to execute device code
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Heterogeneous Computing

Serial code executes in a CPU thread
Parallel code executes in many GPU threads across multiple 
processing elements

. . 
.

Device = GPU

Host = CPU

. . 
.

Device = GPU

Host = CPU
OpenCL 

Application
Serial code

Serial code

Parallel 
code

Parallel 
code
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OpenCL Framework

Platform layer
Discover OpenCL devices and their capabilities and create 
contexts

Runtime layer
Memory management and command execution within a 
context

OpenCL C Compiler
Creates program executables that contain OpenCL kernels
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Platform Layer

Query platform information
clGetPlatformIDs(): list of platforms
clGetPlatformInfo(): profile, version, vendor, extensions
clGetDeviceIDs(): list of devices
clGetDeviceInfo(): type, capabilities

Create OpenCL context  on one or more devices 
of one platform

OpenCL 
Context

=

cl_context Command queues to send commands to 
these devices

One or more 
devices

Memory and device code shared by these 
devices

cl_device_id

cl_mem

cl_command_queue

cl_program
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Error Handling, Resource 
Deallocation

Error handling:
All host functions return an error code
Context error callback can be specified

Resource deallocation
Reference counting API: clRetain*(), clRelease*()

Both are removed from code samples for clarity
Please see SDK samples for complete code
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Context Creation

// Create an OpenCL context for all GPU devices on the first Platform
cl_context* CreateContext() {

cl_platform_id platform_id;
clGetPlatformIDs(1, &platform_id, NULL);

return clCreateContextFromType( 
{CL_CONTEXT_PLATFORM, platform_id, 0}, 
CL_DEVICE_TYPE_GPU, 
NULL, NULL, NULL);

}
// Get the list of GPU devices associated with a context
cl_device_id* GetDevices(cl_context context) {

size_t size;
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &size);
cl_device_id* device_id = malloc(size);
clGetContextInfo(context, CL_CONTEXT_DEVICES, size, device_id, 
NULL);
return device_id;

}
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Runtime

Command queues creation and management
Memory allocation and management
Device code compilation and execution
Event creation and management (synchronization, 
profiling)
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Command Queue

Sequence of commands scheduled for 
execution on a specific device

Enqueuing functions: clEnqueue*()
Multiple queues can execute on the same 
device

Two modes of execution:
In‐order: Each command in the queue executes only 

 when the preceding command has completed
Including all memory writes, so memory is consistent with all 

 prior command executions

Out‐of‐order: No guaranteed order of completion for 
 commands



NVIDIA GPU Computing Master Class

Commands

Memory copy or mapping
Device code execution
Synchronization point
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Command Queue Creation

// Create a command-queue for a specific device
cl_command_queue CreateCommandQueue(cl_context context, 

cl_device_id device_id)
{

return clCreateCommandQueue(context, device_id, 0, NULL);
}

Properties Error 
code
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Command Synchronization

Some clEnqueue*() calls can be optionally 
blocking
Queue barrier command

Any commands after the barrier start executing 
only after all commands before the barrier have 
completed

An event object can be associated to each 
enqueued command

Any commands (or clWaitForEvents()) can wait 
on events before executing
Can be queried to track execution status and 
get profiling information 
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Memory Objects

Two types of memory objects (cl_mem):
Buffer objects
Image objects

Associated with context, only implicitly with 
device
Memory objects can be copied to host memory, 
from host memory, or to other memory objects
Regions of a memory object can be accessed 
from host by mapping them into the host address 
space



NVIDIA GPU Computing Master Class

Buffer Object

One-dimensional array
Elements are scalars, vectors, or any user-defined 
structures
Accessed within device code via pointers

__kernel void myKernel(__global int* buffer) {
<...>
// Access element in buffer object
int v = buffer[get_global_id(0)];
<...>

}
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Image Object

Two- or three-dimensional array
Elements are 4-component vectors from a list of 
predefined formats
Accessed within device code via built-in functions 
(storage format not exposed to application)

Sampler objects are used to configure how built-in 
functions sample images (addressing modes, filtering 
modes)

Can be created from OpenGL texture or 
renderbuffer
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Data Transfer between 
Host and Device
int main() {

cl_context context = CreateContext();
cl_device_id* device_id = GetDevices(context);
cl_command_queue command_queue = 
CreateCommandQueue(context, device_id[0]);
size_t size = 100000 * sizeof(int);
int* h_buffer = (int*)malloc(size);
cl_mem* d_buffer = clCreateBuffer(context, 
CL_MEM_READ_WRITE, size, NULL, NULL);
… // Initialize host buffer h_buffer
clEnqueueWriteBuffer(command_queue,

d_buffer, CL_FALSE, 0, size, h_buffer, 0, NULL, 
NULL);
… // Process device buffer d_buffer
clEnqueueReadBuffer(command_queue,

d_buffer, CL_TRUE, 0, size, h_buffer, 0, NULL, 
NULL);

