
Programming in
OpenCL

Timo Stich, NVIDIA

NVIDIA GPU Computing Master Class

Outline

Introduction to OpenCL
OpenCL API Overview
Performance Tuning on NVIDIA GPUs
OpenCL Programming Tools & Resources

NVIDIA GPU Computing Master Class

OpenCL and the CUDA Architecture

Application
Innovation

Development
Environment

Leading Edge
GPU Hardware

NVIDIA GPU Computing Master Class

OpenCL Portability

Portable code across multiple devices
GPU, CPU, Cell, mobiles, embedded systems, …

NOTE:

functional portability != performance portability

Different code for each device is necessary to get good
performance
Even for GPUs from different vendors!

NVIDIA GPU Computing Master Class

……
…

…

OpenCL Platform Model

Host

Compute UnitCompute Device

……
…

……
………

………
…

Processing
Element

NVIDIA GPU Computing Master Class

……
…

…

OpenCL Platform Model
on the CUDA Architecture

Host

Compute UnitCompute Device

……
…

……
………

………
…

Processing
Element

CPUCPU

CUDA-
Enabled

GPU

CUDA-
Enabled

GPU

CUDA
Streaming

Multiprocessor

CUDA
Streaming

Multiprocessor

CUDA
Streaming
Processor

CUDA
Streaming
Processor

NVIDIA GPU Computing Master Class

Anatomy of an OpenCL Application

Host Compute
Devices

……
…

……
………

………
…

OpenCL Application
Host Code

• Written in C/C++
• Executes on the host

Device Code
• Written in OpenCL C
• Executes on the device

Host code sends commands to the devices:
• to transfer data between host memory and device memories
• to execute device code

NVIDIA GPU Computing Master Class

Heterogeneous Computing

Serial code executes in a CPU thread
Parallel code executes in many GPU threads across multiple
processing elements

. .
.

Device = GPU

Host = CPU

. .
.

Device = GPU

Host = CPU
OpenCL

Application
Serial code

Serial code

Parallel
code

Parallel
code

NVIDIA GPU Computing Master Class

OpenCL Framework

Platform layer
Discover OpenCL devices and their capabilities and create
contexts

Runtime layer
Memory management and command execution within a
context

OpenCL C Compiler
Creates program executables that contain OpenCL kernels

NVIDIA GPU Computing Master Class

Platform Layer

Query platform information
clGetPlatformIDs(): list of platforms
clGetPlatformInfo(): profile, version, vendor, extensions
clGetDeviceIDs(): list of devices
clGetDeviceInfo(): type, capabilities

Create OpenCL context on one or more devices
of one platform

OpenCL
Context

=

cl_context Command queues to send commands to
these devices

One or more
devices

Memory and device code shared by these
devices

cl_device_id

cl_mem

cl_command_queue

cl_program

NVIDIA GPU Computing Master Class

Error Handling, Resource
Deallocation

Error handling:
All host functions return an error code
Context error callback can be specified

Resource deallocation
Reference counting API: clRetain*(), clRelease*()

Both are removed from code samples for clarity
Please see SDK samples for complete code

NVIDIA GPU Computing Master Class

Context Creation

// Create an OpenCL context for all GPU devices on the first Platform
cl_context* CreateContext() {

cl_platform_id platform_id;
clGetPlatformIDs(1, &platform_id, NULL);

return clCreateContextFromType(
{CL_CONTEXT_PLATFORM, platform_id, 0},
CL_DEVICE_TYPE_GPU,
NULL, NULL, NULL);

}
// Get the list of GPU devices associated with a context
cl_device_id* GetDevices(cl_context context) {

size_t size;
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &size);
cl_device_id* device_id = malloc(size);
clGetContextInfo(context, CL_CONTEXT_DEVICES, size, device_id,
NULL);
return device_id;

}

NVIDIA GPU Computing Master Class

Runtime

Command queues creation and management
Memory allocation and management
Device code compilation and execution
Event creation and management (synchronization,
profiling)

