
DirectX10 Effects

Sarah Tariq

Copyright © NVIDIA Corporation 2004

Motivation

Direct3D 10 is Microsoft’s next graphics API
Driving the feature set of next generation GPUs

New driver model
Improved performance

Many new features
New programmability, generality

Cleaned up API
Improved state handling. Almost no caps bits!

Copyright © NVIDIA Corporation 2004

Agenda

Short review of DX10 pipeline and features

Effect Case Studies
Fins for fur
Cloth
Metaballs

Conclusions

Copyright © NVIDIA Corporation 2004

Direct3D 10 Pipeline

Vertex Shader

Pixel Shader

Rasterizer

Input Assembler

Geometry Shader
Video Memory

(Buffer
Texture,

Constant Buffer)

Output Merger

Stream Output

Copyright © NVIDIA Corporation 2004

Direct3D 10 New Features

Geometry shader
Stream out
SM 4.0

Common shader Instruction Set
Integer operations in shaders
Load from VB/IB
Unlimited instruction count

Resource Views
read depth/stencil buffer
Render to vertex buffer

8 MRTs
Render Target arrays
Texture arrays
Input assembler generated identifiers; InstanceID, VertexID,
PrimitiveID
Alpha to Coverage

Copyright © NVIDIA Corporation 2004

Coming up…

Overview of Geometry Shader
Effect: fur

Some HLSL code showing the use of the GS
Overview of Stream Out
Effect: Cloth

Some HLSL code showing the use of the SO
Effect: Rendering IsoSurfaces

Copyright © NVIDIA Corporation 2004

Geometry Shader

Triangle with adjacency

Line with adjacency

input

Point
Line
Triangle

output
Point list
Line strip
Triangle strip

Geometry Shader

Vertex Shader

Raster

Pixel Shader

From CPU

Output Merger

Copyright © NVIDIA Corporation 2004

Fur; generating fins on the GPU

Copyright © NVIDIA Corporation 2004

Shells and Fins Overview

Copyright © NVIDIA Corporation 2004

Shells and Fins Overview

Copyright © NVIDIA Corporation 2004

Shells and Fins Overview

Copyright © NVIDIA Corporation 2004

Shells: problems at silhouettes

+
8 shells

fins

Copyright © NVIDIA Corporation 2004

fins

Copyright © NVIDIA Corporation 2004

Silhouette detection on the GS

0 4

1

2

3

5

if(dot(eyeVec,N1) > 0 && dot(eyeVec,N2) < 0)

N1

N2

Copyright © NVIDIA Corporation 2004

//GS shader for the fins
[maxvertexcount(12)]
void GS(triangleadj VS_OUTPUT input[6],
inout TriangleStream<GS_OUTPUT_FINS>TriStream)
{

//compute the triangle’s normal
float3 N1 = normalize(cross(input[0].Position - input[2].Position,

input[4].Position -input[2].Position));
float3 eyeVec = normalize(Eye – input[0].Position);

//if the central triangle is front facing, check the other triangles
if(dot(N1, eyeVec) > 0.0f)
{

makeFin(input[2],input[0],input[1], TriStream);
makeFin(input[4],input[2],input[3], TriStream);
makeFin(input[0],input[4],input[5], TriStream);

}
}

input

Geometry Shader

0

1
2

3

4

5

triangleadj TriangleStream

output

N1

float3 eyeVec = normalize(Eye – input[0].Position);

float3 N1 = normalize(cross(input[0].Position - input[2].Position,
input[4].Position -input[2].Position));

if(dot(N1, eyeVec) > 0.0f)
{

makeFin(input[2],input[0],input[1], TriStream);
makeFin(input[4],input[2],input[3], TriStream);
makeFin(input[0],input[4],input[5], TriStream);

