
GDC 2007 Demo Team Secrets:
Advanced Skin Rendering

Eugene d’Eon

© NVIDIA Corporation 2007

Outline

Demos: Adrianne and Froggy
Quick Overview of where we’re going
Reflectance properties of real skin
Review of current techniques
Ways to improve real-time skin rendering

© NVIDIA Corporation 2007

Demos

© NVIDIA Corporation 2007

Quick Overview
How are these images generated?

© NVIDIA Corporation 2007

Overview Diagram
Render texture

space light

Start

© NVIDIA Corporation 2007

Overview Diagram

blur

Render texture
space light

Start

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Start

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Linear
combination

Start

Different weights for R, G, and B

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs + specular

© NVIDIA Corporation 2007

Pre-computed Material

Ambient occlusion map
(static)

Hand painted maps
Diffuse Color
Bump
Specular Brightness

© NVIDIA Corporation 2007

Pre-computed ambient occlusion

© NVIDIA Corporation 2007

Diffuse Color map

© NVIDIA Corporation 2007

Bump map

© NVIDIA Corporation 2007

Specular Brightness map
(brightened here by 16X for display purposes)

© NVIDIA Corporation 2007

Computed each frame

Subsurface Irradiance
Several blurred versions of Subsurface
Irradiance
Blend: Final Subsurface Radiance
Specular
Rim light (optional)

© NVIDIA Corporation 2007

Start with incident light (irradiance)
(Here we show just a single point light)

© NVIDIA Corporation 2007

Compute Subsurface Irradiance
(explained later – actually computed in an off-screen texture)

© NVIDIA Corporation 2007

Blur Subsurface Irradiance

© NVIDIA Corporation 2007

Blur Subsurface Irradiance Again

© NVIDIA Corporation 2007

Blur Subsurface Irradiance Again

© NVIDIA Corporation 2007

Blur Subsurface Irradiance Again

© NVIDIA Corporation 2007

Blur Subsurface Irradiance Again

© NVIDIA Corporation 2007

Final render pass

Render mesh in 3D
Combine blurry textures
Add specular and rim lighting

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs + specular

© NVIDIA Corporation 2007

Final pass

© NVIDIA Corporation 2007

Ummm… What?

Why blurring?
Why keep around several blurs?
Why different recombination weights for R, G,
and B?
Why isn’t specular blurred?

© NVIDIA Corporation 2007

Reflectance properties of skin

© NVIDIA Corporation 2007

Reflectance properties of skin

Dominated by subsurface scattering
~6% direct reflection, 94% subsurface*

*[KRISHNASWAMY, A., AND BARONOSKI, G. V. G. 2004]

© NVIDIA Corporation 2007

Reflectance properties of skin

Dominated by subsurface scattering
~6% direct reflection, 94% subsurface

Reflectance and Scattering are different in
red, green and blue wavelengths

*

*[KRISHNASWAMY, A., AND BARONOSKI, G. V. G. 2004]

© NVIDIA Corporation 2007

Reflectance properties of skin

Dominated by subsurface scattering
~6% direct reflection, 94% subsurface

Reflectance and Scattering are different in
red, green and blue wavelengths
Scattering is poorly modeled by assuming a
single layer of roughly uniform material

*

*[KRISHNASWAMY, A., AND BARONOSKI, G. V. G. 2004]

© NVIDIA Corporation 2007

Why is this?

Thin oily layer

Epidermis

Bloody dermis

Layers of skin

~0.25 mm

© NVIDIA Corporation 2007

Direct reflection

Thin oily layer

Epidermis

Bloody dermis

Layers of skin

How much light reflects off the oily layer?