NVIDIA GPU Computing Master Class

Command Queue

Sequence of commands scheduled for
execution on a specific device

Enqueuing functions: clEnqueue*()
Multiple queues can execute on the same
device

Two modes of execution:
In‐order: Each command in the queue executes only

 when the preceding command has completed
Including all memory writes, so memory is consistent with all

 prior command executions

Out‐of‐order: No guaranteed order of completion for
 commands

NVIDIA GPU Computing Master Class

Commands

Memory copy or mapping
Device code execution
Synchronization point

NVIDIA GPU Computing Master Class

Command Queue Creation

// Create a command-queue for a specific device
cl_command_queue CreateCommandQueue(cl_context context,

cl_device_id device_id)
{

return clCreateCommandQueue(context, device_id, 0, NULL);
}

Properties Error
code

NVIDIA GPU Computing Master Class

Command Synchronization

Some clEnqueue*() calls can be optionally
blocking
Queue barrier command

Any commands after the barrier start executing
only after all commands before the barrier have
completed

An event object can be associated to each
enqueued command

Any commands (or clWaitForEvents()) can wait
on events before executing
Can be queried to track execution status and
get profiling information

NVIDIA GPU Computing Master Class

Memory Objects

Two types of memory objects (cl_mem):
Buffer objects
Image objects

Associated with context, only implicitly with
device
Memory objects can be copied to host memory,
from host memory, or to other memory objects
Regions of a memory object can be accessed
from host by mapping them into the host address
space

NVIDIA GPU Computing Master Class

Buffer Object

One-dimensional array
Elements are scalars, vectors, or any user-defined
structures
Accessed within device code via pointers

__kernel void myKernel(__global int* buffer) {
<...>
// Access element in buffer object
int v = buffer[get_global_id(0)];
<...>

}

NVIDIA GPU Computing Master Class

Image Object

Two- or three-dimensional array
Elements are 4-component vectors from a list of
predefined formats
Accessed within device code via built-in functions
(storage format not exposed to application)

Sampler objects are used to configure how built-in
functions sample images (addressing modes, filtering
modes)

Can be created from OpenGL texture or
renderbuffer

NVIDIA GPU Computing Master Class

Data Transfer between
Host and Device
int main() {

cl_context context = CreateContext();
cl_device_id* device_id = GetDevices(context);
cl_command_queue command_queue =
CreateCommandQueue(context, device_id[0]);
size_t size = 100000 * sizeof(int);
int* h_buffer = (int*)malloc(size);
cl_mem* d_buffer = clCreateBuffer(context,
CL_MEM_READ_WRITE, size, NULL, NULL);
… // Initialize host buffer h_buffer
clEnqueueWriteBuffer(command_queue,

d_buffer, CL_FALSE, 0, size, h_buffer, 0, NULL,
NULL);
… // Process device buffer d_buffer
clEnqueueReadBuffer(command_queue,

d_buffer, CL_TRUE, 0, size, h_buffer, 0, NULL,
NULL);

}

NVIDIA GPU Computing Master Class

Device Code in OpenCL C

Derived from ISO C99
A few restrictions: recursion, function pointers,
functions in C99 standard headers
Some extensions: built-in variables and
functions, function qualifiers, address space
qualifiers, e.g:

__global float* a; // Pointer to device memory
Functions qualified by __kernel keyword
(a.k.a kernels) can be invoked by host code

__kernel void MyKernel() { … }

NVIDIA GPU Computing Master Class

Kernel Execution:
NDRange and Work-Items

Host code invokes a kernel over an index
space called an NDRange

NDRange = “N-Dimensional Range”
NDRange can be a 1-, 2-, or 3-dimensional
space

A single kernel instance at a point in the
index space is called a work-item

Each work-item has a unique global ID within
the index space (accessible from device code
via get_global_id())
Each work-item is free to execute a unique
code path