}
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Device Code in OpenCL C

Derived from ISO C99
A few restrictions: recursion, function pointers, 
functions in C99 standard headers
Some extensions: built-in variables and 
functions, function qualifiers, address space 
qualifiers, e.g:

__global float* a; // Pointer to device memory
Functions qualified by __kernel keyword 
(a.k.a kernels) can be invoked by host code

__kernel void MyKernel() { … }
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Kernel Execution: 
NDRange and Work-Items

Host code invokes a kernel over an index 
space called an NDRange

NDRange = “N-Dimensional Range”
NDRange can be a 1-, 2-, or 3-dimensional 
space

A single kernel instance at a point in the 
index space is called a work-item

Each work-item has a unique global ID within 
the index space (accessible from device code 
via get_global_id())
Each work-item is free to execute a unique 
code path
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Example: Vector Addition

void VecAdd(a, b, c, n) {
for (int i = 0; i < n; ++i)

c[i] = a[i] + b[i];
}

void VecAdd(a, b, c, n) {
for (int i = 0; i < n; ++i)

c[i] = a[i] + b[i];
}

Sequential execution 
by CPU thread

__kernel void VecAdd(a, b, c, n) {
int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b, c, n) {
int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7 …

Parallel 
execution by 

multiple work- 
items

get_global_id( 
0)

NDRange
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Kernel Execution: Work-Groups

Work-items are grouped into work-groups
Each work-group has a unique work-group ID        
(accessible from device code via get_group_id())
Each work-item has a unique local ID within a 
work-group (accessible from device code via 
get_local_id())
Work-group has same dimensionality as 
NDRange

__kernel void VecAdd(a, b, 
c, n) { 

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b, 
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

__kernel void VecAdd(a, b, 
c, n) { 

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b, 
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

__kernel void VecAdd(a, b, 
c, n) { 

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b, 
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7

16 17 18 19 20 21 22 23

…

get_global_id( 
0)get_local_id(0)

Work-group 0 Work-group 1 Work-group 2get_group_id(0 
)
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Total number of work-items = Gx x Gy

Size of each work-group = Sx x Sy

Number of work-groups = (Gx / Sx) x (Gy / Sy ) (must be dividable)

Example of 2D NDRange
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Kernel Execution on Platform Model

. . 
.

Kernel • Each kernel is executed 
on a compute device
• On Tesla architecture, 
only one kernel can 
execute on a device at 
one time

……
…

Compute device
(CUDA-enabled GPU)

Work-Item
(CUDA 
thread)

• Each work-item is 
executed by a compute 
element

Compute element
(CUDA streaming 

processor)

Work-Group
(CUDA thread 

block)

• Each work-group is 
executed on a compute 
unit
• Several concurrent 
work-groups can reside 
on one compute unit 
depending on work- 
group’s memory 
requirements and 
compute unit’s memory 
resources

…

Compute unit
(CUDA streaming 
multiprocessor)
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Benefits of Work-Groups

Automatic scalability across devices with different 
numbers of compute units
Efficient cooperation between work-items of same 
work-group

Fast shared memory and synchronization
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Scalability

Work-groups can execute in any order, 
concurrently or sequentially
This independence between work-groups gives 
scalability:

A kernel scales across any number of compute units

Work-group 0 Work-group 1

Work-group 2 Work-group 3

Work-group 4 Work-group 5

Work-group 6 Work-group 7

Device with 2 compute 
units

Unit 0 Unit 1

Device with 4 compute units

Unit 0 Unit 1 Unit 2 Unit 3

Work-group 0 Work-group 1 Work-group 2 Work-group 3

Work-group 4 Work-group 5 Work-group 6 Work-group 7

Kernel 
Launch

Work-group 0

Work-group 1

Work-group 2

Work-group 3

Work-group 4

Work-group 5

Work-group 6

Work-group 7
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Memory Spaces

Work-Item Private 
Memory
__private

• Registers
• 16 K (Tesla arch)
32 K (Fermi arch)
of 32-bit registers
per compute unit

Work-Group
Local 

Memory
__local

• On-chip
• CUDA shared memory
• 16 KB (Tesla arch)
48 KB (Fermi arch)
per compute unit

. . 
.

Kernel
Constant 
Memory
__consta 

nt

• Off-chip, cached
• CUDA constant 
memory
• 64 KB

. . . . . .. . 
.

