
DirectX 10 Performance

Ignacio Llamas, NVIDIA
illamas@nvidia com V1.01illamas@nvidia.com

Nicolas Thibieroz, AMD
nicolas thibieroz@amd comnicolas.thibieroz@amd.com

OutlineOutline

! General DX10 API usage
D i d f f! Designed for performance

! Batching and Instancing
! State Management
! Constant Buffer Management
! Resource Updates and Management
! Reading the Depth Buffer! Reading the Depth Buffer
! MSAA

! Optimizing your DX10 Game
! or how to work around GPU bottlenecks

! IHV-specific optimizations

Color Guide For IHV-specific AdviceColor Guide For IHV specific Advice

! AMD

! NVIDIA

DX10 Runtime and Driver.
D i d f P fDesigned for Performance
! DX10 validation moved from runtime to

creation timecreation time
! Only basic error checking at runtime

! Immutable state objects
! Can be pre-computed and cached
! Subset of command buffer at creation time

! Vista driver model delegates scheduling g g
and memory management to OS
! Pro: more responsive system, GPU sharing

across apps
! Con: harder to guarantee performance if

multiple apps share the GPU
! Fullscreen mode should be fine

Batch Performance

! The truth about DX10 batch performance

! “Simple” porting job will not yield expected
performanceperformance

! Need to use DX10 features to yield gains:
! Geometry instancing or batching
! Intelligent usage of state objects
! Intelligent usage of constant buffers! Intelligent usage of constant buffers
! Texture arrays

Geometry Instancing

! Better instancing support in DX10
U “S t V l ” t d i! Use “System Values” to vary rendering
! SV_InstanceID, SV_PrimitiveID, SV_VertexID
! Additional streams not required
! Pass these to PS for texture array indexing
! Highly-varied visual results in a single draw call

! Watch out for:! Watch out for:
! Texture cache trashing if sampling textures from

system values (SV_PrimitiveID)
! Too many attributes passed from VS to PS
! InputAssembly bottlenecks due to instancing
! Solution: Load() per-instance data from Buffer in () p

VS or PS using SV_InstanceID

State Management

! DX10 uses immutable “state objects”
! Input Layout Object! Input Layout Object
! Rasterizer Object
! DepthStencil Object
! Blend Object
! Sampler Object

! DX10 requires a new way to manage states
! A naïve DX9 to DX10 port will cause problems here

l bj l d i! Always create state objects at load-time
! Avoid duplicating state objects
! Recommendation to sort by states still valid in DX10!

Constant Buffer Management (1)

! Probably a major cause of poor performance
in initial naïve DX10 ports!p

! Constants are declared in buffers in DX10
b ff P F C t t b ff Ski i M t i C t tcbuffer PerFrameConstants
{

float4x4 mView;
float fTime;
float3 fWindForce;

cbuffer SkinningMatricesConstants
{

float4x4 mSkin[64];
};

! When any constant in a cbuffer is updated

// etc.
};

! When any constant in a cbuffer is updated
the full cbuffer has to be uploaded to GPU

! Need to strike a good balance between:
! Amount of constant data to upload! Amount of constant data to upload
! Number calls required to do it (== # of cbuffers)

Constant Buffer Management (2)

! Use a pool of constant buffers sorted by
frequency of updatesfrequency of updates

! Don’t go overboard with number of cbuffers!
! (3-5 is good)

! Sharing cbuffers between shader stages can
be a good thing

! Example cbuffers:
! PerFrameGlobal (time, per-light properties)

Pe Vie (main came a fo ms shado map fo ms)! PerView (main camera xforms, shadowmap xforms)
! PerObjectStatic (world matrix, static light indices)
! PerObjectDynamic (skinning matrices, dynamic

lightIDs)lightIDs)

Constant Buffer Management (3)Constant Buffer Management (3)

! Group constants by access pattern to help
cache reuse due to locality of accesscache reuse due to locality of access

! Example:
float4 PS_main(PSInput in)
{{
float4 diffuse = tex2D0.Sample(mipmapSampler, in.Tex0);
float ndotl = dot(in.Normal, vLightVector.xyz);
return ndotl * vLightColor * diffuse;

}

cb ffer PerFrameConstants cb ffer PerFrameConstants

}

cbuffer PerFrameConstants
{

float4 vLightVector;
float4 vLightColor;
float4 vOtherStuff[32];

