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Motivation

Direct3D 10 is Microsoft’s next graphics API
Driving the feature set of next generation GPUs

New driver model
Improved performance

Many new features
New programmability, generality

Cleaned up API
Improved state handling. Almost no caps bits!
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Agenda

Short review of DX10 pipeline and features

Effect Case Studies
Fins for fur
Cloth
Metaballs

Conclusions
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Direct3D 10 Pipeline

Vertex Shader

Pixel Shader

Rasterizer

Input Assembler

Geometry Shader
Video Memory

(Buffer
Texture,

Constant Buffer)

Output Merger

Stream Output
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Direct3D 10 New Features 

Geometry shader
Stream out
SM 4.0

Common shader Instruction Set
Integer operations in shaders
Load from VB/IB 
Unlimited instruction count

Resource Views
read depth/stencil buffer
Render to vertex buffer

8 MRTs
Render Target arrays
Texture arrays
Input assembler generated identifiers; InstanceID, VertexID, 
PrimitiveID
Alpha to Coverage
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Coming up…

Overview of Geometry Shader
Effect: fur

Some HLSL code showing the use of the GS
Overview of Stream Out
Effect: Cloth

Some HLSL code showing the use of the SO
Effect: Rendering IsoSurfaces
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Geometry Shader

Triangle with adjacency

Line with adjacency

input

Point
Line 
Triangle

output
Point list
Line strip
Triangle strip

Geometry Shader

Vertex Shader

Raster

Pixel Shader

From CPU

Output Merger
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Fur; generating fins on the GPU
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Shells and Fins Overview
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Shells and Fins Overview
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Shells and Fins Overview
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Shells: problems at silhouettes

+
8 shells

fins
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fins
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Silhouette detection on the GS

0 4

1

2

3

5

if( dot(eyeVec,N1)  > 0 && dot(eyeVec,N2) < 0)

N1

N2
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//GS shader for the fins
[maxvertexcount(12)]
void GS( triangleadj VS_OUTPUT input[6], 
inout TriangleStream<GS_OUTPUT_FINS>TriStream)
{     

//compute the triangle’s normal
float3 N1 = normalize(cross( input[0].Position - input[2].Position,

input[4].Position -input[2].Position ));
float3 eyeVec = normalize( Eye – input[0].Position);

//if the central triangle is front facing, check the other triangles
if( dot(N1, eyeVec) > 0.0f )
{

makeFin(input[2],input[0],input[1], TriStream);
makeFin(input[4],input[2],input[3], TriStream);
makeFin(input[0],input[4],input[5], TriStream);     

}
}

input

Geometry Shader

0

1
2

3

4

5

triangleadj TriangleStream

output

N1

float3 eyeVec = normalize( Eye – input[0].Position);

float3 N1 = normalize(cross( input[0].Position - input[2].Position,
input[4].Position -input[2].Position ));

if( dot(N1, eyeVec) > 0.0f )
{

makeFin(input[2],input[0],input[1], TriStream);
makeFin(input[4],input[2],input[3], TriStream);
makeFin(input[0],input[4],input[5], TriStream);     

}
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for(int v=0; v<2; v++)
{

Out.Position = mul(v1.Position + v*float4(v1.Normal,0)*length, WorldViewProj );
Out.Normal = mul( v1.Normal, World );
Out.TextureMesh = v1.Texture;
Out.TextureFin = float2(0,1-v);
Out.Opacity = opacity;
//append new vertices to the stream to create the fin
TriStream.Append(Out);

}

Silhouette extrusion

void makeFin( VS_OUTPUT v1, VS_OUTPUT v2, VS_OUTPUT vAdj,inout TriangleStream <GS_OUTPUT_FINS> 
TriStream )
{  float3 N2 = normalize(cross( v1.Position - v2.Position, vAdj.Position - v2.Position ));

float3 eyeVec = normalize( Eye - v1.Position );