NVIDIA GPU Computing Master Class

Example: Vector Addition

void VecAdd(a, b, c, n) {
for (int i = 0; i < n; ++i)

c[i] = a[i] + b[i];
}

void VecAdd(a, b, c, n) {
for (int i = 0; i < n; ++i)

c[i] = a[i] + b[i];
}

Sequential execution
by CPU thread

__kernel void VecAdd(a, b, c, n) {
int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b, c, n) {
int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7 …

Parallel
execution by

multiple work-
items

get_global_id(
0)

NDRange

NVIDIA GPU Computing Master Class

Kernel Execution: Work-Groups

Work-items are grouped into work-groups
Each work-group has a unique work-group ID
(accessible from device code via get_group_id())
Each work-item has a unique local ID within a
work-group (accessible from device code via
get_local_id())
Work-group has same dimensionality as
NDRange

__kernel void VecAdd(a, b,
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b,
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

__kernel void VecAdd(a, b,
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b,
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

__kernel void VecAdd(a, b,
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

__kernel void VecAdd(a, b,
c, n) {

int i = get_global_id(0);
if (i < n)

c[i] = a[i] + b[i];
}

0 1 2 3 4 5 6 7

16 17 18 19 20 21 22 23

…

get_global_id(
0)get_local_id(0)

Work-group 0 Work-group 1 Work-group 2get_group_id(0
)

NVIDIA GPU Computing Master Class

Total number of work-items = Gx x Gy

Size of each work-group = Sx x Sy

Number of work-groups = (Gx / Sx) x (Gy / Sy) (must be dividable)

Example of 2D NDRange

NVIDIA GPU Computing Master Class

Kernel Execution on Platform Model

. .
.

Kernel • Each kernel is executed
on a compute device
• On Tesla architecture,
only one kernel can
execute on a device at
one time

……
…

Compute device
(CUDA-enabled GPU)

Work-Item
(CUDA
thread)

• Each work-item is
executed by a compute
element

Compute element
(CUDA streaming

processor)

Work-Group
(CUDA thread

block)

• Each work-group is
executed on a compute
unit
• Several concurrent
work-groups can reside
on one compute unit
depending on work-
group’s memory
requirements and
compute unit’s memory
resources

…

Compute unit
(CUDA streaming
multiprocessor)

NVIDIA GPU Computing Master Class

Benefits of Work-Groups

Automatic scalability across devices with different
numbers of compute units
Efficient cooperation between work-items of same
work-group

Fast shared memory and synchronization

NVIDIA GPU Computing Master Class

Scalability

Work-groups can execute in any order,
concurrently or sequentially
This independence between work-groups gives
scalability:

A kernel scales across any number of compute units

Work-group 0 Work-group 1

Work-group 2 Work-group 3

Work-group 4 Work-group 5

Work-group 6 Work-group 7

Device with 2 compute
units

Unit 0 Unit 1

Device with 4 compute units

Unit 0 Unit 1 Unit 2 Unit 3

Work-group 0 Work-group 1 Work-group 2 Work-group 3

Work-group 4 Work-group 5 Work-group 6 Work-group 7

Kernel
Launch

Work-group 0

Work-group 1

Work-group 2

Work-group 3

Work-group 4

Work-group 5

Work-group 6

Work-group 7

NVIDIA GPU Computing Master Class

Memory Spaces

Work-Item Private
Memory
__private

• Registers
• 16 K (Tesla arch)
32 K (Fermi arch)
of 32-bit registers
per compute unit

Work-Group
Local

Memory
__local

• On-chip
• CUDA shared memory
• 16 KB (Tesla arch)
48 KB (Fermi arch)
per compute unit

. .
.

Kernel
Constant
Memory
__consta

nt

• Off-chip, cached
• CUDA constant
memory
• 64 KB

.
.