~0.25 mm

© NVIDIA Corporation 2007

Direct Reflection

~6% of the light
Change of index of refraction between air and
skin
Fresnel reflection & refraction takes place

*

*[KRISHNASWAMY, A., AND BARONOSKI, G. V. G. 2004]

© NVIDIA Corporation 2007

Specular

This is typically treated as a specular term
Highly dependant on both view direction and
incoming light direction
Not colored by the surface in any way

© NVIDIA Corporation 2007

Specular - Roughness

Surface is not a mirror
Skin has very small scale roughness
Use a physically based BRDF

Extremely small scale

Oily layer

Epidermis

*

*Bidirectional Reflectance Distribution Function

© NVIDIA Corporation 2007

Specular - Roughness

Most specular BRDFs have
Roughness parameter “m”
Index of refraction (use 1.4)

Phong and Blinn-Phong aren’t ideal for skin
*

*[Donner and Jensen 2005]

© NVIDIA Corporation 2007

Phong vs. physically-based BRDF

Phong KS BRDF

Phong KS BRDF *

*[Kelemen and Szirmay-Kalos 2001]

© NVIDIA Corporation 2007

Phong vs. physically-based BRDF

A physically based
BRDF captures
increased specularity at
grazing angles
Here we use Kelemen-
Szirmay-Kalos 2001

© NVIDIA Corporation 2007

Roughness parameters

How do we set roughness parameter m?
0.3 is a good average value for the face
Look to current research (Weyrich et al 2006)

*

*[Donner and Jensen 2005]

© NVIDIA Corporation 2007

Roughness parameters
Average measured values from many real
faces – Weyrich et al. 2006 (SIGGRAPH)

Specular amount Roughness, m

© NVIDIA Corporation 2007

Debevec et al 2000 trick

Linearly polarized light
Linearly polarized
camera
Some magic
Pictures of JUST
specular!
Check out the paper
(SIGGRAPH 2000)
http://www.debevec.org/
Research/LS/

*Image courtesy of Paul Debevec

*

http://www.debevec.org/Research/LS/
http://www.debevec.org/Research/LS/

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs + specular

© NVIDIA Corporation 2007

What about the rest of the light?

Thin oily layer

Epidermis

Bloody dermis

Layers of skin

How do we handle the subsurface light?

~0.25 mm?

© NVIDIA Corporation 2007

Subsurface scattering

Thin oily layer

Epidermis

Bloody dermis

Layers of skin

underneath layers dominated by subsurface scattering

~0.25 mm

© NVIDIA Corporation 2007

Subsurface Scattering

Light comes out somewhere else
Light gets colored depending on where it went

Layers of skin

© NVIDIA Corporation 2007

How do we deal with this?

Seemingly impossible task:
infinite number of possible paths
What about directional effects?

Layers of skin

© NVIDIA Corporation 2007

Transport Theory

Scattering models from physics
How far between scattering events?
How far between absorption events?

Many scattering events make light diffuse
How long until that happens?

© NVIDIA Corporation 2007

Transport Theory

For skin this distance is quite short:
0.02083mm (red wavelength)

Thin oily layer

Epidermis

Bloody dermis

Layers of skin

~0.25 mm

*Computed using three-layer skin parameters from [Donner and Jensen 2005]

*

© NVIDIA Corporation 2007

Transport Theory

1/10th through first layer – We’re diffuse!
Track total light – ignore direction
Any light reflection back is diffuse (equal in all
directions)

© NVIDIA Corporation 2007

Sweet, we know how to do this

Do an (N • L) for each light and multiply by the
diffuse color
Then add specular
Easy, right?

© NVIDIA Corporation 2007

Wrong

The skin
looks dry
and hard

© NVIDIA Corporation 2007

Why didn’t this work?

We forgot two things
We didn’t handle how light enters in one location
and exits in another (Important!)
The oily rough surface has non-uniform
transmittance (subtle)

Thin oily layer

Epidermis

Bloody dermis

~0.25 mm

© NVIDIA Corporation 2007

So what now?

We need to employ more complicated
methods
Rely heavily on a diffusion approximation

© NVIDIA Corporation 2007

Previous techniques

Offline rendering:
Monte-carlo rendering of multi-layered materials

Real-time
Texture space diffusion

© NVIDIA Corporation 2007

Multi-layer 2005

*Image Courtesy of Craig Donner and Henrik Wann Jensen

© NVIDIA Corporation 2007

Multi-layer 2005

2005 SIGGRAPH paper by
Craig Donner and Henrik
Wann Jensen

3 layer skin model
Scattering parameters
measured in the medical/optics
community
High quality head scan
(XYZRGB)
~5 minutes rendering time

*Image Courtesy of Craig Donner and Henrik Wann Jensen

© NVIDIA Corporation 2007

Three-Layer vs. dipole

In particular they showed the importance of a multi-
layered skin model

3 layer skin model 1 layer skin model
*Images Courtesy of Craig Donner and Henrik Wann Jensen

© NVIDIA Corporation 2007

What’s going on here?

One-layer skin model looks waxy
Epidermis

Narrow scattering
Lower layers

Wide scattering
Mostly red

Assuming one layer doesn’t work

© NVIDIA Corporation 2007

Approximating multi-layer diffusion

We can approximate this
Start with incident light
Blur over surface
Blur some more
Mix (linear combination)

© NVIDIA Corporation 2007

Why a blur?

Consider a narrow focused white beam of
light hitting a flat, highly scattering surface

Incoming focused beam

© NVIDIA Corporation 2007

Why a blur?

“Highly scattering” means diffuse

Incoming focused beam

scattering

Diffuse output
(ignoring rough
Surface interface)

© NVIDIA Corporation 2007

Diffusion profiles

How much light at distance r?
Name: diffusion profile of the material

Incoming focused beam

How much diffuse
light at distance r?

r

© NVIDIA Corporation 2007

Diffusion profiles

We could compute this
What matters for skin?

Distinctly different in R, G, B
Shape of these profiles means waxy skin vs. real

© NVIDIA Corporation 2007

Main scattering idea

For every surface point
Collect incoming light (color value)
Diffusion approximation: sum ignoring direction
Scatter into neighboring surface points

© NVIDIA Corporation 2007

Main scattering idea – 2D flat surface

2D flat surface
Each point

Gather initial light
Scatter into neighboring pixels
Depends on separation, r
This is a blur!

© NVIDIA Corporation 2007

Diffusion over curved surfaces

We actually require more complicated surfaces

Vertical laser line reflecting off an ear

© NVIDIA Corporation 2007

Texture space diffusion

Unfold 3D surface – texture coordinates
Use this layout to perform blurs
Map back after using texture mapping
We call this texture space diffusion

*Invented by George Borshukov and J.P. Lewis 2003

*

© NVIDIA Corporation 2007

Texture space diffusion

This has been done in real-time before (Simon
Green: GPU Gems 1)
We improve upon this technique in several
ways

Correct distortion
Keep several blurs and linearly combine
How to use diffuse color

*

*Invented by George Borshukov and J.P. Lewis 2003

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs + specular

© NVIDIA Corporation 2007

Rendering using texture coordinates

Modify the projCoord in the vertex shader using the
texture coordinates
Pass the true worldCoord and worldNormal to the
fragment shader for lighting

v2f.projCoord = float4(texCoord.x * 2.0 - 1.0,
texCoord.y * 2.0 - 1.0, 0.0, 1.0);

© NVIDIA Corporation 2007

Rendering using texture coordinates

The fragment shader computes subsurface irradiance
(explained shortly)
Store in an offscreen texture

© NVIDIA Corporation 2007

Rendering using texture coordinates

Now it can be efficiently blurred

© NVIDIA Corporation 2007

Overview Diagram

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs + specular

© NVIDIA Corporation 2007

Each blur operation is 2 passes

Temporary buffer Texture used in
final pass

Vertical blur

.006 .061 .242 .383 .242 .061 .006

Blur weights

Horizontal
blur

Recurse several times building a set
of different blurs

© NVIDIA Corporation 2007

Distortion problems

Avoid uniform blur in texture space
One pixel in texture space != constant distance in
real world

Uniform blur Distortion
corrected blur

© NVIDIA Corporation 2007

Distortion problems

This can make the ears look like candle wax
Very hard dramatic shadows will have an ugly edge

Uniform blurs Distortion correction

© NVIDIA Corporation 2007

Accurate Distortion Correction

We can easily estimate distortion
Compute a map and inversely stretch our blurs

float3 derivu = ddx(v2f.worldCoord);
float3 derivv = ddy(v2f.worldCoord);

// 0.001 scales the values to map into [0,1]
// this depends on the model
float stretchU = 0.001 * 1.0 / length(derivu);
float stretchV = 0.001 * 1.0 / length(derivv);

© NVIDIA Corporation 2007

Accurate Distortion Correction

Use these values to scale the directional blurs
Paint the eyebrows black to eliminate blur there

Blur radius in X Blur Radius in Y

© NVIDIA Corporation 2007

Accurate Distortion Correction

In general these distortions are different in X and Y
Separable blurs advantageous for 2 reasons

Can correct distortions in each direction separately
More efficient to compute than a 7 x 7 blur

Build a hierarchy of blurred versions of irradiance
Good for mixing to get any diffusion profile you want
More efficient than computing a 100x100 blur (even
separably)

© NVIDIA Corporation 2007

Dealing with Seams

Depending on the UV
layout, there might be
seams
Black regions surround
seam edges

Black regions will blur
into nearby pixels,
creating dark seams

© NVIDIA Corporation 2007

Dealing with Seams

© NVIDIA Corporation 2007

Dealing with Seams

Ways around it:
Change Clear color
Edit distortion map
Object / no-object alpha map
Multiple UV sets (slow)

© NVIDIA Corporation 2007

Dealing with Seams

Change
Clear color

Edge pixels:
Can still filter
portions of

empty space

© NVIDIA Corporation 2007

Computing subsurface Irradiance

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs + specular

© NVIDIA Corporation 2007

Computing subsurface Irradiance

What color do we write here?
How should diffuse color get used?

First guess: dot(N, L) * diffuseCol

After
Blur, blur, blur
Linearly Combine blurs
Add specular

© NVIDIA Corporation 2007

Computing subsurface Irradiance

First guess: dot(N, L) * diffuseCol

© NVIDIA Corporation 2007

Computing subsurface Irradiance

This can look ok
Can lose high frequencies

Second guess:
Store only N • L terms
Blur, blur, blur
Linearly Combine blurs
Multiply DiffuseCol
Add specular

© NVIDIA Corporation 2007

Computing subsurface Irradiance

Second guess: blur dot(N,L), mix, then multiply
by diffuseCol

© NVIDIA Corporation 2007

Computing subsurface Irradiance

This can look ok
Probably ok for photo-based maps
No Color bleeding – Too much high frequency
content left
High frequency detail “sits” above underneath
layers

Third guess: can we somehow do both?

© NVIDIA Corporation 2007

Computing subsurface Irradiance

Want some coloring before and after blur
Need a multiplication each time
Can’t multiply DiffuseCol twice

© NVIDIA Corporation 2007

Computing subsurface Irradiance

Want some coloring before and after blur
Need a multiplication each time
Can’t multiply DiffuseCol twice

Multiply sqrt(DiffuseCol) twice
Once before blurring
Once after blending

© NVIDIA Corporation 2007

Computing subsurface Irradiance

Half and half: apply sqrt(diffuseCol), blur, combine,
then apply sqrt(diffuseCol)

© NVIDIA Corporation 2007

Computing subsurface Irradiance

This simulates an infinitely thin absorption layer on
the surface which doesn’t scatter light

Thin oil layer

Detail absorption
layer

Epidermis

Bloody Dermis

Skin layers

© NVIDIA Corporation 2007

Computing subsurface Irradiance

This is realistic in that
Light must interact with this detail layer twice
Once going in
Once coming out

Assumptions
Variation in skin lies in a top thin layer

© NVIDIA Corporation 2007

Computing subsurface Irradiance

Artistic liberty
Generalize
Instead of

* sqrt(diffuseCol) before
* sqrt(diffuseCol) after

Use
* pow(diffuseCol, mix) before
* pow(diffuseCol, 1.0 – mix) after

In Adrianne we used mix = 0.82

© NVIDIA Corporation 2007

Combining blurs

blur blur
…

blur

Render texture
space light

Linear
combination

Start

texture mapping

Final pass: combine blurs + specular

© NVIDIA Corporation 2007

Combining blurs

0.042 0.22 0.437 0.635

0.220 0.101 0.355 0.365

0.433 0.119 0.208 0

0.753 0.114 0 0

1.412 0.364 0 0

2.722 0.080 0 0

Blur
Width(mm) red green blue

Blur Weights

For human skin we recommend

*Smallest blur level is lighting re-computed directly in the final render pass (it has not been blurred)

*

© NVIDIA Corporation 2007

Combining blurs – Choosing weights

Weights should sum to 1.0
Somewhat artistic process
Do it one color at a time

return finalCol.xxx
return finalCol.yyy
Etc
Compare to reference photos (red, then green, then blue)

Avoid:
Heavy blur + specular
Single gaussian + specular

© NVIDIA Corporation 2007

Combining blurs

For human skin:
Broadest scatter in red
Small scatter in green
Blue has very little at all

Single Gaussian is bad
Even for one-layered materials

© NVIDIA Corporation 2007

Combining blurs

float3 diffuseLight = nonBlur * E1 * pow(diffuseCol, 0.5);

float3 blur2tap = f3tex2D(blur2Tex, v2f.c_texCoord.xy);
float3 blur4tap = f3tex2D(blur4Tex, v2f.c_texCoord.xy);
float3 blur8tap = f3tex2D(blur8Tex, v2f.c_texCoord.xy);
float3 blur16tap = f3tex2D(blur16Tex, v2f.c_texCoord.xy);
float3 blur32tap = f3tex2D(blur32Tex, v2f.c_texCoord.xy);

diffuseLight += blur2 * blur2tap.xyz;
diffuseLight += blur4 * blur4tap.xyz;
diffuseLight += blur8 * blur8tap.xyz;
diffuseLight += blur16 * blur16tap.xyz;
diffuseLight += blur32 * blur32tap.xyz;

// renormalize weights so they sum to 1.0
float3 norm2 = nonBlur + blur2 + blur4 + blur8 + blur16 + blur32;
diffuseLight /= norm2;
diffuseLight *= pow(diffuseCol, 0.5);

© NVIDIA Corporation 2007

Combining blurs

Highly scalable process
Use as many as you need
Try at least two blurs

© NVIDIA Corporation 2007

Combining blurs

6 levels of blur
physically based specular

3 levels of blur
Blinn-Phong specular

© NVIDIA Corporation 2007

Energy Conservation

Problems with using only N • L?
We didn’t conserve energy
Ignores directional effects of rough, oily surface

For skin the difference is quite subtle

dot(N,L) Careful conservation of energy

© NVIDIA Corporation 2007

Extras

Gamma correction
Try several speculars
Many tileable bump maps

© NVIDIA Corporation 2007

Gamma correction

Your monitor is lying to you!
displayed brightness = pixelValue^2.2
All our displays do this
Digital Cameras know this

They correct for it
We should too

© NVIDIA Corporation 2007

Gamma correction comparison

No Gamma correction Gamma correction

© NVIDIA Corporation 2007

Gamma correction

Affects image quality greatly
Screws up lighting and shading
We need two fixes:

1) Correct textures
2) Correct framebuffer pixels

© NVIDIA Corporation 2007

Gamma correction – Correct textures

Pictures & painted maps will have non-linear pixels

To convert them to linear:
diffuseCol = pow(f3tex2d(diffTex, v2f.tex), 2.2);

//Or (cheaper)
diffuseCol = f3tex2d(diffTex, v2f.tex);
diffuseCol = diffuseCol * diffuseCol;

© NVIDIA Corporation 2007

Gamma correction – Correct Images

Do this once or automate it upon export/build
(avoids the pow() instructions)

Use sRGB texture format
DirectX

DXGI_FORMAT_R8G8B8A8_UNORM_SRGB
DXGI_FORMAT_BC{1,2,3}_UNORM_SRGB

OpenGL
GL_EXT_texture_sRGB

Avoid correcting
ambient occlusion
Normal maps
Alpha channels

© NVIDIA Corporation 2007

Gamma correct the final color value

Our displays warp pixel values
When we write to the framebuffer:

Invert the warping

float3 finalCol = do_all_lighting_and_shading();
float pixelAlpha = compute_pixel_alpha();

return float4(pow(finalCol, 1.0 / 2.2), pixelAlpha);

// or (cheaper)
return float4(sqrt(finalCol), pixelAlpha);

© NVIDIA Corporation 2007

Gamma correction: sRGB

sRGB framebuffers
You write linear pixels
Hardware does correction for you
Blending is done linearly
EXT_framebuffer_sRGB

© NVIDIA Corporation 2007

Try more than one specular at once

One specular roughness might not be enough
Skin is a complex material
Try mixing a few specular calculations together

Linear combination
Many of the intermediate calculations can be re-
used
In Adrianne we used four

© NVIDIA Corporation 2007

Try more than one specular at once

float4 specWeights = float4(0.1, 0.2, 0.3, 0.5);
float4 specRough = float4(0.05, 0.1, 0.2, 0.3);

float spec = QuadSpec(N, V, L, specRough, specWeights);

specLight += spec * lightcolor * shadow;

© NVIDIA Corporation 2007

Try more than one specular at once

Linear combination
of 4 speculars

© NVIDIA Corporation 2007

Tileable detail bumps

Bump detail on skin is important
Creating one large high resolution normal map
requires a lot of memory
Try creating several small tileable bump maps
Don’t average normals
Add several bump height values and compute a
normal
Compute normal in shader using bump heights

© NVIDIA Corporation 2007

Don’t average normals

+

=

Normals don’t add or average when two bump maps are combined

Bump map 1

Bump map 2

© NVIDIA Corporation 2007

Tileable detail bumps

Fragment shader:
Find tex coords for pixel neighbors (use ddx, ddy)
Compute total bump height for 3 locations
Compute tangent space normal

Center bump height

Over

up

© NVIDIA Corporation 2007

Tileable detail bumps

Estimate tex_coord for one pixel to the right, and one pixel up
float2 uv_offset_over = ddx(v2f.c_texCoord);
float2 uv_offset_up = ddy(v2f.c_texCoord);
float2 texCoordOver = v2f.c_texCoord + uv_offset_over;
float2 texCoordUp = v2f.c_texCoord + uv_offset_up;

Center bump height

Over

up

Use texCoordOver and texCoordUp to evaluate all bump maps

© NVIDIA Corporation 2007

Tileable detail bumps

float2 uv_offset_over = ddx(v2f.c_texCoord);
float2 uv_offset_up = ddy(v2f.c_texCoord);
float2 texCoordOver = v2f.c_texCoord + uv_offset_over;
float2 texCoordUp = v2f.c_texCoord + uv_offset_up;
…
// compute finalHeightCenter, finalHeightOver, finalHeight up
…
float yscalefactor = length(uv_offset_over) /
length(uv_offset_up);

float3 tanNormal = normalize(float3(finalHeightCenter -
finalHeightOver, yscalefactor * (finalHeightCenter -
finalHeightUp), length(uv_offset_over) * 4048.0));

© NVIDIA Corporation 2007

Tileable detail bumps

Four bump tiles used on Adrianne

© NVIDIA Corporation 2007

Summary

Improved texture space diffusion
Separable blurs, separable distortion correction
Build one blur from the last
Blend several blurs for more realistic diffusion
Blend blurs differently in red, green, and blue

Gamma Correct!!!
Layered bump tiles

Don’t layer normal maps
Layer bump heights and compute an accurate normal

Many speculars

© NVIDIA Corporation 2007

Play around to get new effects

Any kind of fleshy surface requires subtle
scattering

*

*Texture maps courtesy of XYZRGB

© NVIDIA Corporation 2007

Future work

Skin shading research hasn’t stopped
Watch for upcoming demos with even more
realistic skin shading
Watch for GPU Gems 3

© NVIDIA Corporation 2007

References
BORSHUKOV G., AND LEWIS, J. 2003. Realistic human face rendering for “the matrix
reloaded”. In ACM SIGGRAPH 2003 Conference Abstracts and Applications (Technical
Sketch).
DEBEVEC, P., HAWKINS, T., TCHOU, C., DUIKER, H.-P., SAROKIN, W., AND SAGAR,
M. 2000. Acquiring the reflectance field of a human face. In Computer Graphics,
SIGGRAPH 2000 Proceedings, 145–156.
DONNER C., AND JENSEN, H.W. 2005. Light diffusion in multi-layered translucent
materials. In Proceedings of SIGGRAPH 2005, 1032-1039.
GREEN, S. 2004. Real-time approximations to subsurface scattering. In GPU Gems, R.
Fernando, Ed. Addison Wesley, Mar., ch. 16, 263–278.
JENSEN, H. W., AND BUHLER, J. 2002. A rapid hierarchical rendering technique for
translucent materials. ACM Trans. Graph. 21, 3, 576–581.
JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRAHAN, P. 2001. A practical
model for subsurface light transport. In Proceedings of SIGGRAPH 2001, 511–518.
KRISHNASWAMY, A., AND BARONOSKI, G. V. G. 2004. A biophysically-based spectral
model of light interaction with human skin. In Proceedings of EUROGRAPHICS 2004, vol.
23.
PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann Publishers Inc.
WEYRICH, T., MATUSIK, W., PFISTER, H., BICKEL, B., DONNER, C., TU, C.,
MCANDLESS, J., LEE, J., NGAN, A., JENSEN, H. W., AND GROSS, M. 2006. Analysis of
human faces using a measurement-based skin reflectance model. ACM Transactions on
Graphics 25, 3 (July), 1013–1024.

© NVIDIA Corporation 2007

New Developer Tools at GDC 02007

SDK 10

PerfKit 5 FX Composer 2

GPU-Accelerated
Texture Tools

ShaderPerf 2

Shader Library

© NVIDIA Corporation 2007

Questions?

	GDC 2007 Demo Team Secrets:�Advanced Skin Rendering
	Outline
	Demos
	Quick Overview
	Overview Diagram
	Overview Diagram
	Overview Diagram
	Overview Diagram
	Overview Diagram
	Overview Diagram
	Pre-computed Material
	Pre-computed ambient occlusion
	Diffuse Color map
	Bump map
	Specular Brightness map
	Computed each frame
	Start with incident light (irradiance)
	Compute Subsurface Irradiance
	Blur Subsurface Irradiance
	Blur Subsurface Irradiance Again
	Blur Subsurface Irradiance Again
	Blur Subsurface Irradiance Again
	Blur Subsurface Irradiance Again
	Final render pass
	Overview Diagram
	Final pass
	Ummm… What?
	Reflectance properties of skin
	Reflectance properties of skin
	Reflectance properties of skin
	Reflectance properties of skin
	Why is this?
	Direct reflection
	Direct Reflection
	Specular
	Specular - Roughness
	Specular - Roughness
	Phong vs. physically-based BRDF
	Phong vs. physically-based BRDF
	Roughness parameters
	Roughness parameters
	Debevec et al 2000 trick
	Overview Diagram
	What about the rest of the light?
	Subsurface scattering
	Subsurface Scattering
	How do we deal with this?
	Transport Theory
	Transport Theory
	Transport Theory
	Sweet, we know how to do this
	Wrong
	Why didn’t this work?
	So what now?
	Previous techniques
	Multi-layer 2005
	Multi-layer 2005
	Three-Layer vs. dipole
	What’s going on here?
	Approximating multi-layer diffusion
	Why a blur?
	Why a blur?
	Diffusion profiles
	Diffusion profiles
	Main scattering idea
	Main scattering idea – 2D flat surface
	Diffusion over curved surfaces
	Texture space diffusion
	Texture space diffusion
	Overview Diagram
	Rendering using texture coordinates
	Rendering using texture coordinates
	Rendering using texture coordinates
	Overview Diagram
	Each blur operation is 2 passes
	Distortion problems
	Distortion problems
	Accurate Distortion Correction
	Accurate Distortion Correction
	Accurate Distortion Correction
	Dealing with Seams
	Dealing with Seams
	Dealing with Seams
	Dealing with Seams
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Computing subsurface Irradiance
	Combining blurs
	Combining blurs
	Combining blurs – Choosing weights
	Combining blurs
	Combining blurs
	Combining blurs
	Combining blurs
	Energy Conservation
	Extras
	Gamma correction
	Gamma correction comparison
	Gamma correction
	Gamma correction – Correct textures
	Gamma correction – Correct Images
	Gamma correct the final color value
	Gamma correction: sRGB
	Try more than one specular at once
	Try more than one specular at once
	Try more than one specular at once
	Tileable detail bumps
	Don’t average normals
	Tileable detail bumps
	Tileable detail bumps
	Tileable detail bumps
	Tileable detail bumps
	Summary�
	Play around to get new effects
	Future work
	References
	New Developer Tools at GDC 02007
	Questions?�

