
Real-Time HairReal-Time HairReal-Time Hair
Simulation and
R d i

Real-Time Hair
Simulation and
R d iRendering on
the GPU
Rendering on
the GPU

Sarah TariqSarah Tariq

Louis Bavoil

ResultsResults

• 166 simulated strands• 166 simulated strands

• 0.99 Million triangles

• Stationary: 64 fps

• Moving: 41 fpsg p

• 8800GTX, 1920x1200,

• 8XMSAA

ResultsResults

• 166 simulated strands• 166 simulated strands

• 2.1Million triangles

• Stationary: 24fps

• Moving: 17.5fpsg p

• 8800GTX, 1280x1024,

• 2x SSAA, 8XMSAA

Main ContributionsMain Contributions

A t th t ti l th GPU• A system that runs entirely on the GPU
– Simulation on GPU

– Tessellation and interpolation on GPU

• Robust inter hair forcesRobust inter hair forces

• Detection and avoidance of interpolant hair
collisionscollisions

• D3D11 tessellation based implementation

Previous workPrevious work

A b f l h d d d i• A number of people have done and are doing
impressive things in realistic real time hair:

• Dual Scattering Approximation for Fast Multiple Scattering in
Hair. Zinke and Yuksel

• A practical self shadowing algorithm for interactive hair• A practical self-shadowing algorithm for interactive hair
animation. Bertails et al.

• Algorithms for Hardware Accelerated Hair Rendering. Tae-
Yong Kim

• Real-Time Approximate Sorting for Self Shadowing and
Transparency in Hair Rendering Sintron and AssarssonTransparency in Hair Rendering. Sintron and Assarsson

• Deep Opacity Maps. Yuksel and Keyser

ProcessProcess

Import Guide Hair Simulate Guide Tessellate and Render Final Hair
Hair Interpolate Guide

Hair

SimulationSimulationS u at oS u at o

SimulationSimulation

H i i l t d ti l t i t t• Hair simulated as a particle constraint system
– Hair vertices are simulated as particles

– Links between hair vertices are treated as Distance
constraints

• these constraints maintain hair length

– Angular forces at each hair vertex maintain hair shape
W h 2D l f (i i th t i t di i)• We have 2D angular forces (ignoring the twist dimension)

– Collision constraints keep hair particles outside obstacles

RepresentationRepresentationpp

All th id h i ti d d t th• All the guide hair vertices are appended together
to form one Vertex Buffer (VB)

Guide hair 0 Guide hair 1

Fixed vertex (root) Fixed vertex (root) Fixed vertex (root)

Dynamics on the GPUDynamics on the GPUyy

Si l ti i d i th V t Sh d d St O t t• Simulation is done using the Vertex Shader and Stream Output

– write directly from the Vertex Shader to another Vertex Buffer, skipping
rasterization

• Ping-Pong between two guide hair VBs

– Bind VB1, run a vertex shader on it, Stream Out the vertices to VB2

– Bind VB2, run next vertex shader on it, Stream Out to VB2

– Continue

Example: Distance ConstraintsExample: Distance Constraintspp

A di t t i t DC(P Q) b t t• A distance constraint DC(P, Q) between two
particles P and Q is enforced by moving them

t d h thaway or towards each other:
P Q

P

P Q

Q
Distance
at rest

P Q

Example: Distance ConstraintsExample: Distance Constraintspp

T i f di i d• To satisfy a distance constraint we need to
move the positions of two vertices

• Use Geometry Shader• Use Geometry Shader
– Input two vertices

– Output the modified positions of these vertices
after satisfying their distance constraint

Example: Distance ConstraintsExample: Distance Constraintspp

Si ti l bj t t S d b h f iSince particles are subject to
multiple constraints we

cannot satisfy them all in
parallel

First batch of constraints Second batch of constraints

IterateIterate

Example: Distance ConstraintsExample: Distance Constraintspp

Geometry Shader

Render

Geometry Shader

Stream Out

Render

Geometry Shader

Stream Out

Example: Inter-hair collisionsExample: Inter-hair collisions

I t h i lli i d lt ith i id b d f k

pp

• Inter-hair collisions dealt with in grid based framework

H i t d d b t l (lik h d/b d) li d i t l• Hair strands and obstacles (like head/body) voxelized into a low
res grid