Application
Global

Memory
__global

• Off-chip
• CUDA global memory
• Up to 4 GB

CUDA
Architecture

OpenCL
Terminology

Scope and
Lifetime

NVIDIA GPU Computing Master Class

Cooperation between Work-Items
of same Work-Group

Built-in functions to order memory operations
and synchronize execution:

mem_fence(CLK_LOCAL_MEM_FENCE and/or
CLK_GLOBAL_MEM_FENCE): waits until all
reads/writes to local and/or global memory made by
the calling work-item prior to mem_fence() are visible
to all threads in the work-group
barrier(CLK_LOCAL_MEM_FENCE and/or
CLK_GLOBAL_MEM_FENCE): waits until all work-
items in the work-group have reached this point and
calls mem_fence(CLK_LOCAL_MEM_FENCE and/or
CLK_GLOBAL_MEM_FENCE)

Used to coordinate accesses to local or global
memory shared among work-items

NVIDIA GPU Computing Master Class

Program and Kernel Objects

A program object encapsulates some source code
(with potentially several kernel functions) and its
last successful build

clCreateProgramWithSource() // Create program from source
clBuildProgram() // Compile program

A kernel object encapsulates the values of the
kernel’s arguments used when the kernel is
executed

clCreateKernel() // Create kernel from successfully compiled
// program

clSetKernelArg() // Set values of kernel’s arguments

NVIDIA GPU Computing Master Class

Kernel Invocation
int main() {

… // Create context and command queue, allocate host and device
buffers of N elements
char* source = "__kernel void MyKernel(__global int* buffer, int N) {\n"

" if (get_global_id(0) < N) buffer[get_global_id(0)] = 7;\n”
"}\n ";

cl_program program = clCreateProgramWithSource(context, 1, &source,
NULL, NULL);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
cl_kernel kernel = clCreateKernel(program, “MyKernel", NULL);
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_buffer);
clSetKernelArg(kernel, 1, sizeof(int), (void*)&N);
size_t localWorkSize = 256; // Number of work-items in a work-group
int numWorkGroups = (N + localWorkSize – 1) / localWorkSize;
size_t globalWorkSize = numWorkGroups * localWorkSize;
clEnqueueNDRangeKernel(command_queue, kernel,

1, NULL, &globalWorkSize, &localWorkSize, 0,
NULL, NULL);
… // Read back buffer

} NDRange
dimension

NVIDIA GPU Computing Master Class

OpenCL Local Memory
on the CUDA Architecture

On-chip memory (CUDA shared memory)
2 orders of magnitude lower latency than global memory
Order of magnitude higher bandwidth than global memory
16 KB per compute unit on Tesla architecture (up to 30
compute units)
48 KB per compute unit on Fermi architecture (up to 16
compute units)

Acts as a user-managed cache to reduce global
memory accesses
Typical usage pattern for work-items within a work-
group:

Read data from global memory to local memory; synchronize
with barrier()
Process data within local memory; synchronize with barrier()
Write result to global memory

NVIDIA GPU Computing Master Class

Example of Using Local Memory

Applying a 1D stencil to a 1D array of elements:
Each output element is the sum of all elements within a
radius

For example, for radius = 3, each output element is
the sum of 7 input elements:

radius radius

NVIDIA GPU Computing Master Class

Implementation with Local Memory

“halo”
= RADIUS

elements on
the left

“halo”
= RADIUS

elements on the
right

The WG_SIZE input elements
corresponding to the output

elements

Each work-group outputs one element per work-
item, so a total of WG_SIZE output elements
(WG_SIZE = number of work-items per work-group):

Read (WG_SIZE + 2 * RADIUS) elements from global
memory to local memory
Compute WG_SIZE output elements in local memory
Write WG_SIZE output elements to global memory

NVIDIA GPU Computing Master Class

Kernel Code
__kernel void stencil(__global int* input,

__global int* output) {

__local int local[WG_SIZE + 2 * RADIUS];

int i = get_local_id(0) + RADIUS;

local[i] = input[get_global_id(0)];

if (get_local_id(0) < RADIUS) {

local[i - RADIUS] = input[get_global_id(0) – RADIUS];

local[i + WG_SIZE] = input[get_global_id(0) + WG_SIZE];