Application
Global 

Memory
__global

• Off-chip
• CUDA global memory
• Up to 4 GB

CUDA  
Architecture

OpenCL 
Terminology

Scope and 
Lifetime
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Cooperation between Work-Items 
of same Work-Group

Built-in functions to order memory operations 
and synchronize execution:

mem_fence(CLK_LOCAL_MEM_FENCE and/or 
CLK_GLOBAL_MEM_FENCE): waits until all 
reads/writes to local and/or global memory made by 
the calling work-item prior to mem_fence() are visible 
to all threads in the work-group
barrier(CLK_LOCAL_MEM_FENCE and/or 
CLK_GLOBAL_MEM_FENCE): waits until all work- 
items in the work-group have reached this point and 
calls mem_fence(CLK_LOCAL_MEM_FENCE and/or 
CLK_GLOBAL_MEM_FENCE)

Used to coordinate accesses to local or global 
memory shared among work-items
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Program and Kernel Objects

A program object encapsulates some source code 
(with potentially several kernel functions) and its 
last successful build

clCreateProgramWithSource() // Create program from source
clBuildProgram() // Compile program

A kernel object encapsulates the values of the 
kernel’s arguments used when the kernel is 
executed

clCreateKernel() // Create kernel from successfully compiled
// program

clSetKernelArg() // Set values of kernel’s arguments
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Kernel Invocation
int main() {

… // Create context and command queue, allocate host and device 
buffers of N elements
char* source = "__kernel void MyKernel(__global int* buffer, int N) {\n"

"    if (get_global_id(0) < N) buffer[get_global_id(0)] = 7;\n”
"}\n ";

cl_program program = clCreateProgramWithSource(context, 1, &source, 
NULL, NULL);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
cl_kernel kernel = clCreateKernel(program, “MyKernel", NULL);
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_buffer);
clSetKernelArg(kernel, 1, sizeof(int), (void*)&N);
size_t localWorkSize = 256; // Number of work-items in a work-group
int numWorkGroups = (N + localWorkSize – 1) / localWorkSize;
size_t globalWorkSize = numWorkGroups * localWorkSize;
clEnqueueNDRangeKernel(command_queue, kernel,

1, NULL, &globalWorkSize, &localWorkSize, 0, 
NULL, NULL);
… // Read back buffer

} NDRange 
dimension
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OpenCL Local Memory 
on the CUDA Architecture

On-chip memory (CUDA shared memory)
2 orders of magnitude lower latency than global memory
Order of magnitude higher bandwidth than global memory
16 KB per compute unit on Tesla architecture (up to 30 
compute units)
48 KB per compute unit on Fermi architecture (up to 16 
compute units)

Acts as a user-managed cache to reduce global 
memory accesses
Typical usage pattern for work-items within a work- 
group:

Read data from global memory to local memory; synchronize 
with barrier()
Process data within local memory; synchronize with barrier()
Write result to global memory
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Example of Using Local Memory

Applying a 1D stencil to a 1D array of elements:
Each output element is the sum of all elements within a 
radius

For example, for radius = 3, each output element is 
the sum of 7 input elements:

radius radius
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Implementation with Local Memory

“halo”
= RADIUS 

elements on 
the left 

“halo”
= RADIUS 

elements on the 
right

The WG_SIZE input elements 
corresponding to the output 

elements

Each work-group outputs one element per work- 
item, so a total of WG_SIZE output elements 
(WG_SIZE = number of work-items per work-group):

Read (WG_SIZE + 2 * RADIUS) elements from global 
memory to local memory
Compute WG_SIZE output elements in local memory
Write WG_SIZE output elements to global memory
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Kernel Code
__kernel void stencil(__global int* input,

__global int* output) {

__local int local[WG_SIZE + 2 * RADIUS];

int i = get_local_id(0) + RADIUS;

local[i] = input[get_global_id(0)];

if (get_local_id(0) < RADIUS) {

local[i - RADIUS]    = input[get_global_id(0) – RADIUS];

local[i + WG_SIZE] = input[get_global_id(0) + WG_SIZE];

}

barrier(CLK_LOCAL_MEM_FENCE); // Blocks until work-items are done writing to local 

memory

int value = 0;

for (offset = - RADIUS; offset <= RADIUS; ++offset) value += local[i + offset]; // Sum

output[get_global_id(0)] = value;           }

0 1 2 3 4 5 6 7 8 9 101112131415161718192021i = 

RADIUS = 3
WG_SIZE = 16

0 1 2 3 4 5 6 7 8 9 101112131415Local ID = 
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OpenCL C Language Restrictions

Pointers to functions are not allowed
Pointers to pointers allowed within a kernel, but not as an 
argument
Bit-fields are not supported
Variable length arrays and structures are not supported
Recursion is not supported
Writes to a pointer of types less than 32-bit are not 
supported
Double types are not supported, but reserved
3D Image writes are not supported

Some restrictions are addressed through extensions
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Optional Extensions

Extensions are optional features exposed through 
OpenCL
The OpenCL working group has already approved 
many extensions that are supported by the OpenCL 
specification:

Double precision floating-point types (Section 9.3)
Built-in functions to support doubles
Atomic functions (Section 9.5, 9.6, 9.7)
3D Image writes (Section 9.8)
Byte addressable stores (write to pointers with types < 32- 
bits) (Section 9.9)
Built-in functions to support half types (Section 9.10)
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Performance Overview

OpenCL is about performance
Standard to make use of the massive computing 
power of parallel processors like GPUs

But, performance is generally not portable across 
devices:

There are multiple ways of implementing a given 
algorithm in OpenCL. Each can have vastly 
different performance characteristics for a given 
compute device!