};

cbuffer PerFrameConstants
{

float4 vLightVector;
float4 vOtherStuff[32];
float4 vLightColor;

};};

GOOD
};

BAD

Constant Buffer Management (4)Constant Buffer Management (4)

! Careless DX9 port results in a single $Globals
cbuffer containing all constants, many of them g , y
unused

! $Globals cbuffer typically yields bad performance:
! Wasted CPU cycles updating unused constants

! Check if used: D3D10_SHADER_VARIABLE_DESC.uFlags
! cbuffer contention
! Poor cbuffer cache reuse due to suboptimal layout

! When compiling SM3 shaders for SM4+ target with g g
D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY: use
conditional compilation to declare cbuffers
(e.g. #ifdef DX10 cbuffer{ #endif)

Constant Buffer Management (5)Constant Buffer Management (5)

! Consider tbuffer if access pattern
is mo e andom than seq entialis more random than sequential
! tbuffer access uses texture Loads, so

higher latency but higher performance g y g p
sometimes

! Watch out for texture-bound cases
resulting from tbuffer usageresulting from tbuffer usage

! Use tbuffer if you need more data y
in a single buffer
! cbuffer limited to 4096*128-bit

b ff li it d t 128 b t! tbuffer limited to 128 megabytes

Resource Updates

! In-game destruction and creation of Texture
and Buffer resources has a significant impact and Buffer resources has a significant impact
on performance:
! Memory allocation, validation, driver checks

! Create all resources up-front if possible
D ing le el load c tscenes o an non! During level load, cutscenes, or any non-
performance critical situations

! At runtime: replace contents of existing
resources, rather than destroying/creating
new onesnew ones

Resource Updates: Textures

! Avoid UpdateSubresource() for textures
! Slow path in DX10 ! Slow path in DX10

(think DrawPrimitiveUP() in DX9)
! Especially bad with larger textures!

! Use ring buffer of intermediate
D3D10_USAGE_STAGING textures
! Call Map(D3D10_MAP_WRITE,...) with
D3D10_MAP_FLAG_DO_NOT_WAIT to avoid stalls

! If Map fails in all buffers: either stall waiting for Map
or allocate another resource (cache warmup time)

! Copy to textures in video memory
(D3D10_USAGE_DEFAULT):
! CopyResource() or CopySubresourceRegion()

Resource Updates: Buffers

! To update a Constant buffer
! Map(D3D10 MAP WRITE DISCARD);! Map(D3D10_MAP_WRITE_DISCARD, …);
! UpdateSubResource()

! Recall full buffer must be updated, but with Map()
CPU ki h h h d d CPU can skip parts that the shader does not care
about. All the data must be uploaded to GPU though

! To update a dynamic Vertex/Index buffer! To update a dynamic Vertex/Index buffer
! Use a large shared ring-buffer type; writing to

unused portions of buffer using:
h f ll! Map(D3D10_MAP_WRITE_DISCARD,…) when full or

if possible the first time it is mapped at every frame
! Map(D3D10_MAP_WRITE_NO_OVERWRITE, …) thereafter

A id d S b ()! Avoid UpdateSubResource()
! not as good as Map() in this case either

Accessing Depth and Stencil

! DX10 enables the depth buffer to be read
back as a textureback as a texture

! Enables features without requiring a separate
depth render
Atmosphere pass
Soft particles
Depth of FieldDepth of Field
Deferred shadow mapping
Screen-space ambient occlusion
Etc.

! Popular features in most recent game engines

Accessing Depth and Stencil with MSAA

! DX10.0: reading a depth buffer as SRV is only
supported in single sample modesupported in single sample mode
! Requires a separate render path for MSAA

! Workarounds:
! Store depth in alpha of main FP16 RT
! Render depth into texture in a depth pre-pass
! Use a secondary rendertarget in main color pass! Use a secondary rendertarget in main color pass

! DX10.1 allows depth buffer access as Shader
Resource View in all cases:
! Fewer shaders
! Smaller memory footprint! Smaller memory footprint
! Better orthogonality

MultiSampling Anti-Aliasing

! MSAA resolves cost performance
! Cost varies across GPUs but it is never free! Cost varies across GPUs but it is never free
! Avoid redundant resolves as much as possible

E.g.: no need to perform most post-process ops on
MSAA RT R l h l ffMSAA RT. Resolve once, then apply p.p. effects

! No need to allocate SwapChain as MSAA
! Apply MSAA only to rendertargets that matter! Apply MSAA only to rendertargets that matter

