Outline

- Introduction to OpenCL
- OpenCL API Overview
- Performance Tuning on NVIDIA GPUs
- OpenCL Programming Tools & Resources
OpenCL and the CUDA Architecture

Application Innovation

GPU Computing Applications

Development Environment

CUDA C
OpenCL™
DirectCompute
CUDA Fortran

Leading Edge
GPU Hardware

NVIDIA GPU with the CUDA Parallel Computing Architecture
OpenCL Portability

- Portable code across multiple devices
 - GPU, CPU, Cell, mobiles, embedded systems, …

- NOTE:

 functional portability != performance portability

 - Different code for each device is necessary to get good performance
 - Even for GPUs from different vendors!
OpenCL Platform Model

Host

Processing Element

Compute Device

Compute Unit
OpenCL Platform Model on the CUDA Architecture

- Host
- Compute Device
- Compute Unit
- CUDA Streaming Processor
- Processing Element
- CUDA Streaming Multiprocessor
- CUDA-Enabled GPU
- CPU
Anatomy of an OpenCL Application

OpenCL Application

- **Host Code**
 - Written in C/C++
 - Executes on the host

- **Device Code**
 - Written in OpenCL C
 - Executes on the device

Host code sends commands to the devices:
- to transfer data between host memory and device memories
- to execute device code
Heterogeneous Computing

- **Serial** code executes in a **CPU** thread
- **Parallel** code executes in many **GPU** threads across multiple processing elements

Diagram:

- **OpenCL Application**
 - Serial code
 - Parallel code
 - Serial code
 - Parallel code

- **Device = GPU**
 - Host = CPU

- **Device = GPU**
 - Host = CPU
OpenCL Framework

- **Platform layer**
 - Discover OpenCL devices and their capabilities and create contexts

- **Runtime layer**
 - Memory management and command execution within a context

- **OpenCL C Compiler**
 - Creates program executables that contain OpenCL kernels
Platform Layer

- Query platform information
 - `clGetPlatformIDs()`: list of platforms
 - `clGetPlatformInfo()`: profile, version, vendor, extensions
 - `clGetDeviceIDs()`: list of devices
 - `clGetDeviceInfo()`: type, capabilities

- Create OpenCL context on one or more devices of one platform

\[
\text{OpenCL Context} = \begin{cases}
\text{One or more devices} & \text{cl_device_id} \\
\text{Memory and device code shared by these devices} & \text{cl_mem cl_program} \\
\text{Command queues to send commands to these devices} & \text{cl_command_queue}
\end{cases}
\]
Error Handling, Resource Deallocation

- Error handling:
 - All host functions return an error code
 - Context error callback can be specified

- Resource deallocation
 - Reference counting API: `clRetain*()`, `clRelease*()`
 - Both are removed from code samples for clarity
 - Please see SDK samples for complete code
// Create an OpenCL context for all GPU devices on the first Platform
cl_context* CreateContext() {
 cl_platform_id platform_id;
 clGetPlatformIDs(1, &platform_id, NULL);

 return clCreateContextFromType(
 {CL_CONTEXT_PLATFORM, platform_id, 0},
 CL_DEVICE_TYPE_GPU,
 NULL, NULL, NULL);
}

// Get the list of GPU devices associated with a context
cl_device_id* GetDevices(cl_context context) {
 size_t size;
 clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &size);
 cl_device_id* device_id = malloc(size);
 clGetContextInfo(context, CL_CONTEXT_DEVICES, size, device_id, NULL);

 return device_id;
}
Runtime

- Command queues creation and management
- Memory allocation and management
- Device code compilation and execution
- Event creation and management (synchronization, profiling)
Command Queue

- Sequence of commands scheduled for execution on a specific device
 - Enqueuing functions: `clEnqueue*()`
 - Multiple queues can execute on the same device

- Two modes of execution:
 - In-order: Each command in the queue executes only when the preceding command has completed
 - Including all memory writes, so memory is consistent with all prior command executions
 - Out-of-order: No guaranteed order of completion for commands
Commands

- Memory copy or mapping
- Device code execution
- Synchronization point
// Create a command-queue for a specific device
cl_command_queue CreateCommandQueue(cl_context context,
 cl_device_id device_id)
{
 return clCreateCommandQueue(context, device_id, 0, NULL);
}
Command Synchronization

- Some `clEnqueue*()` calls can be optionally blocking
- Queue barrier command
 - Any commands after the barrier start executing only after all commands before the barrier have completed
- An event object can be associated to each enqueued command
 - Any commands (or `clWaitForEvents()`) can wait on events before executing
 - Can be queried to track execution status and get profiling information
Memory Objects