Achieving good performance on GPUs requires a 
basic understanding of GPU architecture
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Heterogeneous Computing

Host + multiple devices = heterogeneous platform
Distribute workload to:

Assign to each processor the type of work it does best
CPU = serial, GPU = parallel

Keep all processors busy at all times
Minimize data transfers between processors or hide them 
by overlapping them with kernel execution

Overlapping requires data allocated with 
CL_MEM_ALLOC_HOST_PTR
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GPU Computing: Highly 
Multithreaded

GPU compute unit “hides” instruction and memory latency with 
computation

Switches from stalled threads to other threads at no cost (lightweight 
GPU threads)
Needs enough concurrent threads to hide latency
Radically different strategy than CPU core where memory latency is 
“reduced” via big caches

GPU compute unit (aka CUDA Stream Multiprocessor)

CPU core

T1

T2

T3

T4

T1 T2 T3 T4

Computation Thread

Tn Processed

Waiting for data

Ready to get 
processed

GPU

CPU
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GPU Computing: Highly 
Multithreaded

Latency hiding is only possible if there is other work 
that can be done in parallel
Therefore, kernels must be launched with hundreds 
of work-items per compute unit for good 
performance

Minimal work-group size of 64; higher is usually 
better (typically 1.2 to 1.5 speedup)
Number of work-groups is typically 100 or more
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GPU Computing: 
High Arithmetic Intensity

GPU devotes many more transistors than CPU to 
arithmetic units ⇒ high arithmetic intensity



NVIDIA GPU Computing Master Class

GPU Computing: 
High Memory Bandwidth

GPUs offer high 
memory bandwidth, so 
applications can take 
advantage of high 
arithmetic intensity 
and achieve high 
arithmetic throughput
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CUDA Memory Optimization

Memory bandwidth will increase at a slower 
rate than arithmetic intensity in future 
processor architectures
So, maximizing memory throughput is even 
more critical going forward
Two important memory bandwidth 
optimizations:

Ensure global memory accesses are coalesced
Up to an order of magnitude speedup!

Replace global memory accesses by shared 
memory accesses whenever possible
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CUDA = SIMT Architecture

Same Instruction Multiple Threads
Threads running on a compute unit are 
partitioned into groups of 32 threads (warps) 
in which all threads execute the same 
instruction simultaneously

Minimize divergent branching within a warp
Different code paths within a warp get 
serialized

Remove barrier calls when only threads within 
same warp need to communicate

Threads within a warp are inherently 
synchronized
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CUDA = Scalar Architecture

Use vector types for convenience, not performance
Generally want more work-items rather than large 
vectors per work-item
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Maximize Instruction Throughput

Favor high-throughput instructions
Use native_*() math functions whenever 
speed is more important than precision
Use -cl-mad-enable compiler option

Enables use of FMADs, which can lead to large 
performance gains

Investigate using the -cl-fast-relaxed-math 
compiler option

Enables many aggressive compiler 
optimizations
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OpenCL Visual Profiler

• Analyze GPU HW performance 
signals, kernel occupancy, 
instruction throughput, and 
more
• Highly configurable tables and 
graphical views
• Save/load profiler sessions or 
export to CSV for later analysis
• Compare results visually 
across multiple sessions to see 
improvements
• Supported on Windows and 
Linux

• Included in the CUDA Toolkit
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OpenCL Information and Resources

NVIDIA OpenCL Web Page:
http://www.nvidia.com/object/cuda_opencl.html

NVIDIA OpenCL Forum:
http://forums.nvidia.com/index.php?showforum=134

NVIDIA driver, profiler, code samples for Windows and 
Linux:

https://nvdeveloper.nvidia.com/object/get-opencl.html

Khronos (current specification): 
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

Khronos OpenCL Forum:
http://www.khronos.org/message_boards/viewforum.php?f=28

http://www.nvidia.com/object/cuda_opencl.html
http://forums.nvidia.com/index.php?showforum=134
https://nvdeveloper.nvidia.com/object/get-opencl.html
http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf
http://www.khronos.org/message_boards/viewforum.php?f=28
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