}

barrier(CLK_LOCAL_MEM_FENCE); // Blocks until work-items are done writing to local

memory

int value = 0;

for (offset = - RADIUS; offset <= RADIUS; ++offset) value += local[i + offset]; // Sum

output[get_global_id(0)] = value; }

0 1 2 3 4 5 6 7 8 9 101112131415161718192021i =

RADIUS = 3
WG_SIZE = 16

0 1 2 3 4 5 6 7 8 9 101112131415Local ID =

NVIDIA GPU Computing Master Class

OpenCL C Language Restrictions

Pointers to functions are not allowed
Pointers to pointers allowed within a kernel, but not as an
argument
Bit-fields are not supported
Variable length arrays and structures are not supported
Recursion is not supported
Writes to a pointer of types less than 32-bit are not
supported
Double types are not supported, but reserved
3D Image writes are not supported

Some restrictions are addressed through extensions

NVIDIA GPU Computing Master Class

Optional Extensions

Extensions are optional features exposed through
OpenCL
The OpenCL working group has already approved
many extensions that are supported by the OpenCL
specification:

Double precision floating-point types (Section 9.3)
Built-in functions to support doubles
Atomic functions (Section 9.5, 9.6, 9.7)
3D Image writes (Section 9.8)
Byte addressable stores (write to pointers with types < 32-
bits) (Section 9.9)
Built-in functions to support half types (Section 9.10)

NVIDIA GPU Computing Master Class

Performance Overview

OpenCL is about performance
Standard to make use of the massive computing
power of parallel processors like GPUs

But, performance is generally not portable across
devices:

There are multiple ways of implementing a given
algorithm in OpenCL. Each can have vastly
different performance characteristics for a given
compute device!

Achieving good performance on GPUs requires a
basic understanding of GPU architecture

NVIDIA GPU Computing Master Class

Heterogeneous Computing

Host + multiple devices = heterogeneous platform
Distribute workload to:

Assign to each processor the type of work it does best
CPU = serial, GPU = parallel

Keep all processors busy at all times
Minimize data transfers between processors or hide them
by overlapping them with kernel execution

Overlapping requires data allocated with
CL_MEM_ALLOC_HOST_PTR

NVIDIA GPU Computing Master Class

GPU Computing: Highly
Multithreaded

GPU compute unit “hides” instruction and memory latency with
computation

Switches from stalled threads to other threads at no cost (lightweight
GPU threads)
Needs enough concurrent threads to hide latency
Radically different strategy than CPU core where memory latency is
“reduced” via big caches

GPU compute unit (aka CUDA Stream Multiprocessor)

CPU core

T1

T2

T3

T4

T1 T2 T3 T4

Computation Thread

Tn Processed

Waiting for data

Ready to get
processed

GPU

CPU

NVIDIA GPU Computing Master Class

GPU Computing: Highly
Multithreaded

Latency hiding is only possible if there is other work
that can be done in parallel
Therefore, kernels must be launched with hundreds
of work-items per compute unit for good
performance

Minimal work-group size of 64; higher is usually
better (typically 1.2 to 1.5 speedup)
Number of work-groups is typically 100 or more

NVIDIA GPU Computing Master Class

GPU Computing:
High Arithmetic Intensity

GPU devotes many more transistors than CPU to
arithmetic units ⇒ high arithmetic intensity

NVIDIA GPU Computing Master Class

GPU Computing:
High Memory Bandwidth

GPUs offer high
memory bandwidth, so
applications can take
advantage of high
arithmetic intensity
and achieve high
arithmetic throughput

NVIDIA GPU Computing Master Class

CUDA Memory Optimization

Memory bandwidth will increase at a slower
rate than arithmetic intensity in future
processor architectures
So, maximizing memory throughput is even
more critical going forward
Two important memory bandwidth
optimizations:

Ensure global memory accesses are coalesced
Up to an order of magnitude speedup!