- Two types of memory objects (**cl_mem**):
 - Buffer objects
 - Image objects
- Associated with context, only implicitly with device
- Memory objects can be copied to host memory, from host memory, or to other memory objects
- Regions of a memory object can be accessed from host by mapping them into the host address space
Buffer Object

- One-dimensional array
- Elements are scalars, vectors, or any user-defined structures
- Accessed within device code via pointers

```c
__kernel void myKernel(__global int* buffer) {
    <...>
    // Access element in buffer object
    int v = buffer[get_global_id(0)];
    <...>
}
```
Image Object

- Two- or three-dimensional array
- Elements are 4-component vectors from a list of predefined formats
- Accessed within device code via built-in functions (storage format not exposed to application)
 - Sampler objects are used to configure how built-in functions sample images (addressing modes, filtering modes)
- Can be created from OpenGL texture or renderbuffer
Data Transfer between Host and Device

```c
int main() {
    cl_context context = CreateContext();
    cl_device_id* device_id = GetDevices(context);
    cl_command_queue command_queue =
        CreateCommandQueue(context, device_id[0]);
    size_t size = 100000 * sizeof(int);
    int* h_buffer = (int*)malloc(size);
    cl_mem* d_buffer = clCreateBuffer(context,
        CL_MEM_READ_WRITE, size, NULL, NULL);
    ...
    // Initialize host buffer h_buffer
    clEnqueueWriteBuffer(command_queue,
        d_buffer, CL_FALSE, 0, size, h_buffer, 0, NULL,
        NULL);
    ...
    // Process device buffer d_buffer
    clEnqueueReadBuffer(command_queue,
        d_buffer, CL_TRUE, 0, size, h_buffer, 0, NULL,
        NULL);
}
```
Device Code in OpenCL C

- Derived from ISO C99
- A few restrictions: recursion, function pointers, functions in C99 standard headers
- Some extensions: built-in variables and functions, function qualifiers, address space qualifiers, e.g:
  ```
  __global float* a; // Pointer to device memory
  ```

- Functions qualified by `__kernel` keyword (a.k.a kernels) can be invoked by host code
  ```
  __kernel void MyKernel() { … }
  ```
Kernel Execution: NDRange and Work-Items

- Host code invokes a kernel over an index space called an *NDRange*
 - NDRange = “N-Dimensional Range”
 - NDRange can be a 1-, 2-, or 3-dimensional space
- A single kernel instance at a point in the index space is called a *work-item*
 - Each work-item has a unique global ID within the index space (accessible from device code via `get_global_id()`)
 - Each work-item is free to execute a unique code path
Example: Vector Addition

Sequential execution by CPU thread

```c
void VecAdd(a, b, c, n) {
    for (int i = 0; i < n; ++i)
        c[i] = a[i] + b[i];
}
```

Parallel execution by multiple work-items

```c
__kernel void VecAdd(a, b, c, n) {
    int i = get_global_id(0);
    if (i < n)
        c[i] = a[i] + b[i];
}
```

get_global_id → 0 1 2 3 4 5 6 7 ...

NDRange
Work-items are grouped into work-groups

- Each work-group has a unique work-group ID (accessible from device code via `get_group_id()`)
- Each work-item has a unique local ID within a work-group (accessible from device code via `get_local_id()`)

Work-group has same dimensionality as NDRange
Example of 2D NDRange

- Total number of work-items = $G_x \times G_y$
- Size of each work-group = $S_x \times S_y$
- Number of work-groups = $(G_x / S_x) \times (G_y / S_y)$ (must be dividable)
Kernel Execution on Platform Model

- Each work-item is executed by a compute element.
- Each work-group is executed on a compute unit.
- Several concurrent work-groups can reside on one compute unit depending on work-group’s memory requirements and compute unit’s memory resources.
- Each kernel is executed on a compute device.
- On Tesla architecture, only one kernel can execute on a device at one time.
Benefits of Work-Groups

- Automatic scalability across devices with different numbers of compute units
- Efficient cooperation between work-items of same work-group
 - Fast shared memory and synchronization
Scalability

- Work-groups can execute in any order, concurrently or sequentially
- This independence between work-groups gives scalability:
 - A kernel scales across any number of compute units
Memory Spaces

Scope and Lifetime

Work-Item
- Private Memory
 - __private
 - 16 K (Tesla arch)
 - 32 K (Fermi arch)
 - per compute unit

Work-Group
- Local Memory
 - __local
 - On-chip
 - CUDA shared memory
 - 16 KB (Tesla arch)
 - 48 KB (Fermi arch)
 - per compute unit