}

Copyright © NVIDIA Corporation 2004

for(int v=0; v<2; v++)
{

Out.Position = mul(v1.Position + v*float4(v1.Normal,0)*length, WorldViewProj);
Out.Normal = mul(v1.Normal, World);
Out.TextureMesh = v1.Texture;
Out.TextureFin = float2(0,1-v);
Out.Opacity = opacity;
//append new vertices to the stream to create the fin
TriStream.Append(Out);

}

Silhouette extrusion

void makeFin(VS_OUTPUT v1, VS_OUTPUT v2, VS_OUTPUT vAdj,inout TriangleStream <GS_OUTPUT_FINS>
TriStream)
{ float3 N2 = normalize(cross(v1.Position - v2.Position, vAdj.Position - v2.Position));

float3 eyeVec = normalize(Eye - v1.Position);

//if this is a silhouette edge, extrude it into 2 triangles
if(dot(eyeVec,N2) < 0)
{

GS_OUTPUT_FINS Out;

v2

vadj

v1input output

N2

float3 N2 = normalize(cross(v1.Position - v2.Position, vAdj.Position - v2.Position));
float3 eyeVec = normalize(Eye - v1.Position);

Copyright © NVIDIA Corporation 2004

for(int v=0; v<2; v++)
{

Out.Position = mul(v2.Position + v*float4(v2.Normal,0)*length, WorldViewProj);
Out.Normal = mul(v2.Normal, World);
Out.TextureMesh = v2.Texture;
Out.TextureFin = float2(1,1-v);
Out.Opacity = opacity;

TriStream.Append(Out);
}

Silhouette extrusion

v2

vadj

v1input output

TriStream.RestartStrip();
}}

N2

Copyright © NVIDIA Corporation 2004

Some more Geometry Shader applications

Silhouette detection and extrusion for:
Shadow volume generation
NPR

Access to topology for calculating things like
curvature
Render to cube map in single pass

In conjunction with Render Target arrays
GPGPU

enables variable number of outputs from shader

Copyright © NVIDIA Corporation 2004

Stream Out

Allows storing output from
geometry shader or vertex
shader to buffer

Enables multi-pass operations
on geometry, e.g.

Recursive subdivision
Store results of skinning to
buffer, reuse for multiple lights

Stream Out

Geometry Shader

Vertex Shader

Raster

Pixel Shader

CPU

Output Merger

Video Memory

(Buffer
Texture,
Constant

Buffer)

Copyright © NVIDIA Corporation 2004

Cloth on the GPU

Copyright © NVIDIA Corporation 2004

Cloth as a Set of Particles

Each particle is subject to:
A force (gravity, wind, drag, etc.)
Various constraints:

To maintain overall shape (springs)
To prevent interpenetration with the environment (collision)

Cloth

Particles

Springs

Copyright © NVIDIA Corporation 2004

Cloth Simulation

Apply force to all particles
For as many times as necessary:

Apply spring constraints
Apply collision constraints

Render mesh

Copyright © NVIDIA Corporation 2004

Constraints

The constraints create a system of equations to be
solved at each time step

Use explicit integration:
constraints are resolved by relaxation, that is by
enforcing them one after the other for a given
number of iterations

Copyright © NVIDIA Corporation 2004

Spring Constraints

Particles are linked by springs:

A spring is simulated as a distance constraint
between two particles

Shear springsStructural springs

Copyright © NVIDIA Corporation 2004

Distance Constraint

A distance constraint DC(P, Q) between two
particles P and Q is enforced by moving them away
or towards each other:

Distance
at rest

P

P

Q

P Q

Q

Copyright © NVIDIA Corporation 2004

Sequential update

Iterate as
much as

necessary

1 2 3 4 …

n

How do we update the springs? We could update them one at a time …

Copyright © NVIDIA Corporation 2004

Sequential update

On the GPU we want to do as many updates in parallel as possible
But that’s too slow.

