
© Copyright Khronos Group, 2009 - Page 1

OpenGL 3 Overview
Barthold Lichtenbelt, NVIDIA

OpenGL ARB Chair

© Copyright Khronos Group, 2009 - Page 2

Agenda

• OpenGL 3.1 announcement and OpenGL 3 overview
- Barthold Lichtenbelt, NVIDIA

• OpenGL 2 vs OpenGL 3
- Jeremy Sandmel, OpenGL-next TSG chair

• Blizzard perspective
- Rob Barris, Blizzard

• TransGaming perspective
- Gavriel State, TransGaming

• gDEBugger demo
- Avi Shapira, Graphic Remedy

Presenter
Presentation Notes
As you are probably aware by now, we are announcing OpenGL 3.1 here – you guys are at the premier showing today.We have 5 presentations for you today. Afterwards we’re available for questions. Feel free to come chat.We’ll do trivia questions after each presentation.

© Copyright Khronos Group, 2009 - Page 3

OpenGL 3

The train has left!

Presenter
Presentation Notes
I’ll be talking about the ideas and features behind OpenGL 3.

© Copyright Khronos Group, 2009 - Page 4

Structure

• Overview of OpenGL 3.0 and GLSL 1.30
• The new deprecation model
• OpenGL 3.1 and GLSL 1.40
• OpenGL and OpenCL
• Future plans
• OpenGL 3 IHV support statements

Presenter
Presentation Notes
As follows. First a short recap of OpenGL 3.0 and the deprecation model to phase out some functionality. Next, details on OpenGL 3.1After that a brief comment about OpenGL and compute, Future plans the ARB has.I’ll finish with a brief overview of OpenGL 3.1 support from the various HW vendors.

© Copyright Khronos Group, 2009 - Page 5

OpenGL 3.0 and
GLSL 1.30

© Copyright Khronos Group, 2009 - Page 6

OpenGL 3 – Moving OpenGL forward
• Expose all available hardware features asap
• Keep innovating where it makes sense
• Increase ease of porting from DX9 and DX10 to OpenGL
• Introduce mechanism to remove features
• Introduce mechanism to provide market specific features
• Enable interoperability with compute (OpenCL)
• Become a true superset of OpenGL ES

This is done incrementally, as a series of point releases, schedule driven

Presenter
Presentation Notes
The ARB set several goals for OpenGL 3 that I have summarized on the slides here. The most important goal is to provide access to the available graphics hardware in a timely and predictable fashion. This of course, enables you, our developer, to uses all those HW gates to maximum effect. On top of that, we do realize that porting from DX is important, and you’ll see several OpenGL features aimed at making that easier. At the same time, we continue to evaluate if existing API features are still worth keeping in the core API. Maybe it is time to retire some of them, or make support for them optional, maybe to address a certain market. Compute on a GPU or CPU is becoming more and more important. How do we, OpenGL Designers, deal with that? The answer is to work well with OpenCL and not evolve OpenGL into a compute API. More on that in a bit. Last, but not least, making OpenGL a true superset of OpenGL ES benefits both the desktop as well as the handheld markets.Point releases less than a year apart. Features that don’t make a point release carried over to the next release. This keeps the API healthy and competitive. As a developer, you need to stay with this train. OpenGL 3 has left the station and is moving at a rapid pace.

© Copyright Khronos Group, 2009 - Page 7

OpenGL 3.0 and GLSL 1.30

• Support for latest generations of Programmable Hardware
- Installed base > 100 Million units

• Announced at Siggraph 2008
• Drivers now shipping from AMD, NVIDIA and S3 Graphics

- gDEBugger support also available
• Introduced a ton of new features
• No removal of any feature, fully backwards compatible
• Full interoperability with OpenCL

- Access to compute
• Collaboration among hardware vendors and software vendors

- Solving real needs
• Cross platform

- Windows XP and Vista, Linux, Mac OS, …

Presenter
Presentation Notes
The ARB started working on OpenGL 3.0 in Dec 2007 and released the specification at Siggraph 2008. Record time. You now have drivers available from the major vendors, as well as tools being developed to work with OpenGL 3.0. OpenGL 3.0 introduced a lot of new features, which I’ll briefly touch on. It does not remove any features, and is fully backwards compatible with OpenGL 2. This was a true collaborative effort , including AMD, ARM, Apple, Intel, NVIDIA, S3 Graphics, Blizzard and Transgaming. We’re very happy with the input, and continued input, from software vendors Blizzard and Transgaming.