Kernel
- Constant Memory
 - __consta
 - Off-chip, cached
 - CUDA constant memory
 - 64 KB

Application
- Global Memory
 - __global
 - Off-chip
 - CUDA global memory
 - Up to 4 GB

OpenCL Terminology

Private Memory
- __private
- 16 K (Tesla arch)
- 32 K (Fermi arch)
- per compute unit

Local Memory
- __local
- On-chip
- CUDA shared memory
- 16 KB (Tesla arch)
- 48 KB (Fermi arch)
- per compute unit

Constant Memory
- __consta
- Off-chip, cached
- CUDA constant memory
- 64 KB

Global Memory
- __global
- Off-chip
- CUDA global memory
- Up to 4 GB

CUDA Architecture

- Registers
 - 16 K (Tesla arch)
 - 32 K (Fermi arch)
 - per compute unit

- On-chip
- CUDA shared memory
- 16 KB (Tesla arch)
- 48 KB (Fermi arch)
- per compute unit

- Off-chip, cached
- CUDA constant memory
- 64 KB

- Off-chip
- CUDA global memory
- Up to 4 GB
Cooperation between Work-Items of same Work-Group

- Built-in functions to order memory operations and synchronize execution:
 - `mem_fence(CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE)`: waits until all reads/writes to local and/or global memory made by the calling work-item prior to `mem_fence()` are visible to all threads in the work-group.
 - `barrier(CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE)`: waits until all work-items in the work-group have reached this point and calls `mem_fence(CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE)`

- Used to coordinate accesses to local or global memory shared among work-items
Program and Kernel Objects

- A program object encapsulates some source code (with potentially several kernel functions) and its last successful build
 - `clCreateProgramWithSource()` // Create program from source
 - `clBuildProgram()` // Compile program

- A kernel object encapsulates the values of the kernel’s arguments used when the kernel is executed
 - `clCreateKernel()` // Create kernel from successfully compiled program
 - `clSetKernelArg()` // Set values of kernel’s arguments
int main() {
 ...
 // Create context and command queue, allocate host and device buffers of N elements
 char* source = "__kernel void MyKernel(__global int* buffer, int N) {
 if (get_global_id(0) < N) buffer[get_global_id(0)] = 7;
 }\n ";
 cl_program program = clCreateProgramWithSource(context, 1, &source, NULL, NULL);
 clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
 cl_kernel kernel = clCreateKernel(program, "MyKernel", NULL);
 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*) &d_buffer);
 clSetKernelArg(kernel, 1, sizeof(int), (void*) &N);
 size_t localWorkSize = 256; // Number of work-items in a work-group
 int numWorkGroups = (N + localWorkSize - 1) / localWorkSize;
 size_t globalWorkSize = numWorkGroups * localWorkSize;
 clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, &globalWorkSize, &localWorkSize, 0, NULL, NULL);
 ...
 // Read back buffer
}

NDRange dimension
OpenCL Local Memory on the CUDA Architecture

- On-chip memory (CUDA shared memory)
 - 2 orders of magnitude lower latency than global memory
 - Order of magnitude higher bandwidth than global memory
 - 16 KB per compute unit on Tesla architecture (up to 30 compute units)
 - 48 KB per compute unit on Fermi architecture (up to 16 compute units)

- Acts as a user-managed cache to reduce global memory accesses

- Typical usage pattern for work-items within a work-group:
 - Read data from global memory to local memory; synchronize with barrier()
 - Process data within local memory; synchronize with barrier()
 - Write result to global memory
Example of Using Local Memory

- Applying a 1D stencil to a 1D array of elements:
 - Each output element is the sum of all elements within a radius
 - For example, for radius = 3, each output element is the sum of 7 input elements:
Each work-group outputs one element per work-item, so a total of WG_SIZE output elements (WG_SIZE = number of work-items per work-group):

- Read (WG_SIZE + 2 * RADIUS) elements from global memory to local memory
- Compute WG_SIZE output elements in local memory
- Write WG_SIZE output elements to global memory

“halo” = RADIUS elements on the left

The WG_SIZE input elements corresponding to the output elements

“halo” = RADIUS elements on the right
__kernel void stencil(__global int* input,
__global int* output) {
__local int local[WG_SIZE + 2 * RADIUS];
int i = get_local_id(0) + RADIUS;
local[i] = input[get_global_id(0)];
if (get_local_id(0) < RADIUS) {
 local[i - RADIUS] = input[get_global_id(0) - RADIUS];
 local[i + WG_SIZE] = input[get_global_id(0) + WG_SIZE];
}
barrier(CLK_LOCAL_MEM_FENCE); // Blocks until work-items are done writing to local memory
int value = 0;
for (offset = - RADIUS; offset <= RADIUS; ++offset) value += local[i + offset]; // Sum
output[get_global_id(0)] = value; }
OpenCL C Language Restrictions