However, we cannot update all springs in parallel; for example, the green spring
cannot be updated at the same time as the red springs, since they affect the
same particles

Copyright © NVIDIA Corporation 2004

Parallel update

The solution is to partition the springs into batches
of independent sets, such that any given particle is
only affected by one set in a batch

Copyright © NVIDIA Corporation 2004

Parallel update

Batch 1

Set 1 Set 2 Set 3

Set 4 Set 5 Set 6

Copyright © NVIDIA Corporation 2004

Parallel update

Batch 2

Copyright © NVIDIA Corporation 2004

Parallel update

Batch 3

Copyright © NVIDIA Corporation 2004

Parallel update

Batch 4

Copyright © NVIDIA Corporation 2004

Cloth Simulation

Apply force to all particles
synchronize
For as many times as necessary:

For all 4 batches
Apply spring constraints
Synchronize

Apply collision constraints
Synchronize

Render mesh

Copyright © NVIDIA Corporation 2004

DirectX10 Implementation

Particles stored in a vertex buffer
DirectX9: particles would be stored in a texture

Computation in Geometry Shader and Vertex
Shader

DirectX9: computation in pixel shader
Synchronization (between passes) through Stream
Out

DirectX9: synchronization with writes to frame buffer
and read from texture

Cloth cutting by adding triangles
DirectX9: removing triangles

Fewer passes in DirectX10: 4 vs. 8 in DirectX9

Copyright © NVIDIA Corporation 2004

Apply Force:
Vertex Shader

Vertices

Vertex Shader

Stream Out

Each vertex gets a force applied to it

Copyright © NVIDIA Corporation 2004

Satisfy distance constraints:
Geometry Shader

Vertices

Geometry Shader

Stream Out

The GS processes a set of vertices at a time
For each set we satisfy each of the spring constriants

Copyright © NVIDIA Corporation 2004

Pseudo-Code: Initialization

Create two vertex buffers to store the particles:
Vertex format is current position, old position, normal, etc.
One vertex buffer is used as input to the vertex shader
One vertex buffer is used as output to the geometry
shader (Stream Output)
The two buffers are swapped after each rendering pass

Create as many index buffers as there are batches
of independent springs (4)

Each index buffer feeds the geometry shader with the
right 4-tuples of particles

Create an index buffer for rendering

Copyright © NVIDIA Corporation 2004

Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list

Copyright © NVIDIA Corporation 2004

Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list

Copyright © NVIDIA Corporation 2004

Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list

Copyright © NVIDIA Corporation 2004

Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list

Copyright © NVIDIA Corporation 2004

Apply forces
pass ApplyForces

{
SetVertexShader(CompileShader(vs_4_0, VS_ApplyForces()));
SetGeometryShader(ConstructGSWithSO(CompileShader(vs_4_0, VS_ApplyForces()),

"State.x; Position.xyz"));
SetPixelShader(0);

}

void VS_ApplyForces(inout Particle particle, OldParticle oldParticle)
{

// Apply Forces
…
// Integrate
if (IsFree(particle))

particle.Position += speedCoeff * diffPosition + force * TimeStep * TimeStep;
}

if (IsFree(particle))
particle.Position += speedCoeff * diffPosition + force * TimeStep * TimeStep;

Copyright © NVIDIA Corporation 2004

Metaballs on the GPU

Copyright © NVIDIA Corporation 2004

What are Isosurfaces?

Consider a function
Defines a scalar field in 3D-
space

Isosurface S is a set of
points which satisfy the
implicit equation

),,(zyxf

constzyxf =),,(
f(x,y,z) = 0.7

f(x,y,z) = 0.2

Copyright © NVIDIA Corporation 2004

r2

r1

Metaballs

A simple and interesting case
Soft/blobby objects that blend into
each other

Perfect for modeling fluids,
explosions in games

Use implicit equation of the form

Gradient can be computed directly

∑
=

=
−

N

i i

ir
1

2

2

1
px

)(2)(
1

4

2

i

N

i i

irf px
px

grad −⋅
−
⋅

−= ∑
=

r2

p1

Copyright © NVIDIA Corporation 2004

The Marching Cubes Algorithm

To render an isosurface we can
either ray trace it or polygonalize
it

Marching cubes: well-known
method for polygonization of an
isosurface
Sample f(x, y, z) on a cubic lattice