! Be aware of CSAA on NVIDIA hardware:
Certain DXGI_SAMPLE_DESC.Quality values will enable

higher-quality but slightly costlier MSAA mode
See http://developer.nvidia.com/object/coverage-sampled-aa.html

Optimizing your DX10 GameOptimizing your DX10 Game

! Use PerfHUD or GPUPerfStudio to identify
bottlenecks:bo

! Step 1: are you GPU or CPU bound
! Check GPU idle time
! If GPU is idle you are probably CPU bound either

by other CPU workload on your application or by
CPU-GPU synchronization

! Step 2: if GPU bound, identify the top buckets
and their bottlenecks
! Use PIX or PerfHUD Frame Profiler for this! Use PIX or PerfHUD Frame Profiler for this

! Step 3: try to reduce the top bottleneck/s

If Input Assembly is the bottleneckIf Input Assembly is the bottleneck

! Optimize IB and VB for cache reuse
! Use ID3DXMesh::Optimize() or other tools ! Use ID3DXMesh::Optimize() or other tools

! Reduce number of vector attributes
! Pack several scalars into single 4-scalar vector

d k k! Reduce vertex size using packing tricks:
! Pack normals into a float2 or even RGBA8
! Calculate binormal in VS
! Use lower-precision formats

! Use reduced set of VB streams in shadow
and depth-only passes
! Separate position and 1 texcoord into a stream
! Improves cache reuse in pre-transform cache
! Also use shortest possible shaders

If Vertex Shader is the bottleneckIf Vertex Shader is the bottleneck

! Improve culling and LOD (also helps IA):
! Look at wireframe in debugging tool and see if ! Look at wireframe in debugging tool and see if

it’s reasonable
! Check for percentage of triangles culled:

! Frustum culling
! Zero area on screen

! Use other scene culling algorithms
! CPU-based culling
! Occlusion culling! Occlusion culling

! Use Stream-Output to cache vertex shader
results for multiple usesresults for multiple uses
! E.g.: StreamOut skinning results, then render to

shadowmap, depth prepass and shading pass
! StreamOut pass writes point primitives (vertices) p p p ()

Same index buffer used in subsequent passes

If Geometry Shader is the bottleneck If Geometry Shader is the bottleneck

! Make sure maxvertexcount is as low as possible
! maxvertexcount is a shader constant declaration Îneed ! maxvertexcount is a shader constant declaration Îneed

different shaders for different values
! Performance drops as output size increases

! Minimize the size of your output and input vertex
structures

! GS not designed for large-expansion algorithms like
tessellation

D t i d d i d i l ti! Due to required ordering and serial execution
! See Andrei Tatarinov’s talk on Instanced Tessellation

! Consider using instancing in current hardware
! Move some computation to VS to avoid redundancy! Move some computation to VS to avoid redundancy
! Keep GS shaders short
! Free ALUs in GS because of latency

! Can be used to cull geometry (backface frustum)! Can be used to cull geometry (backface, frustum)

If Stream-Output is the bottleneckIf Stream Output is the bottleneck

! Avoid reordering semantics in the output
decla ationdeclaration
! Keep them in same order as in output structure

! You may have hit bandwidth limity
! SO bandwidth varies by GPU

! Remember you don’t need to use a GS if you
 j t i tiare just processing vertices

! Use ConstructGSWithSO on Vertex Shader

! Rasterization can be used at the same time! Rasterization can be used at the same time
! Only enable it if needed (binding RenderTarget)

If Pixel Shader is the bottleneck (1)If Pixel Shader is the bottleneck (1)

! Verify by replacing with simplest PS
! Use PerfHUD / GPUPerfStudio! Use PerfHUD / GPUPerfStudio

! Move computations to Vertex Shader
! Use pixel shader LOD

l h d! Only use discard or clip()when required
! discard or clip() as early as possible

! GPU can skip remaining instructions if test succeeds

! Use common app-side solutions to maximize
pixel culling efficiency:
! Depth prepass (most common)! Depth prepass (most common)
! Render objects front to back
! Triangle sort to optimize both for post-transform

cache and Z culling within a single mesh
S il/ i / li l h di ! Stencil/scissor/user clip planes to tag shading areas

! Deferred shading

If Pixel Shader is the bottleneck (2)If Pixel Shader is the bottleneck (2)