© Copyright Khronos Group, 2009 - Page 8

OpenGL 3.0 new features
• Forward-looking context
• Greater VBO flexibility
• FBO and related extensions

- EXT_framebuffer_object, EXT_framebuffer_blit, EXT_framebuffer_multisample,
EXT_packed_depth_stencil

• Conditional rendering
• Transform feedback
• Floating point internal formats for textures and renderbuffers
• Half-float (16-bit) vertex and pixel data formats
• One and two-channel (R and RG) internal formats for textures and

renderbuffers
• RGTC internal compressed texture formats, packed float and texture

shared exponent
• sRGB framebuffer support

Presenter
Presentation Notes
There are over two dozen new features in OpenGL 3.0 some of the major new features I’ve listed here. We now have a deprecation model, and part of that is marking functionality deprecated what will be removed from a future version. Deprecated does not mean removed from the API, it means marked for future removal. If you create a forward-looking context in OpenGL 3.0 today you’ll get a context with all the deprecated functionality removed. It provides a preview of the functionality that’ll be in a future OpenGL version.Some major new functionality in OpenGL 3.0:A new Vertex Array Object that encapsulate vertex array state. It is now also possible to map sub ranges of buffer objects into client space and have more control over flushing parts of that buffer object data for greater performance. You can now also opt out of the normal blocking behavior of the mapbuffer API call.FBO: All the mentioned extensions are now part of OpenGL 3.0. Furthermore, attachments of different width and height or different formats are allowed.Conditional rendering lets you discard rendering based on an occlusion queryTransform feedback lets you render data into a buffer object, then re-use that buffer object as the source for another rendering passFP support for textures and renderbuffers enables you to render to and from FP format data.Half float vertex array data formats: Input vertex data in a compact float formatPlus, the ability to render to and from single or double channel data.RGTC texture compression is a new format for 2D images without borders.And sRGB framebuffer support lets you store data in sRGB format in the framebuffer, including blending support.

© Copyright Khronos Group, 2009 - Page 9

GLSL 1.30 new features
• Native integer support

- bitwise operators, texture return values, uniforms, shader input/outputs
• Expanded texturing support

- Size queries, offsets, explicit LOD and derivative control, texture arrays, integer support
• Switch statements
• Several new built-in functions

- Hyperbolic trig functions
- trunc(), round(), roundEven(), isnan(), isinf(), modf()
- Integer related: sign(), min/max(), abs(), ….

• Pre-processor token pasting (##)
• User-defined fragment outputs
• Non-perspective interpolation of varying variables
• gl_VertexID vertex shader input
• Follows the same deprecation model as the API

Presenter
Presentation Notes
A major part of all the new functionality can be found in the new shading language, version 1.30.Integers are now at least 32 bits wide, and you can do the usual integer operations on them. Furthermore, I/O in and out of shaders has been enhanced to support integers.Many more texture functions are added, giving you even more control. Texture arrays are now also part of GLSL 1.30 . On top of that a host of smaller features, listed here on the slide.One final important thing to point out is that GLSL will follow the same deprecation model as the API.

© Copyright Khronos Group, 2009 - Page 10

OpenGL 3.0 based on:
• EXT_gpu_shader4
• NV_conditional_render
• ARB_color_buffer_float
• NV_depth_buffer_float
• ARB_texture_float
• EXT_packed_float
• EXT_texture_shared_exponent
• NV_half_float
• ARB_half_float_pixel
• EXT_framebuffer_object
• EXT_framebuffer_multisample
• EXT_framebuffer_blit
• EXT_texture_integer
• EXT_texture_array
• EXT_packed_depth_stencil
• EXT_draw_buffers2
• EXT_texture_compression_rgtc
• EXT_transform_feedback
• APPLE_vertex_array_object
• EXT_framebuffer_sRGB
• APPLE_flush_buffer_range
• ARB_texture_RG

Presenter
Presentation Notes
Just to give you an idea of what went into OpenGL 3.0, here’s a list of extensions we drew upon. Some of them went in “as is”, some of them were modified a bit before making it into core OpenGL 3.0. An example of that is the flush buffer range functionality.