//if this is a silhouette edge, extrude it into 2 triangles
if( dot(eyeVec,N2) < 0 )
{

GS_OUTPUT_FINS Out;

v2

vadj

v1input output

N2

float3 N2 = normalize(cross( v1.Position - v2.Position, vAdj.Position - v2.Position ));
float3 eyeVec = normalize( Eye - v1.Position );
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for(int v=0; v<2; v++)
{

Out.Position = mul(v2.Position + v*float4(v2.Normal,0)*length, WorldViewProj );
Out.Normal = mul( v2.Normal, World );
Out.TextureMesh = v2.Texture;
Out.TextureFin = float2(1,1-v);
Out.Opacity = opacity;

TriStream.Append(Out);
}

Silhouette extrusion

v2

vadj

v1input output

TriStream.RestartStrip();
}}

N2
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Some more Geometry Shader applications

Silhouette detection and extrusion for:
Shadow volume generation
NPR

Access to topology for calculating things like 
curvature
Render to cube map in single pass

In conjunction with Render Target arrays
GPGPU

enables variable number of outputs from shader
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Stream Out

Allows storing output from 
geometry shader or vertex 
shader to buffer

Enables multi-pass operations 
on geometry, e.g.

Recursive subdivision
Store results of skinning to 
buffer, reuse for multiple lights

Stream Out

Geometry Shader

Vertex Shader

Raster

Pixel Shader

CPU

Output Merger

Video Memory

(Buffer
Texture,
Constant

Buffer)
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Cloth on the GPU
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Cloth as a Set of Particles

Each particle is subject to:
A force (gravity, wind, drag, etc.)
Various constraints:

To maintain overall shape (springs)
To prevent interpenetration with the environment (collision)

Cloth

Particles

Springs
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Cloth Simulation 

Apply force to all particles
For as many times as necessary:

Apply spring constraints
Apply collision constraints

Render mesh 
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Constraints

The constraints create a system of equations to be 
solved at each time step

Use explicit integration:
constraints are resolved by relaxation, that is by 
enforcing them one after the other for a given 
number of iterations
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Spring Constraints

Particles are linked by springs:

A spring is simulated as a distance constraint
between two particles

Shear springsStructural springs
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Distance Constraint

A distance constraint DC(P, Q) between two 
particles P and Q is enforced by moving them away 
or towards each other:

Distance 
at rest

P

P

Q

P Q

Q
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Sequential update

Iterate as 
much as 

necessary

1 2 3 4 …

n

How do we update the springs? We could update them one at a time …
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Sequential update

On the GPU we want to do as many updates in parallel as possible
But that’s too slow.

However, we cannot update all springs in parallel; for example, the green spring
cannot be updated at the same time as the red springs, since they affect the 
same particles
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Parallel update

The solution is to partition the springs into batches 
of independent sets, such that any given particle is 
only affected by one set in a batch
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Parallel update

Batch 1

Set 1 Set 2 Set 3

Set 4 Set 5 Set 6
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Parallel update

Batch 2
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Parallel update

Batch 3
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Parallel update

Batch 4
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Cloth Simulation 

Apply force to all particles
synchronize
For as many times as necessary:

For all 4 batches
Apply spring constraints
Synchronize

Apply collision constraints
Synchronize

Render mesh 



Copyright © NVIDIA Corporation 2004

DirectX10 Implementation

Particles stored in a vertex buffer
DirectX9:  particles would be stored in a texture

Computation in Geometry Shader and Vertex 
Shader

DirectX9: computation in pixel shader
Synchronization (between passes) through Stream 
Out

DirectX9: synchronization with writes to frame buffer 
and read from texture

Cloth cutting by adding triangles
DirectX9: removing triangles

Fewer passes in DirectX10: 4 vs. 8 in DirectX9
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Apply Force: 
Vertex Shader

Vertices

Vertex Shader

Stream Out

Each vertex gets a force applied to it
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Satisfy distance constraints:
Geometry Shader