! Shading can be avoided by Z/Stencil culling
! Coarse (ZCULL / Hi-Z)! Coarse (ZCULL / Hi Z)
! Fine-grained (EarlyZ)

! Coarse Z culling is transparent, but it may
underperform if:underperform if:
! If shader writes depth
! High-frequency information in depth buffer
! If you don’t clear the depth buffer using a “clear” ! If you don t clear the depth buffer using a clear

(avoid clearing using fullscreen quads)

If Pixel Shader is the bottleneck (3)If Pixel Shader is the bottleneck (3)

! Fine-grained Z culling is not always active

! Disabled on current hardware if:
! PS writes depth (SV_Depth)
! Z or Stencil writes combined with:! Z or Stencil writes combined with:

! Alpha test is enabled (DX9 only)
! discard / texkill in shaders
! AlphaToCoverageEnable = true

! Disabled on current NVIDIA HW if:
! PS reads depth (.z) from SV Position input! PS reads depth (.z) from SV_Position input

! Use .w (view-space depth) if possible
! Z or Stencil writes combined with:

! Samplemask != 0xffffffff

Any Shader is still the bottleneck (1)Any Shader is still the bottleneck (1)

! Use IHV tools:
! AMD: GPUShaderAnalyzer! AMD: GPUShaderAnalyzer
! NVIDIA: ShaderPerf

! Be aware of appropriate ALU to TEX hardware
instruction ratios:
! 4 5D-vector ALU per TEX on AMD
! 10 scalar ALU per TEX

on NVIDIA GeForce 8 series
Ch k f i i t ! Check for excessive register usage
! > 10 vector registers is high on GeForce 8 series
! Simplify shader, disable loop unrolling
! DX compiler behavior may unroll loops so check output! DX compiler behavior may unroll loops so check output

! Use dynamic branching to skip instructions
! Make sure branching has high coherency

Any Shader is still the bottleneck (2)

! Some instructions operate at a slower rate
! Integer multiplication and division

Any Shader is still the bottleneck (2)

! Integer multiplication and division
! Type conversion (float to int, int to float)

! Too many of those can cause a bottleneck in
your code

! In particular watch out for type conversions
! Remember to declare constants in the same format ! Remember to declare constants in the same format

as the other operands they’re used with!

If Texture is the bottleneck (1)If Texture is the bottleneck (1)

! Verify by replacing textures with 1x1 texture
! PerfHUD or GPUPerfStudio can do this! PerfHUD or GPUPerfStudio can do this

! Basic advice:
! Enable mipmapping! Enable mipmapping
! Use compressed textures where possible

! Block-compressed formats
! Compressed float formats for HDRp

! Avoid negative LOD bias (aliasing != sharper)

! If multiple texture lookups are done in a loop ! If multiple texture lookups are done in a loop
! Unrolling partially may improve batching of texture

lookups, reducing overall latency
! However this may increase register pressure
! Find the right balance

If Texture is the bottleneck (2)If Texture is the bottleneck (2)

! DirectX compiler moves texture instructions
that compute LOD out of branchesthat compute LOD out of branches
! Use SampleLevel (no anisotropic filtering)
! SampleGrad can be used too, but beware of the

extra performance costextra performance cost
! Texture cache misses may be high due to

poor coherence
I ti l i t i ff t! In particular in post-processing effects

! Modify access pattern
! Not all textures are equal in sample

performance
! Filtering mode
! Volume textures
! Fat formats (128 bits)
! 64-bit integer textures

If ROP is the bottleneck: CausesIf ROP is the bottleneck: Causes

! Pixel shader is too cheap ☺
La ge pi el fo mats ! Large pixel formats

! High resolution
! Blendingg
! MSAA
! MRT

d i C! Rendering to system memory over PCIe
(parts with no video memory)

! Typical problem with particle effects:
little geometry, cheap shading,
but high overdraw using blendingbut high overdraw using blending

If ROP is the bottleneck: SolutionsIf ROP is the bottleneck: Solutions

! Render particle effects to lower resolution
offscreen texture offscreen texture
! See GPUGems 3 chapter by Iain Cantlay

! Disable blending when not needed especially ! Disable blending when not needed, especially
in larger formats (R32G32B32A32_FLOAT)

! Unbind render targets that are not needed! Unbind render targets that are not needed
! Multiple Render Targets
! Depth-only passes

! Use R11G11B10 float format for HDR
(if you don't need alpha)

If performance is hitchy or irregularIf performance is hitchy or irregular

! Make sure you are not creating/destroying
c itical eso ces and shade s at ntimecritical resources and shaders at runtime
! Remember to warm caches prior to rendering

! Excessive paging when the amount of
required video memory is more than available

! Could be other engine component like audio,
networking CPU thread synchronization etcnetworking, CPU thread synchronization etc.

OTHER IHV-SPECIFIC
RECOMMENDATIONS

AMD: Clears

! Always clear Z buffer to enable HiZ

! Clearing of color render targets is not free on
Radeon HD 2000 and 3000 series
Cost is proportional to number of pixels to clearCost is proportional to number of pixels to clear
The less pixels to clear the better!

H h l b i i k li! Here the rule about minimum work applies:
Only clear render targets that need to be cleared!
Exception for MSAA RTs: need clearing every frame

! RT clears are not required for optimal multi-
GPU usageg

AMD: Depth Buffer Formats

! Avoid DXGI_FORMAT_D24_UNORM_S8_UINT for
depth shadow mapsdepth shadow maps
Reading back a 24-bit format is a slow path
Usually no need for stencil in shadow maps anyway

! Recommended depth shadow map formats:
DXGI_FORMAT_D16_UNORM
F t t h d f tFastest shadow map format
Precision is enough in most situations

! Just need to set your projection matrix optimally
DXGI FORMAT D32 FLOATDXGI_FORMAT_D32_FLOAT
High-precision but slower than the 16-bit format

NVIDIA: ClearsNVIDIA: Clears

! Always Clear Z buffer to enable ZCULL

! Always prefer Clears vs. fullscreen quad
draw calls

! Avoid partial Clears
! Note there are no scissored Clears in DX10,

they are only possible via draw callsthey are only possible via draw calls

! Use Clear at the beginning of a frame on
any rendertarget or depthstencil buffer any rendertarget or depthstencil buffer
! In SLI mode driver uses Clears as hint that no

inter-frame dependency exist. It can then avoid
synchronization and transfer between GPUs

NVIDIA: Depth Buffer FormatsNVIDIA: Depth Buffer Formats

! Use DXGI_FORMAT_D24_UNORM_S8_UINT

! DXGI_FORMAT_D32_FLOAT should offer very
similar performance but may have lower similar performance, but may have lower
ZCULL efficiency

! Avoid DXGI_FORMAT_D16_UNORM
! will not save memory or increase performance

! CSAA will increase memory footprint

NVIDIA: Attribute BoundednessNVIDIA: Attribute Boundedness

! Interleave data when possible into a less
VB streams:VB streams:
! at least 8 scalars per stream

! Use Load() from Buffer or Texture instead

! Dynamic VBs/IBs might be on system
memory accessed over PCIe:
! maybe CopyResource to USAGE DEFAULT ! maybe CopyResource to USAGE_DEFAULT

before using (especially if used multiple times
in several passes)

P i t tt ib t f VS t ! Passing too many attributes from VS to
PS may also be a bottleneck
! packing and Load() also apply in this case

NVIDIA: ZCULL ConsiderationsNVIDIA: ZCULL Considerations

! Coarse Z culling is transparent,
b t it ma nde pe fo m ifbut it may underperform if:
! If depth test changes direction while writing

depth (== no Z culling!)
D th b ff itt i diff t d th ! Depth buffer was written using different depth
test direction than the one used for testing
(testing is less efficient)

! If stencil writes are enabled while testing (it ! If stencil writes are enabled while testing (it
avoids stencil clear, but may kill performance)

! If DepthStencilView has Texture2D[MS]Array
dimension (on GeForce 8 series) dimension (on GeForce 8 series)

! Using MSAA (less efficient)
! Allocating too many large depth buffers

(it’s harder for the driver to manage)(it s harder for the driver to manage)

Conclusion

! DX10 is a well-designed and powerful API
With t t ibilit !! With great power comes great responsibility!
Develop applications with a “DX10” state of mind
A naïve port from DX9 will not yield expected gainsg

! Use performance tools available
AMD GPUPerfStudio
AMD GPUShaderAnalyzer
NVIDIA PerfHUD
NVIDIA ShaderPerf

T lk ! Talk to us

Questions

Ignacio Llamas, NVIDIA
illamas@nvidia com

Nicolas Thibieroz, AMD
nicolas thibieroz@amd comillamas@nvidia.com nicolas.thibieroz@amd.com