© Copyright Khronos Group, 2009 - Page 11

Extensions for OpenGL 3.0

Feature Extension for OpenGL 3.0
Platform extension support for managing
OpenGL 3.0 contexts

{WGL|GLX}_ARB_create_context

Geometry shaders to modify vertices and/or
generate new vertices and primitives

ARB_geometry_shader4

Large 1D table lookups for GLSL ARB_texture_buffer_object

Instanced primitive rendering for OpenGL 3.0
capable hardware

ARB_draw_instanced

Presenter
Presentation Notes
We also released four ARB extensions together with OpenGL 3.0. The Create Context one is necessary to create an OpenGL 3.0 or later context. The other three encapsulate functionality we weren’t ready yet to put into core.

© Copyright Khronos Group, 2009 - Page 12

Extensions for OpenGL 2.x

Feature from OpenGL 3.0 Extension for OpenGL 2.x
All framebuffer object functionality ARB_framebuffer_object

16-bit floating point vertex formats ARB_half_float_vertex

sRGB color space rendering ARB_framebuffer_sRGB

More efficient buffer mapping ARB_map_buffer_range

1 and 2 component texture compression ARB_texture_compression_rgtc

Efficient vertex array state management ARB_vertex_array_object

1 and 2 component render-to-texture ARB_texture_rg

Vertex array instancing for OpenGL 2.x
capable hardware

ARB_instanced_arrays

Presenter
Presentation Notes
Besides releasing OpenGL 3 extensions, we also released a set of extensions for OpenGL 2. They have in common that they all describe functionality that is in the OpenGL 3 specification, but that can be implemented on pre-GL 3 hardware. This should help transition from OpenGL 2 to OpenGL 3.

© Copyright Khronos Group, 2009 - Page 13

The Deprecation Model

© Copyright Khronos Group, 2009 - Page 14

Removing features

• OpenGL has never removed features
- Commitment to backwards compatibility is one of OpenGL’s strengths
- After 15+ years, defining new features to work with old features becomes increasingly difficult

• OpenGL 3.0 did not remove any features
• OpenGL 3.0 did mark certain features as deprecated

- Redundant, Legacy and obsolete features
- Parts of OpenGL unlikely to be accelerated

• Future OpenGL revisions will remove these deprecated features
- Guidance to developers to prepare for future revisions
- Plan to remove these features sooner, rather than later.

Presenter
Presentation Notes
One of the new things that the ARB is introducing with OpenGL 3.0 is a path for removal of certain types of functionality. 15+ years of API design makes it increasingly difficult to define how new functionality has to work with existing, old, functionality. Generally that is functionality that is redundant, slow in practice or subsumed by more modern mechanisms. It is important to note that deprecated means “marked for removal” and not actual removal from the specification. A future revision of the OpenGL specification can remove features marked deprecated. Nothing is removed in OpenGL 3.0.

© Copyright Khronos Group, 2009 - Page 15

Deprecated features
• Fixed-function vertex and fragment processing
• Color-index mode
• Display lists, and Selection and Feedback modes
• GLSL 1.10 and 1.20
• Begin/End based rendering
• Application-generated object names
• Quads and polygon primitives
• Polygon and Line Stipple
• Pixel transfer modes
• Bitmaps, DrawPixels, PixelZoom
• and quite a few others...

- See Appendix E of OpenGL 3.0 specification for the list

Presenter
Presentation Notes
Here is a partial list of features that are marked deprecated in OpenGL 3.0. The full list is in the OpenGL 3.0 specification. I am not going to go over the whole list, please take a look at Appendix E in the GL 3.0 specification. As you can see, this is quite a long list. But all of these are possible to do with more modern API features, like vertex and fragment shaders. Or are considered inefficient and slow.

© Copyright Khronos Group, 2009 - Page 16

Deprecation mechanism
• Step 1 Core feature

- In core, fully supported. Will be in the next API version
• Step 2 Core (Deprecated feature)

- In core, marked as deprecated
- May be fully or partly removed in a later version
- New features need not define interactions with deprecated ones

• Step 3 ARB approved Extension
- Removed from core -> an ARB extension (no suffix)
- Extension spec identifies the removed functionality
- Vendors may support the extension if markets require it

• Step 4 Removed from ARB extension list
- Could be an EXT or vendor extension, if vendor markets still require it (still no suffixes required)

Presenter
Presentation Notes
Deprecation is a four step process. First, a feature is in the core. Next, it is still in the core but clearly marked deprecated in the specification. Next, the ARB will remove it from the core specification and move it into an ARB extension. As you know, extensions are optional to implement by hardware vendors, the core specification is not optional. As a last step the ARB can decide to demote the feature even further, and then it becomes up to a hardware vendor to decide to support the feature as an extension, or not.

