
Particle based Fluid SimulationParticle-based Fluid Simulation

Simon GreenSimon Green
February 2008

Overview

Fluid Simulation Techniquesq
A Brief History of Interactive Fluid Simulation
CUDA particle simulation
Spatial subdivision techniques
Rendering methods
Future

© NVIDIA Corporation 2008

Fluid Simulation Techniques

Various approaches:pp

Grid based (Eulerian)
Stable fluids
Particle level set

Particle based (Lagrangian)Particle based (Lagrangian)
SPH (smoothed particle hydrodynamics)
MPS (Moving-Particle Semi-Implicit)

Height field
FFT (Tessendorf)
Wave propagation – e.g. Kass and Miller

© NVIDIA Corporation 2008

Wave propagation e.g. Kass and Miller

History: 2D Waves

Old demo-scene trick
2D wave equation
First implemented on GPU
by Greg James, 2003
GeForce 3
Pixel shader 1 1Pixel shader 1.1
Used register combiners and
texture shader
8-bit fixed point

© NVIDIA Corporation 2008

2D Fluid Flow

Mark Harris, GPU Gems 1,
2D Navier-Stokes solver

based on Jos Stam’s
Stable FluidsStable Fluids

GeForce FX
Used floating point texturesUsed floating point textures
Cg shaders
Multiple passes to solve
for pressure
Texture interpolation used
for advection step

© NVIDIA Corporation 2008

for advection step

GPU Particle Systems

“Building a Million Particle System”,g y ,
Lutz Latta, GDC 2004
Position and velocity
t d i FP t tstored in FP textures

Simple interactions with
terrain height field andterrain height field and
implicit shapes
Emitters done on CPU
Particles rendered using
render-to-vertex array
1M particles at ~60fps

© NVIDIA Corporation 2008

1M particles at ~60fps

3D Fluids - Box of Smoke Demo

G80 launch demo
Written by Keenan Crane
3D Navier-Stokes solver
Used tiled 2D textures
Also tracked free surfaces for water

CCBFECC advection scheme
Ray cast rendering
using pixel shaderusing pixel shader

© NVIDIA Corporation 2008

NVIDIA SDK Smoke Demo

3D Navier-Stokes solver
DirectX 10
Used render to 3D
texture
Includes interaction
with voxelized characterwith voxelized character

© NVIDIA Corporation 2008

CUDA N-Body Demo

Computes gravitational attraction between n bodiesp g
Computes all n2 interactions
Uses shared memory to reduce memory bandwidth

16K bodies @ 44 FPS
x 20 FLOPS / interactionx 20 FLOPS / interaction
x 16K2 interactions /

frame
= 240 GFLOP/s= 240 GFLOP/s

GeForce 8800 GTX

© NVIDIA Corporation 2008

Particle Systems

Particle Systems: A Technique for Modeling a Class y q g
of Fuzzy Objects, Reeves 1983

© NVIDIA Corporation 2008

Particle-based Fluid Simulation

Advantagesg
Conservation of mass is trivial
Easy to track free surface
Only performs computation where necessaryOnly performs computation where necessary
Not necessarily constrained to a finite grid
Easy to parallelize

Disadvantages
Hard to extract smooth surface from particlesHard to extract smooth surface from particles
Requires large number of particles for realistic results

© NVIDIA Corporation 2008

Particle Fluid Simulation Papers

Particle-Based Fluid
Simulation for Interactive
Applications,
M Müller 2003M. Müller, 2003
3000 particles, 5fps

Particle-based Viscoelastic Fluid Simulation,
Clavet et al, 2005
1000 particles, 10fps
20,000 particles,
2 secs / frame

© NVIDIA Corporation 2008

2 secs / frame

CUDA SDK Particles Demo

Particles with simplep
collisions
Uses uniform grid
b d tibased on sorting
Uses fast CUDA radix
sortsort

Current performance:
>100 fps for 65K
interacting particles
on 8800 GT

© NVIDIA Corporation 2008

on 8800 GT

Uniform Grid

Particle interaction requires finding neighbouring q g g g
particles
Exhaustive search requires n^2 comparisons
Solution: use spatial subdivision structureSolution: use spatial subdivision structure
Uniform grid is simplest possible subdivision

Divide world into cubical grid (cell size = particle size)
Put particles in cells
Only have to compare each particle with the particles in
neighbouring cells

Building data structures is hard on data parallel
machines like the GPU

possible in OpenGL (using stencil routing technique)

© NVIDIA Corporation 2008

easier using CUDA (fast sorting, scattered writes)

Uniform Grid using Sorting

Grid is built from scratch each frame
Future work: incremental updates?