Replace global memory accesses by shared
memory accesses whenever possible

NVIDIA GPU Computing Master Class

CUDA = SIMT Architecture

Same Instruction Multiple Threads
Threads running on a compute unit are
partitioned into groups of 32 threads (warps)
in which all threads execute the same
instruction simultaneously

Minimize divergent branching within a warp
Different code paths within a warp get
serialized

Remove barrier calls when only threads within
same warp need to communicate

Threads within a warp are inherently
synchronized

NVIDIA GPU Computing Master Class

CUDA = Scalar Architecture

Use vector types for convenience, not performance
Generally want more work-items rather than large
vectors per work-item

NVIDIA GPU Computing Master Class

Maximize Instruction Throughput

Favor high-throughput instructions
Use native_*() math functions whenever
speed is more important than precision
Use -cl-mad-enable compiler option

Enables use of FMADs, which can lead to large
performance gains

Investigate using the -cl-fast-relaxed-math
compiler option

Enables many aggressive compiler
optimizations

NVIDIA GPU Computing Master Class

OpenCL Visual Profiler

• Analyze GPU HW performance
signals, kernel occupancy,
instruction throughput, and
more
• Highly configurable tables and
graphical views
• Save/load profiler sessions or
export to CSV for later analysis
• Compare results visually
across multiple sessions to see
improvements
• Supported on Windows and
Linux

• Included in the CUDA Toolkit

NVIDIA GPU Computing Master Class

OpenCL Information and Resources

NVIDIA OpenCL Web Page:
http://www.nvidia.com/object/cuda_opencl.html

NVIDIA OpenCL Forum:
http://forums.nvidia.com/index.php?showforum=134

NVIDIA driver, profiler, code samples for Windows and
Linux:

https://nvdeveloper.nvidia.com/object/get-opencl.html

Khronos (current specification):
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

Khronos OpenCL Forum:
http://www.khronos.org/message_boards/viewforum.php?f=28

http://www.nvidia.com/object/cuda_opencl.html
http://forums.nvidia.com/index.php?showforum=134
https://nvdeveloper.nvidia.com/object/get-opencl.html
http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf
http://www.khronos.org/message_boards/viewforum.php?f=28

	Programming in OpenCL
	Outline
	OpenCL and the CUDA Architecture
	OpenCL Portability
	OpenCL Platform Model
	OpenCL Platform Model�on the CUDA Architecture
	Anatomy of an OpenCL Application
	Heterogeneous Computing
	OpenCL Framework
	Platform Layer
	Error Handling, Resource Deallocation
	Context Creation
	Runtime
	Command Queue
	Commands
	Command Queue Creation
	Command Synchronization
	Memory Objects
	Buffer Object
	Image Object
	Data Transfer between �Host and Device
	Device Code in OpenCL C
	Kernel Execution:�NDRange and Work-Items
	Example: Vector Addition
	Kernel Execution: Work-Groups
	Example of 2D NDRange
	Kernel Execution on Platform Model
	Benefits of Work-Groups
	Scalability
	Memory Spaces
	Cooperation between Work-Items of same Work-Group
	Program and Kernel Objects
	Kernel Invocation
	OpenCL Local Memory�on the CUDA Architecture
	Example of Using Local Memory
	Implementation with Local Memory
	Kernel Code
	OpenCL C Language Restrictions
	Optional Extensions
	Performance Overview
	Heterogeneous Computing
	GPU Computing: Highly Multithreaded
	GPU Computing: Highly Multithreaded
	GPU Computing:�High Arithmetic Intensity
	GPU Computing:�High Memory Bandwidth
	CUDA Memory Optimization
	CUDA = SIMT Architecture
	CUDA = Scalar Architecture
	Maximize Instruction Throughput
	OpenCL Visual Profiler
	OpenCL Information and Resources