© Copyright Khronos Group, 2009 - Page 17

Deprecation mechanism
• Features will be deprecated for at least one spec release (step 2) before

being removed
• Extension Path: Vendor/EXT->ARB->Core

- With possible API / functionality changes as we learn from experience
• Deprecation Path: Core->ARB->EXT/Vendor

- No API or functionality changes

Presenter
Presentation Notes
Or to say it differently, a feature has a well defined path from extension into the core and out of the core into an extension again. Note that when a feature is on the path into the core, it can change whenever it changes status from ext to arb and then to core. But when it moves out, that is not possible.

© Copyright Khronos Group, 2009 - Page 18

Feature Evolution Model - Deprecation

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core

Incoming Extensions
that may be integrated

into Core in future

Outgoing Extensions
that may be dropped
completely in future

Core Specification

time

Presenter
Presentation Notes
Graphically, the lifespan of a feature in OpenGL looks like this. <animate>Feature foo first will be an ARB extension, <animate> then makes it into the core, possibly with minor modifications to improve upon what is there. Once in the core, the functionality of foo cannot change anymore. <animate> Eventually, it can move out of the core and become an ARB extension<animate>And finally removed all together.

© Copyright Khronos Group, 2009 - Page 19

OpenGL 3.1 and
GLSL 1.40

Released 3/24/09

Presenter
Presentation Notes
We are proud to release OpenGL 3.1 only 9 months after the release of OpenGL 3.0. Details of OpenGL 3.1 follow.

© Copyright Khronos Group, 2009 - Page 20

Announcing OpenGL 3.1
• More Texturing

- Texture Buffer Objects
- SNORM Texture format support
- Rectangle Textures

• Additional Buffer management
- Copy data between buffers
- Uniform buffer objects

• Better Vertex Processing
- Primitive Restart (NV_primitive_restart)
- Instancing (ARB_draw_instanced)

• Removal of features
- Everything on the deprecated list in OpenGL 3.0

• ARB_compatibility extension
- Optional. Encapsulates removed functionality

• New Programmability
- GLSL 1.40
- Uniform Buffer Objects

Presenter
Presentation Notes
Make a point that the two big things to take away are uniform buffer objects and texture buffer objects, i.e. more buffer management, and the removal of features.OpenGL 3.1 introduces even more texture flexibility. Texture buffer objects was an ARB extension, now folded into the core. It allows for very large 1D arrays of data accessible by a shader. We added signed normalized texture formats, and a oldie but goodie, texture rectangle.The most important new feature is Uniform Buffer Objects. More on that later. Just hang on to the thought it is important. You can now also quickly copy data between buffer objects. Furthermore, we added instancing support, which was another ARB extension, as well as another oldie. Primitive restart. Probably familiar to at least some of you.OPenGL 3.1 also removes the functionality that was marked deprecated in OpenGL 3.0. As I just talked about. This makes for quite a lot smaller API. I think you’ll like it. In order to be able to address certain markets, where this removal might cause a real problem, the ARB designed the ARB_compatibility extension. This extension encapsulates the removed functionality and is optional to implement.I’ll talk more about The shading language in the next slide.

© Copyright Khronos Group, 2009 - Page 21

Announcing GLSL 1.40

• Uniform blocks to be backed by buffer objects
- Major new feature

• Texture buffers
•gl_InstanceID for instance drawing
• Don't require writing to gl_Position
• Rectangular textures

Presenter
Presentation Notes
UBO is a big feature for the Shading Language. I’ll be talking about that next. Texture buffer objects need GLSL Support so that you can access the data from a vertex, geometry or fragment shader, using a new sampler type and texture fetch function. The gl_InstanceID built-in variable is only available in a vertex shader, and is a counter indicating the current instance of a set of geometry being processed. We also took the opportunity to make writing to gl_Position from a vertex shader optional. Finally, there are some new texture rectangle fetch functions.