Algorithm:
Compute which grid cell each particle falls in (based onCompute which grid cell each particle falls in (based on
center)
Calculate cell index
Sort particles based on cell indexSort particles based on cell index
Find start of each bucket in sorted list (store in array)
Process collisions by looking at 3x3x3 = 27 neighbouring
grid cells of each particleg p

Advantages
supports unlimited number of particles per grid cell
Sorting improves memory coherence during collisions

© NVIDIA Corporation 2008

Sorting improves memory coherence during collisions

Example: Grid using Sorting

0 1 2 3 unsorted list
(cell id particle id)

sorted by
cell id

cell start

4 5 6 7

8 9 10 11

3

2

1

45
(cell id, particle id) cell id

0: (9, 0)
1: (6, 1)

()

0: (4, 3)
1: (4, 5)

()

0: -
1: -

0

8 9 10 11

12 13 14 15

0 2: (6, 2)
3: (4, 3)
4: (6, 4)
5: (4, 5)

2: (6, 1)
3: (6, 2)
4: (6, 4)
5: (9, 0)

2: -
3: -
4: 0
5: -5: (4, 5) 5: (9, 0) 5:
6: 2
7: -
8: -
9 59: 5
10: -
...
15: -

© NVIDIA Corporation 2008

Spatial Hashing (Infinite Grid)

For games, we don’t want particles to be g , p
constrained to a finite grid
Solution: use a fixed number of grid buckets, and
t ti l i b k t b d h h f ti fstore particles in buckets based on hash function of

grid position
Pro: Allows grid to be effectively infinitePro: Allows grid to be effectively infinite
Con: Hash collisions (multiple positions hashing to
same bucket) causes inefficiency

Choice of hash function can have big impact
See: “Optimized Spatial Hashing for Collision
Detection of Deformable Objects”, Teschner et al.

© NVIDIA Corporation 2008

Detection of Deformable Objects , Teschner et al.

Example Hash Function

__device__ uint calcGridHash(int3 gridPos)
{

const uint p1 = 73856093; // some large primes
const uint p2 = 19349663;
const uint p3 = 83492791;
int n = p1*gridPos.x ^ p2*gridPos.y ^ p3*gridPos.z;
n %= numBuckets;
return n;

}

© NVIDIA Corporation 2008

Smoothed Particle Hydrodynamics
(SPH)(SPH)

Particle based fluid simulation techniqueq
Originally developed for astrophysics simulations

Interpolates fluid attributes over
space using kernel functionsspace using kernel functions
For games, we can often get away
with simpler simulations

bi ft ti l lli i ithcombine soft particle collisions with
attractive forces

© NVIDIA Corporation 2008

Image courtesy Matthew Bate

Fluid Rendering Methods

3D isosurface extraction (marching cubes)(g)
2.5D isosurfaces (Ageia screen-space meshes)
3D texture ray marching (expensive)
Image-space tricks (blur normals in screen space)

© NVIDIA Corporation 2008

Marching Cubes

Standard method for extractingg
isosurfaces from volume data
CUDA marching cubes uses

f ti f CUDPPscan functions from CUDPP
library for stream compaction

Up to 8x faster than OpenGL
geometry shader implementation
using marching tetrahedra

But still requires evaluating fieldut st equ es e a uat g e d
function at every point in space

E.g. 1283 = 2M points
Very expensive

© NVIDIA Corporation 2008

Very expensive

Ray Marching

Volume renderingg
technique
Voxelize particles
i t 3D t tinto 3D texture

Requires several
passes for thickness

Ray march through
3D texture in pixel
shadershader

Can shade based
on optical thickness

V fill i t i

© NVIDIA Corporation 2008

Very fill intensive

Density-based Shading

Can calculate per-particle density and normal based p p y
on field function

SPH simulations often already have this data
Usually need to look at a larger neighbourhood (e g 5x5x5Usually need to look at a larger neighbourhood (e.g. 5x5x5
cells) to get good results – expensive

Can use density and normal for point sprite shading
Normal only well defined when particles are close to
each other

treat isolated particles separately – e g render as spraytreat isolated particles separately – e.g. render as spray

© NVIDIA Corporation 2008

Particle Density

© NVIDIA Corporation 2008

Particle Normal

© NVIDIA Corporation 2008

Flat Shaded Point Sprites

© NVIDIA Corporation 2008

Blended Points Sprites (Splats)

Scale up point sizep p
so they overlap
Add alpha to points

ith G i f ll ffwith Gaussian falloff
Requires sorting
from back to frontfrom back to front
Has effect of
interpolating shading
b t i tbetween points
Fill-rate intensive,
but interactive

© NVIDIA Corporation 2008

but interactive

Alternative Shading (Lava)

Modifies particlep
color based on
density

© NVIDIA Corporation 2008

Motion Blur

Create quads between previous and current particle q p p
position

Using geometry shader
T d i t d t d i di tiTry and orient quad towards view direction
Improves look of rapidly moving fluids (eliminates
gaps between particles)gaps between particles)

p2

p

p2

© NVIDIA Corporation 2008

Spheres

© NVIDIA Corporation 2008

Motion Blurred Spheres

© NVIDIA Corporation 2008

Oriented Discs

© NVIDIA Corporation 2008

The Future

Practical game fluids will need to combine particle, g p ,
height field, and grid techniques
GPU performance continues to double every
12 th12 months

© NVIDIA Corporation 2008

Two way coupled SPH and particle level set fluid simulation,
Losasso, F., Talton, J., Kwatra, N. and Fedkiw, R

Adaptively Sampled Particle Fluids, Adams 2007