Copyright © NVIDIA Corporation 2004

The Marching Cubes Algorithm

To render an isosurface we can
either ray trace it or polygonalize
it

Marching cubes: well-known
method for polygonization of an
isosurface
Sample f(x, y, z) on a cubic lattice

Each vertex can be either
“inside” or “outside” the
isosurface`

f(x,y,z) > 0.2f(x,y,z) < 0.2

Copyright © NVIDIA Corporation 2004

The Marching Cubes Algorithm

To render an isosurface we can
either ray trace it or polygonalize
it

Marching cubes: well-known
method for polygonization of an
isosurface
Sample f(x, y, z) on a cubic lattice

Each vertex can be either
“inside” or “outside” the
isosurface`

Approximate the surface at each
cube cell by a set of polygons

The surface crosses these edges since
they span vertices that are on
different sides of the surface

Copyright © NVIDIA Corporation 2004

The Marching Cubes Algorithm

To render an isosurface we can
either ray trace it or polygonalize
it

Marching cubes: well-known
method for polygonization of an
isosurface
Sample f(x, y, z) on a cubic lattice

Each vertex can be either
“inside” or “outside” the
isosurface`

Approximate the surface at each
cube cell by a set of polygons

Copyright © NVIDIA Corporation 2004

The Marching Cubes Algorithm

For each cubic cell:

If any edge connects a vertex
that is in and one that is out, then
the isosurface intersects that edge

Estimate where isosurface
intersects edge by linear
interpolation

Emit variable number of
triangles depending on how many
edges the surface intersects

Copyright © NVIDIA Corporation 2004

Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surfaceCPU

Vertex
shader

Geometry
shader

Pixel
shader

Copyright © NVIDIA Corporation 2004

Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU

Copyright © NVIDIA Corporation 2004

Tessellation space

Object space
Works if you can calculate BB around your
metaballs

View space
Better, but sampling rate is distributed
inadequately

Copyright © NVIDIA Corporation 2004

Tessellation in post-projection space

View-space Post-projection space

Post-projective space
Probably the best option
We also get LOD for free!

Copyright © NVIDIA Corporation 2004

Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU

Copyright © NVIDIA Corporation 2004

Vertex shader

Calculate the following values for each vertex v:

The Scalar field value

A flag specifying whether the vertex is inside the field

The normal of the scalar field
The projected position of the vertex

∑
= −

=
N

i i

i

v
rvf

1
2

2

)(
p

0:1?1)(>= vfField

Copyright © NVIDIA Corporation 2004

Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU

Copyright © NVIDIA Corporation 2004

How do we get 8 vertices in the GS

We can read the value at a given index inside a
vertex buffer directly from the Geometry Shader:

vertexValue = VertexBuffer.Load(index);

Can issue 8 such statements to fetch all vertices for
a given cube

Copyright © NVIDIA Corporation 2004

How do we get 8 vertices in the GS

Stream Out

Vertex Shader

CPU
inputVertices

TransformedVertices

float4: Position
float3: Normal
float : Field

Pass 1

float3: Position

Pass 2

Geometry Shader

Vertex Shader

TransformedVertices

cubeIndices

CPU

Load()

float4: Position
float3: Normal
float : Field

uint VertexIndex[8]

GPUGPU

Copyright © NVIDIA Corporation 2004

Geometry Shader

[MaxVertexCount(16)]
void GS_TesselateCube(point CubePrimitive In[1],inout

TriangleStream<SurfaceVertex> Stream)
{

//1. Construct index and load field data into temporaries
uint index = 0;

for (uint i = 0; i<8; i++)
{

//construct bit field with a bit set for every vertex inside surface
index |= SampleDataBuffer.Load(In[0].VertexIndex[i]).Field > 1 ? 1 : 0;
index <<= 1;

}

Copyright © NVIDIA Corporation 2004

7

Edge table construction

// StripCount contains number of triangle strips to generate for particular index value
const uint2 StripCount[256] = {

