

Soft shadows using hierarchical
min-max shadow maps

Kirill Dmitriev
Yury Uralsky

NVIDIA

Overview

Traditional algorithms for soft shadows
Min-max depth mipmap data structure
Large kernel PCF with min-max mipmap
Physically plausible soft shadows with min-
max mipmap
Ideas for improving performance

Soft shadows are important

Important for realism
Hard shadows can be cast only by
lightsources with zero size, which do not
exist in reality

Hide artifacts that occur due to
insufficient shadow map resolution

How do we make soft
shadows?

PCF (Percentage Closer Filtering)
Take a number of samples around the
shaded fragment. Compute average.

Kernel size (K) controls “softening”

K

Percentage closer filtering
(PCF)

Important: averaging depth doesn’t work,
instead:

NVIDIA hardware implements it for small K

)(

)()(
)(

KN

fragmentDepthpDepth
fragmentS Kp

∑
∈

<
=

Jittered PCF

PCF with large K requires many samples
Can use jittered sampling

Trades banding for noise

K

Variance shadow maps

Store depth AND square of depth
Standard deviation of depth can be computed
Use Chebyshev’s inequality to compute
shadowing

Allow pre-filtering (mipmap)

Problems with current
approaches

Percentage closer filtering
Requires a lot of samples for quality

Variance shadow maps
Filter kernel size is fixed

Alternative idea

Shadowmap can be decomposed into a
set of quads floating in 3D space

We can compute shadowing from each of the
quads individually and then sum up their
contributions

Min-max mipmap shadowmap

Linear walk over shadowmap texels is
wasteful
Can represent shadowmap data in
hierarchical fashion

Hierarchical descend allows for efficient
pruning of subtrees

Min-max mipmap shadowmap

Min channel

4 adjacent depth texels Max channel

Calculate two mipmap pyramids
Using min filter for construction
Using max filter for construction

Can be stored in two-channel texture
format

Large kernel PCF with min-
max mipmap shadowmap
start from the 2x2 miplevel
S = 0; // initialize shadowing
for (i = 0; ;) // for each node at current level
{

if (++i == 4) {
{ pop mip level and i from stack; continue; }

if (DepthMin > FragmentDepth)
continue; // skip the subtree

if (DepthMax <= FragmentDepth || mip == 0) {
S += Overlap(K, CT);
continue; // skip the subtree

}
store i and current mip onto stack;
go to finer mip;
i = 0; // start from texel 0 on the new mip level

}

Large kernel PCF with min-
max mipmap shadowmap
start from the 2x2 miplevel
S = 0; // initialize shadowing
for (i = 0; ;) // for each node at current level
{

if (++i == 4) {
{ pop mip level and i from stack; continue; }

if (DepthMin > FragmentDepth)
continue; // skip the subtree

if (DepthMax <= FragmentDepth || mip == 0) {
S += Overlap(K, CT);
continue; // skip the subtree

}
store i and current mip onto stack;
go to finer mip;
i = 0; // start from texel 0 on the new mip level

}

Large kernel PCF with min-
max mipmap shadowmap
start from the 2x2 miplevel
S = 0; // initialize shadowing
for (i = 0; ;) // for each node at current level
{

if (++i == 4) {
{ pop mip level and i from stack; continue; }

if (DepthMin > FragmentDepth)
continue; // skip the subtree

if (DepthMax <= FragmentDepth || mip == 0) {
S += Overlap(K, CT);
continue; // skip the subtree

}
store i and current mip onto stack;
go to finer mip;
i = 0; // start from texel 0 on the new mip level

}

Large kernel PCF with min-
max mipmap shadowmap
start from the 2x2 miplevel
S = 0; // initialize shadowing
for (i = 0; ;) // for each node at current level
{

if (++i == 4) {
{ pop mip level and i from stack; continue; }

if (DepthMin > FragmentDepth)
continue; // skip the subtree

if (DepthMax <= FragmentDepth || mip == 0) {
S += Overlap(K, CT);
continue; // skip the subtree

}
store i and current mip onto stack;
go to finer mip;
i = 0; // start from texel 0 on the new mip level

}

Overlap() function

K

SM
texel

Shadowing is proportional to the amount
of overlap between current SM texel and
the filter kernel

Soft shadows using hierarchical
min-max shadowmap

Towards adaptive softening

Softening must increase

The “softness” should depend on relative
distances b/w current fragment,
lightsource and the occluder

Physically plausible soft
shadows

Need to compute the overlap function
more accurately

Shadowing computation for
physically plausible shadows

Area

depthEvalS
fragmentS

∑
=

)(
)(

The above sum goes over all
shadowmap texels at level 0.
Shadow pixels are AABBs,

light is AABB: geometry is very
simple

EvalS(depth)

depth

Majority of shadow map texels
do not contribute
EvalS(DepthMin)

Start from coarse miplevel;

if (EvalS(DepthMin) == 0)
{
prune the subtree;

}

Throws away (2^N)^2 pixels
where N is the current mip-level

DepthMin

Physically plausible algorithm
begin from the 2x2 mip;
S = 0; // initialize shadowing
for (i = 0; ;) // for each of node at current level
{

if (++i == 4)
{ pop mip level and i from stack; continue; }

if (EvalS(DepthMin) == 0)
continue;

if (EvalS(DepthMin) == 1 && DepthMax <= FragmentDepth)
return 0; // fully in shadow

if (mip == 0) {
S += EvalS(K, DepthMin);
continue;

}
store i and current mip level onto stack;
go to finer mip;
i = 0; // start over from texel 0 on the new mip level

}

Physically plausible algorithm
begin from the 2x2 mip;
S = 0; // initialize shadowing
for (i = 0; ;) // for each of node at current level
{

if (++i == 4)
{ pop mip level and i from stack; continue; }

if (EvalS(DepthMin) == 0)
continue;

if (EvalS(DepthMin) == 1 && DepthMax <= FragmentDepth)
return 0; // fully in shadow

if (mip == 0) {
S += EvalS(K, DepthMin);
continue;

}
store i and current mip level onto stack;
go to finer mip;
i = 0; // start over from texel 0 on the new mip level

}

Physically plausible algorithm
begin from the 2x2 mip;
S = 0; // initialize shadowing
for (i = 0; ;) // for each of node at current level
{

if (++i == 4)
{ pop mip level and i from stack; continue; }

if (EvalS(DepthMin) == 0)
continue;

if (EvalS(DepthMin) == 1 && DepthMax <= FragmentDepth)
return 0; // fully in shadow

if (mip == 0) {
S += EvalS(K, DepthMin);
continue;

}
store i and current mip level onto stack;
go to finer mip;
i = 0; // start over from texel 0 on the new mip level

}

Physically plausible algorithm
begin from the 2x2 mip;
S = 0; // initialize shadowing
for (i = 0; ;) // for each of node at current level
{

if (++i == 4)
{ pop mip level and i from stack; continue; }

if (EvalS(DepthMin) == 0)
continue;

if (EvalS(DepthMin) == 1 && DepthMax <= FragmentDepth)
return 0; // fully in shadow

if (mip == 0) {
S += EvalS(K, DepthMin);
continue;

}
store i and current mip level onto stack;
go to finer mip;
i = 0; // start over from texel 0 on the new mip level

}

Physically plausible algorithm
begin from the 2x2 mip;
S = 0; // initialize shadowing
for (i = 0; ;) // for each of node at current level
{

if (++i == 4)
{ pop mip level and i from stack; continue; }

if (EvalS(DepthMin) == 0)
continue;

if (EvalS(DepthMin) == 1 && DepthMax <= FragmentDepth)
return 0; // fully in shadow

if (mip == 0) {
S += EvalS(K, DepthMin);
continue;

}
store i and current mip level onto stack;
go to finer mip;
i = 0; // start over from texel 0 on the new mip level

}

Light leaks
Since shadow map is constructed for point light,
but used for area light, shadow leaks are
possible

Light leaks example

Removing light leaks

Remove by artificially
extending shadow map
texels

Texels with larger depth are
extended to match borders of
neighbors with smaller depth

Removing light leaks example

With light
leaks

Physically plausible soft
shadows

Efficient stack implementation

Need to be careful with dynamic indexing
Need to push/pop only (0 <= i <= 3) and
mip-level: 2 + 4 bits
uint iHigh, iLow;

Push(uint bits) {

iHigh = (iHigh >> 6) | (iLow & 0xfc000000);

iLow = (iLow << 6) | bits;

}

uint Pop() {

uint bits = iLow & 0x3f;

iLow = (iHigh & 0xfc000000) | (iLow >> 6);

iHigh <<= 6;

return bits;

}

Ideas for improving
performance

Can stop traversing the hierarchy at
higher levels

Can be used to implement shadow LOD

Compute shadowing on sparse grid (e.g.
4x in each dimension)

In-between pixels can be
interpolated/computed based on…
Need to come up with a good heuristic!

Interpolation heuristic

Can’t interpolate if highly non-planar surface
Can’t interpolate if shadowing changes
drastically inside the grid cell
Shadowing may change drastically if there
are shadow casters that are quite close

Proposed heuristic

For every grid node store distance to closest
important occluder (one float per node);
Can interpolate only if sample is inside the
box created by 4 cell corners AND distance
to closest important occluder is large
compared to the box size;

References
[1] See NVIDIA SDK10 “SoftShadows” demo for
details

[2] Gael Guennebaud, Loic Barthe and Mathias
Paulin. “Real-time Soft Shadow Mapping by
Backprojection”. Eurographics Symposium on
Rendering 2006, Nicosia, Cyprus.

Questions?

kdmitriev@nvidia.com
yuralsky@nvidia.com

mailto:kdmitriev@nvidia.com
mailto:yuralsky@nvidia.com

	Soft shadows using hierarchical min-max shadow maps
	Overview
	Soft shadows are important
	How do we make soft shadows?
	Percentage closer filtering (PCF)
	Jittered PCF
	Variance shadow maps
	Problems with current approaches
	Alternative idea
	Min-max mipmap shadowmap
	Min-max mipmap shadowmap
	Large kernel PCF with min-max mipmap shadowmap
	Large kernel PCF with min-max mipmap shadowmap
	Large kernel PCF with min-max mipmap shadowmap
	Large kernel PCF with min-max mipmap shadowmap
	Overlap() function
	Soft shadows using hierarchical min-max shadowmap
	Towards adaptive softening
	Physically plausible soft shadows
	Shadowing computation for physically plausible shadows
	Majority of shadow map texels do not contribute
	Physically plausible algorithm
	Physically plausible algorithm
	Physically plausible algorithm
	Physically plausible algorithm
	Physically plausible algorithm
	Light leaks
	Light leaks example
	Removing light leaks
	Removing light leaks example
	Physically plausible soft shadows
	Efficient stack implementation
	Ideas for improving performance
	Interpolation heuristic
	Proposed heuristic
	References
	Questions?

