
Multi Agent Navigation
on GPU

Avi Bleiweiss

Reasoning

Explicit
Script, storytelling

State machine, serial

Implicit
Compute intensive

Fits SIMT architecture well

Navigation planning
Collision avoidance

Motivation

Computational intelligence
On CUDA platform

Alternative pathfinding
Intuitive multi threading

Flat, nested parallel

Scalable, real time
Dense environments

CUDATM

Game

AI PhysXTM

DirectX®

Driver

Problem

Planner
• Searches a global, optimal path
• From start to goal

• Locally, avoids collisions with
• Static, dynamic objects

• Exploits autonomous sensing

Simulator
• Visually compelling motion
• Economical memory footprint
• A subset of compute units
• Linear scale with # characters

Solution

Multi agent model

Pre-computed roadmap

Extended Velocity Obstacles
Global path integration

No explicit communication

GPU specific optimization
Nearest neighbors search

Outline

Algorithm

Implementation

Results

Takeaways

Paper: Bleiweiss, A. 2009. Multi Agent Navigation on GPU

Algorithm

Visibility

Two sets of edges
Visible roadmap node pairs

Goal to unblocked nodes

A* search, shortest path
From goal to any node

Line segment obstacles
Efficient sweep line method

A point is visible from
another point -

If the connecting line doesn’t
intersect any static obstacles.

Velocity Obstacles

Avoidance velocity set for
Dynamic agents among

Passively moving obstacles

Prone to oscillations

Reciprocal Velocity Obstacles
Identical, collision free mind

Complement set
Admissible agent velocities

Velocity Obstacles:
[Fiorini and Shiller 1998]

Reciprocal Velocity Obstacles:
[Van Den Berg et al. 2008]

Simulation

Simulator advances until
All agents reached goal

Path realigned towards
Roadmap node or goal

Agent, velocity parallel

1: VO = velocity obstacle
2: RVO = reciprocal velocity obstacle
3: do
4: hash
5: construct hash table
6: simulate
7: compute preferred velocity
8: compute proximity scope
9: foreach velocity sample do

10: foreach neighbor do
11: if OBSTACLE then VO
12: elseif AGENT then RVO
13: resolve new velocity
14: update
15: update position, velocity
16: resolve at-goal
17: while not all-at-goal

nested

flat

p
e
r

f
r
a
m
e

Implementation

Workflow

CUDA kernel pair
simulate and update

Deterministic resources
Allocated at initialization

Per frame output
At-goal, path waypoints

Split frame, multi GPU
Device-to-device copy

CUDA AI
Simulator

Loop
Control

Hash Table

Physics/
Render

Challenges

Hiding memory latency

Divergent threads

Hash construction cost

Thread safe RNG

Data Layout

Persistent resources
Reside in global memory

Static, read-only data
Texture bound, linear

Thread aligned data
Better coalescing

Consistent access pattern
Improves bandwidth

Nearest Neighbors Search

For each agent:
• Select random,

3D position samples

For each sample:
• Hash position
• Compute distance
• Insert, sort distance

Naïve, exhaustive scheme
O(n2) total running time

Spatial hash based
3D point to a 1D index

Signed distance rule

Logarithmic traversal time

Per frame construction
Current agent’s position

Execution Model

Kernel Registers Shared
(B)

Local
(B)

Constant
(B)

simulate 32 116 244 208

update 14 60 0 56

1D grids and blocks

Static shared memory

Hide ALU ops latency
10–12 cycles FMA

Lessen memory latency
Independent math ops

Per agent RNG

Property Kernel

simulate update

Threads / Block 128 128

Warps / Multiprocessor 16 32

Occupancy 50% 100%

Nested Parallel

Flat parallel limited
Nested more scalable

Thread grid hierarchy
Independent child grids

All running same kernel

Grid global atomic sync

Threads exceed HW max
No added memory

__global__ void
candidate(CUAgent* agents, int index,

CUNeighbor* neighbors)
{

float3 v, float t;
CUAgent a = agents[index];

if(!getThreadId()) v = a.prefvelocity;
else v = velocitySample(a);
t = neighbor(a, agents, neighbors, v);

float p = penalty(a, v, t);
atomicMin(a.minpenalty, p);
if(p == a.minpenalty) a.candidate = v;

}

Results

Methodology

Property GTX280 X7350
Vendor NVIDIA Intel

Core Clock (MHz) 601 2930

Memory Clock (MHz) 1107 1066

Global Memory (MB) 1024 8192

Multiprocessors 30 4

Total Threads 500-20000 16

Environment
• Vista 32 bits, CUDA 2.1
• Simulation-only
• Flat parallel
• Copy to/from device included

Experiments

Dataset Agents Thread
Blocks

Evacuation 500 4

1000 8

5000 40

10000 79

20000 157

Timestep Proximity Velocity
Samples

Frames
Neighbors Distance

0.1 10 15 250 1200

Roadmap:
211 segments
429 nodes

Footprint

Running Time

Frame Rate

Takeaways

Limitations

Hash table construction
Single threaded

Thread load imbalance
Non, at-goal agent mix

Hash motion artifacts
Area under sampling

Shared memory SW cache
Constraint, 32B per thread

Future Work

Exploit shared memory
Further hide latency

At-goal agent extraction
Unified thread block

Up hash sampling quality

Dynamic obstacles, goals
GPU visibility port

Performance

Parameter NVIDIA GTX280 INTEL X7350
Hash Speedup 4X Little to None

Simulation Acceleration
Up to 77X Single thread

Up to 4.8X Sixteen threads

FPS (for 10K agents) 18 3.75

Nested vs. Flat Up to 2X Difficult to program

Cost ($) 399 2400

Summary

Computational intelligence
Maps well on GPU

Multi agent solution
Compact, scalable

Further optimization

Nested data parallel
Multi GPU system

AI, physics integration

Questions?
Thank You!

How To Reach Us

Paper:
http://tinyurl.com/MultiAgentGPU-paper-2009

During GDC
Expo Suite 656, West Hall

Developer Tool Open Chat, 1:30 to 2:30 pm (25th-27th)

Online
Twitter: nvidiadeveloper

Website: http://developer.nvidia.com

CUDA: http://www.nvidia.com/cuda

Forums: http://developer.nvidia.com/forums

http://tinyurl.com/MultiAgentGPU-paper-2009�
http://developer.nvidia.com/�
http://www.nvidia.com/cuda�
http://developer.nvidia.com/forums�

	Multi Agent Navigation �on GPU
	Reasoning
	Motivation
	Problem
	Solution
	Outline
	Algorithm
	Visibility
	Velocity Obstacles
	Simulation
	Implementation
	Workflow
	Challenges
	Data Layout
	Nearest Neighbors Search
	Execution Model
	Nested Parallel
	Results
	Methodology
	Experiments
	Footprint
	Running Time
	Frame Rate
	Takeaways
	Limitations
	Future Work
	Performance
	Summary
	 Questions?
	How To Reach Us