© Copyright Khronos Group, 2009 - Page 22

New Extensions for OpenGL 2.x

Feature from OpenGL 3.0/3.1 Extension for OpenGL 2.x
All framebuffer object functionality ARB_framebuffer_object

16-bit floating point vertex formats ARB_half_float_vertex

sRGB color space rendering ARB_framebuffer_sRGB

More efficient buffer mapping ARB_map_buffer_range

1 and 2 component texture compression ARB_texture_compression_rgtc

Efficient vertex array state management ARB_vertex_array_object

1 and 2 component render-to-texture ARB_texture_rg

Vertex array instancing for OpenGL 2.x
capable hardware

ARB_instanced_arrays

Store uniform values in buffer objects ARB_uniform_buffer

Copy data between buffer objects ARB_copy_buffer

Presenter
Presentation Notes
This is the same table I showed earlier, augmented with the two extensions in red at the bottom. Again, this list represents features in core OpenGL 3 that are implementable on pre-GL 3 hardware. As you noticed, I keep coming back to uniform buffer objects – we’re almost there.

© Copyright Khronos Group, 2009 - Page 23

OpenGL 3.1 based on
• ARB_copy_buffer
• NV_primitive_restart
• ARB_draw_instanced
• ARB_texture_buffer_object
• ARB_texture_rectangle
• ARB_uniform_buffer_object

Presenter
Presentation Notes
To give you an idea again, this is what OpenGL 3.1 is based on. The list is not as long as the OpenGL 3.0 list is. However, that is a poor measure of the value of what an API release brings you, developers. I do want to point out that we spent quite a lot of time working on UBO. We initially looked at the bindable uniform extension, but rejected it as too inflexible, missing some key features we wanted to incorporate. UBO is a good example of how a standard’s body can produce a quality specification. With input from both the software developers and hardware vendors on the ARB, we came to something better than we started with. This design process takes time. But if you read the ARB_buffer_object extension, and especially the issues section, you’ll get an idea of the thought and care that went into designing it.Ok, now it is finally time to tell you what you can actually do with UBOs.

© Copyright Khronos Group, 2009 - Page 24

Uniform Buffer Objects
• Introduction of uniform blocks

- Group of uniforms declared in a shader
• Storage for values in uniform blocks is provide by a buffer object
• Defines standard (portable) and optimized layouts

- Portable across OpenGL implementations
- Portable across program objects and shader stages
- Or fully optimized, non-portable

• Uniform data is loaded with existing buffer object API
• A buffer object is bound to an element of an array of uniform block binding

points
- This is context state

• A (program, uniform block) pair is associated with an element in the same
array

Presenter
Presentation Notes
UBO introduces the concept of uniform blocks – a set of uniform variables grouped together. Storage for a uniform block is provided by a buffer object. Hence, you can store and access quite a large amount of data from a shader.Layout of the data in a buffer object can come in one of three forms. <explain forms> You indicate in the shader source code what layout you desire for a uniform block.Since the data is stored in a buffer object, you use existing buffer object API to load uniform data, instead of using the glUniform API to load values.There is an array of uniform binding points in the OpenGL context. You can think of that array as in indirection between the uniform block in a particular program object, and a buffer object used to store data for that uniform block. I’ll provide an example in the next few slides.

© Copyright Khronos Group, 2009 - Page 25

Advantages
• Sharing of uniform data between program objects and program stages
• Rapid switching between sets of uniform data

- Buffer objects stored on the server
- Eliminate calling glUniform* many times over

• Rapid updates of uniform data
- Using the existing buffer object commands. BufferData(), MapBufferRange() etc.

• Can store arbitrarily complex structures of data
- Not limited to arrays of uniforms anymore

• Standard layout of data in memory, even across OpenGL vendors
- Determined by a set of packing rules. Inspection of GLSL source code conveys layout

• Can store large amounts of data
- Storage provided by a buffer object

Presenter
Presentation Notes
So what is so cool about UBOs? It provides a way for global uniform data storage – access to the same data from different program objects. Not only that, you can quickly and efficiently switch between sets of uniform values with one API call. Since you use the existing buffer object API, you can efficiently load large amounts of data, instead of calling glUniform over and over again. You can store and load data for simple floats, all the way to complex structures. The layout of the data in a buffer object can be predictable, if you so chose. By inspection of the shader source code alone you can predict the layout. If, however, you don’t care about that kind of portability you instruct the compiler to optimize the layout as it sees fit. This might save storage space, and possible even rendering speed. The cost is portability and you’ll have to write code to query the layout, so you can load the uniform data.

© Copyright Khronos Group, 2009 - Page 26

Uniform buffer object example
#extension GL_ARB_uniform_buffer_object : enable

// Define a uniform block, using std140 layout
layout(std140) uniform colors0 {

float DiffuseCool;
float DiffuseWarm;
vec3 SurfaceColor;
vec3 WarmColor;
vec3 CoolColor;

};

void main (void)
{

vec3 kcool = min(CoolColor + DiffuseCool * SurfaceColor, 1.0);
...
gl_FragColor = ...

}

Presenter
Presentation Notes
Here’s an example, starting with a GLSL fragment shader. Note that I picked the std140 layout here. Which mean the layout is portable, even across OpenGL implementations. Our uniform block is called colors0.

© Copyright Khronos Group, 2009 - Page 27

Program initialization (1/2)
//There's only one uniform block, the 'colors0' uniform block.
uniformBlockIndex = glGetUniformBlockIndex(prog_id,

"colors0");

//associate the uniform block to binding point 0
glUniformBlockBinding(prog_id, uniformBlockIndex, 0);

//Get the uniform block's size
glGetActiveUniformBlockiv(prog_id, uniformBlockIndex,

GL_UNIFORM_BLOCK_DATA_SIZE_ARB,
&uniformBlockSize);

Presenter
Presentation Notes
At program initialization time, we bind the uniform block to the uniform block binding point 0. Remember, that is our indirection table. Later we’ll associate that with a buffer object. We also query the size of the uniform block for later use.

© Copyright Khronos Group, 2009 - Page 28

Program initialization (2/2)
//SurfaceColor might change, so we'll query its offset/size.
const char *name = "SurfaceColor";

//First, get the index for the uniform
glGetUniformIndices(prog_id, 1, &name, &index);

//Use the index to query offset and size
glGetActiveUniformsiv(prog_id, 1, &index,

GL_UNIFORM_OFFSET_ARB, &offset);
glGetActiveUniformsiv(prog_id, 1, &index,

GL_UNIFORM_SIZE_ARB, &singleSize);

//Because this is std140 layout, we know the answer already
assert(offset == 16 && singleSize == 12);

Presenter
Presentation Notes
I know that in my application, the only uniform value that I want to change is the surface color. Hence I need to know where inside the uniform block it is stored by querying its offset and size. But first I need to get the index to SurfaceColor by calling GetUniformIndices.This is strictly speaking not necessary, since we picked the st140 layout in the GLSL Shader. But I included it here for illustration purposes. If you picked one of the other layout options, you will have to query the offset and size.

© Copyright Khronos Group, 2009 - Page 29

Buffer initialization

//Create UBO
glBindBuffer(GL_UNIFORM_BUFFER_ARB, buffer_id);

//We can use BufferData to upload our data to the shader,
//since we know it's in the std140 layout
glBufferData(GL_UNIFORM_BUFFER_ARB, uniformBlockSize, NULL,

GL_DYNAMIC_DRAW);

Presenter
Presentation Notes
Next is the initialization of the buffer object we are going to use to store the uniform values. Notice that we queried the size of the uniform block earlier, a few slides back. We are now using that size to create a buffer object of the correct size.

© Copyright Khronos Group, 2009 - Page 30

Draw time

foreach (object) {
// Set state
// Bind vertex buffers

// Bind constants to UBO binding point 0
glBindBufferBase(GL_UNIFORM_BUFFER_ARB, 0, buffer_id);

if (surfacecolor has changed) {
glBufferSubData(GL_UNIFORM_BUFFER_ARB, offset,

singleSize, &newcolor);
}
Draw();

}

Presenter
Presentation Notes
Finally, during our inner draw loop all we have to do is bind the buffer object that holds our constants to the uniform block binding point 0. Remember we bound the uniform block to that binding point at program initialization time, and here we bind the buffer object also.Surfacecolor is the one variable in our UBO that is not constant. With a bufferSubData call we load a new value.And finally, make your draw calls.

© Copyright Khronos Group, 2009 - Page 31

OpenGL 3 Modern Buffer-centric
Processing Model

Vertex Array Buffer
Object (VAO)

Transform Feedback
Buffer

Uniform Buffer
Object (UBO)

Pixel Unpack
Buffer

Pixel Pack
Buffer

Texture Buffer
Object (TexBO)

Vertex Puller

Vertex Shading

Geometry Shading

Fragment
Shading

Texturing

Array Element Buffer

Pixel
Pipeline

vertex data

texel data

pixel data

parameter data

glBegin, glDrawElements, etc.

glDrawPixels, glTexImage2D, etc.

glReadPixels,
etc.

Framebuffer

Presenter
Presentation Notes
I want you to come away from this slide thinking about how the OpenGL pipeline is fed through the various buffer objects now available. This is a big departure from OpenGL 2.In the middle, in the red-pinkish color is a simplified view of the OpenGL pipeline. The blue blocks all indicate various buffers that feed or get fed by the OpenGL pipeline.OpenGL 3.0 and 3.1 introduce all but the Pixel pack and unpack buffers on the right. In order to fully take advantage of OpenGL 3, you need to pay close attention to how to most efficiently use all these new buffer types.

© Copyright Khronos Group, 2009 - Page 32

OpenGL and Compute

Presenter
Presentation Notes
A few words about OpenGL and compoute

© Copyright Khronos Group, 2009 - Page 33

OpenGL and OpenCL synergy
• Complimentary capabilities

- OpenGL 3.x = state-of-the-art, cross-platform graphics
- OpenCL 1.0 = state-of-the-art, cross-platform compute

• Computation & Graphics should work together
- Most natural way to intuit compute results is with graphics
- When Compute is done on a GPU, there’s no need to “copy” the data to see it visualized

=> Use OpenCL for compute!

Presenter
Presentation Notes
OpenCL is the Khronos API for compute using a GPU and a CPU. We explicitly won’t extend OpenGL to evolve into a general compute engine. OpenGL 3 is a state of the art, cross platform, graphics API. OpenCL is the state of the art, cross platform API for compute. The natural way to visualize compute results, is obviously, with graphics using OpenGL. OpenGL makes for a poor compute engine.

© Copyright Khronos Group, 2009 - Page 34

OpenGL and OpenCL interop

• Interop – the ability to efficiently transfer buffers or textures between
OpenGL and OpenCL

• Enables application to use the API that makes most sense for their problem
domain

- No square peg in a round hole gymnastics
• Works on single GPU and multi-GPU systems

Presenter
Presentation Notes
In order to transfer data between the two APIs, the OpenCL specification has defined a set of entry points to map OpenGL objects into an OpenCL context. We call this “interop” and it is nothing more than the ability to efficiently read and write data to OpenGL objects. Depending on the OpenGL and OpenCL implementation this might not even involve a data copy at all, making this extremely efficient.

© Copyright Khronos Group, 2009 - Page 35

Four Kinds of Shared Objects

OpenCL 3D image object
cl_mem

OpenGL renderbuffer object
GLuint renderbuffer

OpenGL buffer object
GLuint bufferobj

OpenCL buffer object
cl_mem

OpenGL texture 2D object
GLenum target
GLuint texture
GLint miplevel

OpenGL texture 3D object
GLenum target
GLuint texture
Glint miplevel

OpenCL 2D image object
cl_mem

2D image object
cl_mem

clCreateFromGLBuffer

clCreateFromGLTexture2D

clCreateFromGLTexture3D

clCreateFromGLRenderbuffer

OpenGL OpenCL

Presenter
Presentation Notes
There area four different types of OpenGL objects that you can create OpenCL buffer objects or memory objects from. Those are OpenGL buffer objects, renderbuffers or textures. The size of the OpenCL object is inferred from the size of its corresponding OpenGL object. Once created, data can be written or read from the object in OpenCL or OpenGL. There are some synchronization rules to abide by, and extra API is introduced by OpenCL to help with this. For more, see Appendix B of the OpenCL 1.0 specification.

© Copyright Khronos Group, 2009 - Page 36

What we said at Siggraph 2008
• Schedule driven
• ARB extensions are candidates for folding into a future core

- ARB_draw_instanced
- ARB_geometry_shader
- ARB_texture_buffer_object

• Backing uniform variables with buffer objects
• #include mechanism for GLSL
• Attribute index offsets
• Remove deprecated features
• Profiles
• Object model improvements
• Other functionality you need?

Presenter
Presentation Notes
This is what we said we were looking at for OpenGL 3.1 back at Siggraph last year. This is the exact same slide I showed you then, well without the check marks. Because we are now much more schedule driven, not everything on this lis got done. Which is OK, we are already looking at the next version of OpenGL we will carry over what we didn’t do this time. I want to point out that we did deliver on two very big items: UBO and removing deprecated features.

© Copyright Khronos Group, 2009 - Page 37

Future versions
• ARB just started discussion on the next version - release likely within a

year
• Close look at what remains to be done to increase ease of DX portability
• ARB extensions: Geometry shaders and copy buffer
• Finish making GLSL a true superset of ES
• Using program objects without linking
• Direct State Access
• Sampler objects - Splitting a texture object into image and sampler object
• Support for loading shader binaries
• Fences
• User specified UBO packing
• Explicit MSAA control
• Cube map arrays, MRT blending, Tesselation, Programmable blending

Presenter
Presentation Notes
In no particular order, here is a list of features we’ve been discussing. This is not a guarantee it’ll make it into the next version. We might release some of it as ARB extensions, or we might decide to push it out further. We will continue to be schedule driven, and get you a new release within a year. We need your input on these features. Come talk to us. We do read the forums on opengl.org carefully, and discuss what is being said there. Some DX portability issues: BGRA vertex support. Control over provoking vertex. Configurable texture sample locations. Depth clamping. Attribute index offsets

© Copyright Khronos Group, 2009 - Page 38

OpenGL 3.1 Specification Download

http://www.opengl.org/registry

Three new specs approved and available today
1) OpenGL 3.1 specification
2) OpenGL 3.1 + ARB_compatibility extension
3) GLSL 1.40 specification

© Copyright Khronos Group, 2009 - Page 39

OpenGL 3.1 IHV
Statements

Presenter
Presentation Notes
Disclaimer: The following slides were provided by their respective companies, not the OpenGL ARB or Khronos.

© Copyright Khronos Group, 2009 - Page 40

AMD and OpenGL 3.0 / OpenGL 3.1

• AMD already ships OpenGL 3.0 today
- Full context
- Forward compatible context
- Support for Radeon and FirePro products

• AMD will add support for OpenGL 3.1 in the next few months
• AMD will support for ARB_compatibility extension which enables

existing application to more easily use the latest features

• Contact AMD for details: pierre.boudier@amd.com

© Copyright Khronos Group, 2009 - Page 41

Intel on OpenGL 3.1

• “Intel is excited about OpenGL 3.1, the continuing evolution of OpenGL,
and our future product support of OpenGL 3.x”

© Copyright Khronos Group, 2009 - Page 42

NVIDIA on OpenGL 3.0 / 3.1

• Have been shipping OpenGL 3.0 drivers since Siggraph 2008
• Announcing immediate availability of OpenGL 3.1 beta drivers

- On both Windows and Linux
• OpenGL 3.1 drivers DO support the ARB_compatibility extension

• Download and release notes at
http://developer.nvidia.com/object/opengl_3_driver.html

Presenter
Presentation Notes
With my NVIDIA hat on

© Copyright Khronos Group, 2009 - Page 43

Trivia Questions

• How good is your knowledge of OpenGL and GLSL?

Presenter
Presentation Notes
There will be trivia questions between presentations. We’ll test your knowledge of OpenGL and GLSL. Don’t be afraid, there are cool prices to win for the right answers. But if you get it wrong, you owe the ARB a beer Please raise your hand if you know the answer, don’t all try to shout it out loud. Good luck!

	OpenGL 3 Overview
	Agenda
	OpenGL 3
	Structure
	OpenGL 3.0 and �GLSL 1.30
	OpenGL 3 – Moving OpenGL forward	
	OpenGL 3.0 and GLSL 1.30
	OpenGL 3.0 new features
	GLSL 1.30 new features
	OpenGL 3.0 based on:
	Extensions for OpenGL 3.0
	Extensions for OpenGL 2.x
	The Deprecation Model
	Removing features
	Deprecated features
	Deprecation mechanism
	Deprecation mechanism
	Feature Evolution Model - Deprecation
	OpenGL 3.1 and �GLSL 1.40
	Announcing OpenGL 3.1
	Announcing GLSL 1.40
	New Extensions for OpenGL 2.x
	OpenGL 3.1 based on
	Uniform Buffer Objects
	Advantages
	Uniform buffer object example
	Program initialization (1/2)
	Program initialization (2/2)
	Buffer initialization
	Draw time
	OpenGL 3 Modern Buffer-centric�Processing Model
	OpenGL and Compute
	OpenGL and OpenCL synergy
	OpenGL and OpenCL interop
	Four Kinds of Shared Objects
	What we said at Siggraph 2008
	Future versions
	OpenGL 3.1 Specification Download
	OpenGL 3.1 IHV Statements
	AMD and OpenGL 3.0 / OpenGL 3.1
	Intel on OpenGL 3.1
	NVIDIA on OpenGL 3.0 / 3.1
	Trivia Questions