••
Hair vertices pushed out of high density areas

Example: Inter-hair collisionsExample: Inter-hair collisionspp

• Force is applied in the direction of the negative gradient of the density

– blur the voxelized density, then for each vertex falling in a high density
area find the gradient of the density field at that point

• This approach tries to achieve volume preserving quality of inter-hair
collisionscollisions

Inter-Hair Collision ForcesInter-Hair Collision ForcesInter Hair Collision ForcesInter Hair Collision Forces

Visualizing density Final Rendering

Before After Before After

Wind ForcesWind Forces

Wi d f i l t d i• Wind forces simulated using
semi-lagrangian fluid simulation
on a coarse gridon a coarse grid

• Voxelized hair and mesh also
added to grid as obstacles to g
wind

Tessellation and
I t l ti
Tessellation and
I t l tiInterpolationInterpolation

TessellationTessellation

Simulated Vertices Smoothly Tessellated Hair

InterpolationInterpolation

Clump Based InterpolationMulti Strand Interpolation

InterpolationInterpolationpp

Multi strand Interpolation Clump Based Interpolation Combination

Curly HairCurly Hair

• Encode additional curl

yy

• Encode additional curl
offsets into constant buffers

• These offsets are added to
the clump offsets

• Can either be created
procedurally, or artists can p y,
create example curls and
the offsets can be derived
from those

Modulate density and thickness
l

Modulate density and thickness
lacross scalpacross scalp

• Green: Local density of hair
– For e.g. Clump based hair has higher

density near the front of the scalpdensity near the front of the scalp

• Red: Local thickness of hair Multi Strand• Red: Local thickness of hair
– For e.g. Clump based hair has less

thickness of hair near the front of the scalpthickness of hair near the front of the scalp

Clump Based

ProcessProcess

C t t ll t d d h i d d it N• Create a tessellated dummy hair and render it N
times, where N is the number of final hairs

• In the VS, load from Buffers storing simulated , g
strand attributes
– Constant attributes like strand texcoords length widthConstant attributes like strand texcoords, length, width

etc

– Variable attributes like vertex positions coordinateVariable attributes like vertex positions, coordinate
frames etc

ProcessProcess

St t th d t ft h t t i i i• Stream out the data after each stage to minimize
re-computation
– Tessellate the simulated strands and Stream out

– Interpolate the tessellated strands and Stream out

– Render final hair for shading to shadow map

– Render final hair for renderingRender final hair for rendering

• Each stage uses data computed and streamed
out from previous stageout from previous stage

Additional Optimization detailsAdditional Optimization details

T t i l k Al h t C h• To get a nicer look you use Alpha to Coverage, however
– using it disables earlyZ if you are also writing and reading depth

– To get earlyZ do a depth pre pass before, and during the final
rendering just test depth without writing it

• Don’t use the GS for creating hair strands
Can use the GS for expanding the lines to triangles but– Can use the GS for expanding the lines to triangles but
performance gain depends on pipeline load

Avoiding interpolated hair collisionsAvoiding interpolated hair collisionsg pg p

I l i b• Interpolating between
multiple guide strands can
lead to some hair going
through collision obstacles Interpolated hair intersect collision volumes