- Pointers to functions are not allowed
- Pointers to pointers allowed within a kernel, but not as an argument
- Bit-fields are not supported
- Variable length arrays and structures are not supported
- Recursion is not supported
- Writes to a pointer of types less than 32-bit are not supported
- Double types are not supported, but reserved
- 3D Image writes are not supported

- Some restrictions are addressed through extensions
Optional Extensions

- Extensions are optional features exposed through OpenCL
- The OpenCL working group has already approved many extensions that are supported by the OpenCL specification:
 - Double precision floating-point types (Section 9.3)
 - Built-in functions to support doubles
 - Atomic functions (Section 9.5, 9.6, 9.7)
 - 3D Image writes (Section 9.8)
 - Byte addressable stores (write to pointers with types < 32-bits) (Section 9.9)
 - Built-in functions to support half types (Section 9.10)
Performance Overview

- OpenCL is about performance
 - Standard to make use of the massive computing power of parallel processors like GPUs
- But, performance is generally not portable across devices:
 - There are multiple ways of implementing a given algorithm in OpenCL. Each can have vastly different performance characteristics for a given compute device!
- Achieving good performance on GPUs requires a basic understanding of GPU architecture
Heterogeneous Computing

- Host + multiple devices = heterogeneous platform
- Distribute workload to:
 - Assign to each processor the type of work it does best
 - CPU = serial, GPU = parallel
 - Keep all processors busy at all times
 - Minimize data transfers between processors or hide them by overlapping them with kernel execution
 - Overlapping requires data allocated with CL_MEM_ALLOC_HOST_PTR
GPU Computing: Highly Multithreaded

- GPU compute unit “hides” instruction and memory latency with computation
 - Switches from stalled threads to other threads at no cost (lightweight GPU threads)
 - Needs enough concurrent threads to hide latency
 - Radically different strategy than CPU core where memory latency is “reduced” via big caches
Latency hiding is only possible if there is other work that can be done in parallel.

Therefore, kernels **must** be launched with hundreds of work-items per compute unit for good performance.

- Minimal work-group size of 64; higher is usually better (typically 1.2 to 1.5 speedup)
- Number of work-groups is typically 100 or more
GPU Computing: High Arithmetic Intensity

- GPU devotes many more transistors than CPU to arithmetic units \Rightarrow high arithmetic intensity
GPU Computing: High Memory Bandwidth

- GPUs offer high memory bandwidth, so applications can take advantage of high arithmetic intensity and achieve high arithmetic throughput.
CUDA Memory Optimization

- Memory bandwidth will increase at a slower rate than arithmetic intensity in future processor architectures
- So, maximizing memory throughput is even more critical going forward
- Two important memory bandwidth optimizations:
 - Ensure global memory accesses are coalesced
 - Up to an order of magnitude speedup!
 - Replace global memory accesses by shared memory accesses whenever possible
CUDA = SIMT Architecture

- Same Instruction Multiple Threads
 - Threads running on a compute unit are partitioned into groups of 32 threads (warps) in which all threads execute the same instruction simultaneously

- Minimize divergent branching within a warp
 - Different code paths within a warp get serialized
 - Remove barrier calls when only threads within same warp need to communicate
 - Threads within a warp are inherently synchronized
CUDA = Scalar Architecture

- Use vector types for convenience, not performance
- Generally want more work-items rather than large vectors per work-item
Maximize Instruction Throughput

- Favor **high-throughput instructions**
- Use **native_**(*) math functions whenever speed is more important than precision
- Use **-cl-mad-enable** compiler option
 - Enables use of FMADs, which can lead to large performance gains
- Investigate using the **-cl-fast-relaxed-math** compiler option
 - Enables many aggressive compiler optimizations
OpenCL Visual Profiler

- Analyze GPU HW performance signals, kernel occupancy, instruction throughput, and more
- Highly configurable tables and graphical views
- Save/load profiler sessions or export to CSV for later analysis
- Compare results visually across multiple sessions to see improvements
- Supported on Windows and Linux
- Included in the CUDA Toolkit
OpenCL Information and Resources

- NVIDIA OpenCL Web Page:
- NVIDIA OpenCL Forum:
- NVIDIA driver, profiler, code samples for Windows and Linux:
- Khronos (current specification):
- Khronos OpenCL Forum: