GPU Physics

Mark Harris
NVIDIA Developer Technology
Game Physics

- Enhance game experience through simulation

- Simulate objects and interactions between them
 - Rigid bodies, particles, “rag dolls”, cloth, fluids, etc.
 - Collisions, constraints, fluid forces, etc.

- State of the art in Game Physics:
 - Max ~1-2K colliding objects on current CPUs
 - Or equivalent number of other constraints
Goal: scalable game physics

- Physics-based effects on a massive scale
 - 10,000s of objects
 - Rigid bodies
 - Particles
 - Fluids
 - Cloth
 - and more

- Physics effects should scale with capability of platform

- Mostly visual effects
 - But can interact with “game play” physics too
Havok and NVIDIA

- Havok is a world leader in physics middleware
- NVIDIA launched R&D project with Havok in 2005 to investigate physics on GPUs
- Optimized for NVIDIA platforms
Why Physics on GPUs?

- Pixel quality has improved tremendously over the last few years
 - Material shaders, lighting and shadowing

- Still much room for improvement in physics
 - Small number of objects, limited interaction

- Many games today are CPU limited
 - Makes sense to perform simulation close to rendering
Why Physics on GPUs?

GPU: very high data parallelism
- G70: 24 pixel pipelines, 48 shading processors
- 1000s of simultaneous threads
- Very high memory bandwidth
- SLI enables 1-4 GPUs per system

Physics: very high data parallelism
- 1000s of colliding objects
- 1000s of collisions to resolve every frame
- Requires 1000s of floating point operations per collision
General-Purpose Computation on GPUs

GPUs have been used to accelerate many highly parallel applications
- Physically-based simulation
- Image processing
- Scientific computing
- Computer vision
- Computational finance
- Medical imaging
- Bioinformatics

www.gpgpu.org
Physically-based Simulation on GPUs

- Particle Systems
- Fluid Simulation
- Cloth Simulation
- Soft-body Simulation
What About Rigid Body Physics?

- Fluids, particles, cloth map naturally to GPUs
 - Highly parallel, independent data

- Rigid body physics is more complicated
 - Arbitrary shapes
 - Arbitrary interactions and dependencies
 - Parallelism is harder to extract
Ballistic Physics Refresher Course
Integrate Broad Phase Collision Detection
Narrow Phase Collision Detection
Solve collisions
Is Physics A Data Parallel Task?

Integrate → Collide → Solve Collisions

Anatomy of a clock tick
Is Physics A Data Parallel Task?

Integrate

- Step Body 1
- Step Body 2
- Step Body 1000

Position & Velocity

New Positions
Is Physics A Data Parallel Task?

Anatomy of a clock tick

Integrate → Collide → Solve Collisions
Is Physics A Data Parallel Task?

Collide

- BroadPhase
- Pair 1
- Pair 2
- Pair 4000

New Positions -> Narrow phase -> Contacts
Is Physics A Data Parallel Task?

Anatomy of a clock tick

Integrate → Collide → Solve Collisions
Is Game Physics A Data Parallel Task?

Solve Collisions

Contacts & Velocities

New Velocities

Slide courtesy of Andrew Bond, Havok
Is Game Physics A Data Parallel Task?

Solve Collisions

Contacts & Velocities

New Velocities

Slide courtesy of Andrew Bond, Havok
Is Game Physics A Data Parallel Task?

Solve Collisions

Contacts → Solve link 1 → Solve link 2 → Solve link N → Batch 1 → Batch 2 → Batch M → New Velocities

Slide courtesy of Andrew Bond, Havok
Physics Is A Data Parallel Task

Integrate
100% data parallel

Collide
70% data parallel

Solve Collisions
99% data parallel
Havok FX is World’s first GPU-accelerated game physics SDK
- Part of Havok 4 SDK

- Already being adopted by game developers

- Massive performance improvement over CPU implementation
Havok FX Features Overview

- **Rigid Bodies**
 - Convex collision bodies
 - Stable stacking

- **Particles**
 - Collisions
 - Fluid, Cloth etc.

- **Lightweight Framework**
 - Fully integrated with Havok 4
 - Everything collides with everything else

- **Integrated Toolchain**
 - Max, Maya, XSI
Dedicated Performance For Physics

Performance Measurement
Havok FX Physics

PHYSICS

- Collision Detection
- Collision Resolution
- Integration

- Positions, Orientations, Velocities

GPU 1

GPU 2

GPU 3

(Optional GPUs)

CPU

- Find potential collisions
- object pairs

RENDER

- (Opti... GPUs)
Data Stays On The GPU
Custom Behaviors

Havok FX is customizable. User-defined behaviors run on the GPU to modify object state.

Cg shaders implement a simple interface with very simple and flexible architecture:
- Read access to all data
- Output position, orientation, linear and angular velocity

Examples:
- Boundaries – reset/deactivate objects that exit the scene
- Vortices, Attractors, Swarm effects
Gameplay physics interaction
NVIDIA Technology for Physics

- Shader Model 3 GPUs
- SLI multi-GPU technology
- Cg Compiler
- New driver technology for physics
Game Physics on Multiple GPUs

Second GPU can be used for SLI graphics, second monitor or physics simulation.

- Graphics on GPU 1
- Physics or Graphics on GPU 2 or GPU 3
- NVIDIA GPU
- CPU
- nForce
- NVIDIA GPU
- nForce
NVIDIA GPU Physics

- Multi-GPU configurations, mixed or same GPU type
 - One GPU does both graphics and physics
 - One GPU for graphics, one for physics
 - Enables extra GPU for rendering when FX is not active
 - Two GPUs for graphics, one for physics
 - Full speed rendering with full speed physics simulation

- GeForce 7600 GS
- GeForce 7900 GTX SLI
- GeForce 7950 GX2 + GeForce 7600
SLI Performance Scaling

Performance Measurement
15,000 Boulders with Shadows

- Single GPU
 - Dual Core P4EE 955 - 3.46GHz
 - GeForce 7900GTX
 - CPU Multi-threading enabled
 - Frame Rate: 30 fps

- Dual GPU
 - Dual Core P4EE 955 - 3.46GHz
 - GeForce 7900GTX SLI
 - CPU Multi-threading enabled
 - Frame Rate: 52 fps
 - Performance Boost: 1.7x
Rendering

- Rendering is fully controlled by application
- Havok FX returns vertex buffers with position, velocity and optional user data
 - Supports OpenGL and Direct3D
- Rigid bodies rendered using instancing
 - Direct3D or OpenGL NVX_instanced_arrays extension
- Particles rendered as point sprites
 - Supports motion blur
 - Can modify particle color or size over time
 - Can use texture atlases for particle animation
The Future of GPU Physics

- Distributing physics across multiple GPUs
 - e.g. 2 GPUs for physics, 2 for rendering
- Brittle fracture
- Advanced smoke/cloud rendering
 - Volumetric shadowing
- Advanced fluids
 - Smoothed particle hydrodynamics
 - Isosurface extraction using DirectX 10 Geometry Shader
Questions?