Fixing collisions without doing extra simulation

Avoiding interpolated hair collisionsAvoiding interpolated hair collisionsg pg p

Interpolated hair
Interpolated hair

Collision object

Simulated Hair Single Hair Interpolation Multi-Hair Interpolation

Avoiding interpolant collisionsAvoiding interpolant collisionsg pg p

Blending zone
where both
methods are

d

Snap these

used

Snap these
vertices to
their clump
based
positions

No Collision Avoidance Modifying only penetrating
vertices

Our Method

Avoiding interpolated hair collisionsAvoiding interpolated hair collisionsg pg p

Avoiding interpolated hair collisionsAvoiding interpolated hair collisionsg pg p

M i b f
Render each
interpolated
hair strand to
one pixel

∞ 3 2 2 3 ∞ ∞

Maximum number of
interpolated hair per
patch

Output the
vertex ID if the
vertex is
colliding, else
a large
number

∞ 3 2 2 3 ∞ ∞

Total
number
of
patchesnumber

Use Minimum
blending

patches

∞ 3 2 2 3 ∞ ∞

RenderingRenderinge de ge de g

ShadowsShadows

M t i l M d l O h i• Material Model: Opaque hair

• Essential Requirements
– No flickering, smooth shadows

– Soft ShadowsSoft Shadows

• Do PCF with multiple taps in VS
1 tap

– Help reduce temporal/spatial aliasing

– Calculate shadows in VS and interpolate
h i l th t f th d li iacross hair length to further reduce aliasing

36 taps

ShadowsShadows

M i l M d l T l• Material Model: Translucent
Hair

• [Yuksel and Keyser 08], [Kim
and Neuman 01] [Lokovic andand Neuman 01], [Lokovic and
Veach 01]

W d b ti i ht d PCF

No absorption weighting

• We do absorption weighted PCF
– Similar to [Halen 06]

– Weigh the PCF sample by the
distance to occluder With absorption weighting

LODLOD

C h i f j d• Can use the size of a projected segment to
decide on the LOD
– Low LOD levels would use less number of lines,

less segments per line, and thicker lines

LODLOD

C l i d fi d LOD• Can also use artist defined LOD
– Artists can create different looks for different

LOD f th h i t lLOD of the hairstyle.

• For example a lower LOD can have large strips
just on the top of the head along the part of the
hair.

– These LODs can then be transcribed into
textures

Near

textures

– The Hull Shader will lerp between appropriate
LOD textures to decide on the line density, and
line thickness

Far

Using Dx11
Tessellation
Using Dx11
Tessellation esse at o
Engine

esse at o
Engine

Tessellation PipelineTessellation Pipeline

Di t3D11 t d Di t3D10 ith Input Assembler

Vertex Shader

• Direct3D11 extends Direct3D10 with
support for programmable tessellation

Hull Shader

TS• Two new shader stages:

Domain Shader

Geometry Shader

– Hull Shader (HS)

– Domain Shader (DS)

Setup/Raster• One fixed function stage:
– Tessellator (TS)

ISO LinesISO Lines

I t bit t h• Input an arbitrary patch

• For each patch output a number of lines with
many segments per line
– The number of lines output per patch and the number of segments

per line are user controlled and can be different per patch

– The positions of the vertices of the line segments are shader
evaluatedevaluated

• Render as lines, or expand in the GS

Interpolating and Tessellating hairInterpolating and Tessellating hair

Wi h T ll i i• With Tessellation engine we can create
tessellated and interpolated hair on the fly

• Benefits:
Easy and intuitive– Easy and intuitive

– More programmable
• Can create geometry only where needed

• Reduce detail where not needed

– Continuous LOD

PipelinePipeline

InputInput Output

HS

Calculate
LODs

TS

Generate
topology

DS

Calculate
vertex
attributes

GS

Expand
lines to
quads

PS

Shade

attributes quads

Simulated Guide Hair
Tessellated, Interpolated,

Rendered Hair

Alternative PipelineAlternative Pipelinepp

HS TS DS SO

Simulated Guide Hair
Calculate
LODs

Generate
topology

Calculate
vertex
attributes

GS PSHS TS DS

Expand
lines to

Shade

Tessellated Guide Hair

Calculate
LODs

Generate
topology

Calculate
vertex
attributes

quads
attributes

Thank you!Thank you!a youa you