Vertices

Geometry Shader

Stream Out

The GS processes a set of vertices at a time 
For each set we satisfy each of the spring constriants
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Pseudo-Code: Initialization

Create two vertex buffers to store the particles:
Vertex format is current position, old position, normal, etc.
One vertex buffer is used as input to the vertex shader
One vertex buffer is used as output to the geometry 
shader (Stream Output)
The two buffers are swapped after each rendering pass

Create as many index buffers as there are batches 
of independent springs (4)

Each index buffer feeds the geometry shader with the 
right 4-tuples of particles

Create an index buffer for rendering
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Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list
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Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list
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Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list
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Pseudo-Code: Simulation Loop

Set a vertex shader that applies force
Render to SO as a point list
Swap vertex buffers
For as many times as necessary:

For each batch of independent springs:
Set a geometry shader that applies distance constraints
Render to SO as an indexed triangle list with adjacency
Swap vertex buffers

Set a vertex shader that applies collision constraints
Render to SO as a point list
Swap vertex buffers

Render to color buffer as indexed triangle list
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Apply forces
pass ApplyForces

{
SetVertexShader(CompileShader(vs_4_0, VS_ApplyForces()));
SetGeometryShader(ConstructGSWithSO(CompileShader(vs_4_0, VS_ApplyForces()),

"State.x; Position.xyz"));
SetPixelShader(0);

}

void VS_ApplyForces(inout Particle particle, OldParticle oldParticle)
{

// Apply Forces
…
// Integrate
if (IsFree(particle))

particle.Position += speedCoeff * diffPosition + force * TimeStep * TimeStep;
}

if (IsFree(particle))
particle.Position += speedCoeff * diffPosition + force * TimeStep * TimeStep;
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Metaballs on the GPU
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What are Isosurfaces?

Consider a function
Defines a scalar field in 3D-
space

Isosurface S is a set of 
points which satisfy the 
implicit equation

),,( zyxf

constzyxf =),,(
f(x,y,z) = 0.7

f(x,y,z) = 0.2



Copyright © NVIDIA Corporation 2004

r2

r1

Metaballs

A simple and interesting case
Soft/blobby objects that blend into 
each other

Perfect for modeling fluids, 
explosions in games

Use implicit equation of the form

Gradient can be computed directly
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The Marching Cubes Algorithm

To render an isosurface we can 
either ray trace it or polygonalize 
it

Marching cubes: well-known 
method for polygonization of an 
isosurface
Sample f(x, y, z) on a cubic lattice
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The Marching Cubes Algorithm

To render an isosurface we can 
either ray trace it or polygonalize 
it

Marching cubes: well-known 
method for polygonization of an 
isosurface
Sample f(x, y, z) on a cubic lattice

Each vertex can be either 
“inside” or “outside” the 
isosurface`

f(x,y,z) > 0.2f(x,y,z) < 0.2



Copyright © NVIDIA Corporation 2004

The Marching Cubes Algorithm

To render an isosurface we can 
either ray trace it or polygonalize 
it

Marching cubes: well-known 
method for polygonization of an 
isosurface
Sample f(x, y, z) on a cubic lattice

Each vertex can be either 
“inside” or “outside” the 
isosurface`

Approximate the surface at each 
cube cell by a set of polygons 

The surface crosses these edges since 
they span vertices that are on 
different sides of the surface
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The Marching Cubes Algorithm

To render an isosurface we can 
either ray trace it or polygonalize 
it

Marching cubes: well-known 
method for polygonization of an 
isosurface
Sample f(x, y, z) on a cubic lattice

Each vertex can be either 
“inside” or “outside” the 
isosurface`

Approximate the surface at each 
cube cell by a set of polygons 
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The Marching Cubes Algorithm

For each cubic cell:

If any edge connects a vertex 
that is in and one that is out, then 
the isosurface intersects that edge