{ 0, //index = 0
1, //index = 1
// …

};
// EdgeTable stores precomputed vertex indices for each cube edge which needs to be

interpolated
const uint2 EdgeTable[256][16] = {

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, //index = 0
{ 7, 3, 7, 5, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, //index = 1
// …

};

2

0

1

Index = 00000001,
i.e. vertex 7 is “inside”

4

3

6

5

Copyright © NVIDIA Corporation 2004

Geometry Shader

// 2. Generate triangle strips according to "index" value

// Get number of triangle strips for this index
uint NumStrips = StripsCount[index];

// Emit that many triangle strips...
uint j = 0;
for (uint i = 0; i<NumStrips; i++)
{

while (1)
{

uint2 edge = EdgeTable[index][j++];
if (edge.x == edge.y) { // edge.x == edge.y indicates a restart

Stream.RestartStrip();
break;

}

Stream.Append(CalcIntersection(
SampleDataBuffer.Load(In[0].VertexIndex[edge.x]),
SampleDataBuffer.Load(In[0].VertexIndex[edge.y])

));
}

}
}

Copyright © NVIDIA Corporation 2004

Metaballs

The Geometry Shader can be efficiently used for
isosurface extraction

Allows for class of totally new cool effects
Animating organic forms
Modeling fluid like behavior in games (particle systems
which model fluids)
Add noise to create turbulent fields

Marching cubes can also be used for visualization
of medical data

Copyright © NVIDIA Corporation 2004

Conclusions

DirectX10 offers new functionality that enables the
GPU to run algorithms that used to only run on the
CPU

Marching Cubes

Increased flexibility allows for easier and more
efficient implementation for other applications like
GPGPU

Cloth
Fins generation

Copyright © NVIDIA Corporation 2004

Acknowledgments

NVIDIA Developer Technology Team
Yury Uralsky
Cyril Zeller
Cem Cebenoyan
Randy Fernando
Hubert Nguyen

Copyright © NVIDIA Corporation 2004

Questions?

stariq@nvidia.com

Copyright © NVIDIA Corporation 2004

	DirectX10 Effects
	Motivation
	Agenda
	Direct3D 10 Pipeline
	Direct3D 10 New Features
	Coming up…
	Geometry Shader�
	Fur; generating fins on the GPU
	Shells and Fins Overview
	Shells and Fins Overview
	Shells and Fins Overview
	Shells: problems at silhouettes
	fins
	Silhouette detection on the GS
	 Silhouette extrusion
	 Silhouette extrusion
	Some more Geometry Shader applications
	Stream Out
	Cloth on the GPU
	Cloth as a Set of Particles
	Cloth Simulation
	Constraints
	Spring Constraints
	Distance Constraint
	Sequential update
	Sequential update
	Parallel update
	Parallel update
	Parallel update
	Parallel update
	Parallel update
	Cloth Simulation
	DirectX10 Implementation
	Apply Force: �Vertex Shader
	Satisfy distance constraints:�Geometry Shader
	Pseudo-Code: Initialization
	Pseudo-Code: Simulation Loop
	Pseudo-Code: Simulation Loop
	Pseudo-Code: Simulation Loop
	Pseudo-Code: Simulation Loop
	Apply forces
	Metaballs on the GPU
	What are Isosurfaces?
	Metaballs
	The Marching Cubes Algorithm
	The Marching Cubes Algorithm
	The Marching Cubes Algorithm
	The Marching Cubes Algorithm
	The Marching Cubes Algorithm
	Implementation - Pseudo-Code
	Implementation - Pseudo-Code
	Tessellation space
	Tessellation in post-projection space
	Implementation - Pseudo-Code
	Vertex shader
	Implementation - Pseudo-Code
	How do we get 8 vertices in the GS
	How do we get 8 vertices in the GS
	Geometry Shader
	Edge table construction
	Geometry Shader
	Metaballs
	Conclusions
	Acknowledgments
	Questions?