Estimate where isosurface
intersects edge by linear 
interpolation

Emit variable number of 
triangles depending on how many 
edges the surface intersects
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Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits 
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surfaceCPU

Vertex
shader

Geometry
shader

Pixel
shader
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Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits 
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU
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Tessellation space

Object space
Works if you can calculate BB around your 
metaballs

View space
Better, but sampling rate is distributed 
inadequately
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Tessellation in post-projection space

View-space Post-projection space

Post-projective space
Probably the best option
We also get LOD for free!
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Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits 
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU
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Vertex shader

Calculate the following values for each vertex v:

The Scalar field value

A flag specifying whether the vertex is inside the field

The normal of the scalar field
The projected position of the vertex

∑
= −

=
N

i i

i

v
rvf

1
2

2

)(
p

0:1?1)( >= vfField
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Implementation - Pseudo-Code

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds cubes to GS

GS processes each cube in turn and emits 
triangles

Calculate
f(x, y, z)

Extract
Isosurface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU
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How do we get 8 vertices in the GS

We can read the value at a given index inside a 
vertex buffer directly from the Geometry Shader:

vertexValue = VertexBuffer.Load(index);

Can issue 8 such statements to fetch all vertices for 
a given cube
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How do we get 8 vertices in the GS

Stream Out

Vertex Shader

CPU
inputVertices

TransformedVertices

float4: Position
float3: Normal
float  : Field

Pass 1

float3: Position

Pass 2

Geometry Shader

Vertex Shader

TransformedVertices

cubeIndices

CPU

Load()

float4: Position
float3: Normal
float  : Field

uint VertexIndex[8]

GPUGPU
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Geometry Shader

[MaxVertexCount(16)]
void GS_TesselateCube(point CubePrimitive In[1],inout

TriangleStream<SurfaceVertex> Stream)
{

//1. Construct index and load field data into temporaries
uint index = 0;

for (uint i = 0; i<8; i++)
{        

//construct bit field with a bit set for every vertex inside surface
index |= SampleDataBuffer.Load( In[0].VertexIndex[i] ).Field > 1 ? 1 : 0;    
index <<= 1;

}
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7

Edge table construction

// StripCount contains number of triangle strips to generate for particular index value
const uint2 StripCount[256] = { 

{ 0,                                                //index = 0
1,                                                //index = 1
// …

};
// EdgeTable stores precomputed vertex indices for each cube edge which needs to be

interpolated
const uint2 EdgeTable[256][16] = {

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, //index = 0
{ 7, 3, 7, 5, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, //index = 1
// …

};

2

0

1

Index = 00000001,
i.e. vertex 7 is “inside”

4

3

6

5
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Geometry Shader

// 2. Generate triangle strips according to "index" value

// Get number of triangle strips for this index
uint NumStrips = StripsCount[index];

// Emit that many triangle strips...
uint j = 0;
for (uint i = 0; i<NumStrips; i++)
{

while (1)
{

uint2 edge = EdgeTable[index][j++]; 
if (edge.x == edge.y) {    // edge.x == edge.y indicates a restart

Stream.RestartStrip();
break;

}

Stream.Append( CalcIntersection(
SampleDataBuffer.Load( In[0].VertexIndex[edge.x] ), 
SampleDataBuffer.Load( In[0].VertexIndex[edge.y] ) 

) );
}

}
}
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Metaballs

The Geometry Shader can be efficiently used for 
isosurface extraction

Allows for class of totally new cool effects
Animating organic forms
Modeling fluid like behavior in games (particle systems 
which model fluids)
Add noise to create turbulent fields

Marching cubes can also be used for visualization 
of medical data
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Conclusions

DirectX10 offers new functionality that enables the 
GPU to run algorithms that used to only run on the 
CPU 

Marching Cubes

Increased flexibility allows for easier and more 
efficient implementation for other applications like 
GPGPU

Cloth
Fins generation
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Questions?

stariq@nvidia.com
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