<A NVIDIA.

Rendering Faster and Better
with VRWorks in UE4

Cem Cebenoyan, GDC 2016

NVIDIA.

NVIDIA.

Talk Overview

VRWorks Features
Multi-Res Shading
VR SLI

UnrealEngine 4 Integration

SANVIDIA

NVIDIA.

How is VR rendering different?

SANVIDIA

To set the stage, first | want to mention a few ways that virtual reality rendering
differs from the more familiar kind of GPU rendering that real -time 3D apps and
games have been doing up to now.

NVIDIA.

How is VR rendering different?
High framerate, low latency

High FPS, low latency

Stereo Rendering

Lens Distortion

<SANVIDIA

First, virtual reality is extremely demanding with respect to rendering performance.

Both the Oculus Rift and HTC Vive headsets require 90 frames per second, which is

much higher than the 60 fps thatds ugmel |y
rendering.

We also need to hit this framerate while maintaining low latency between head
motion and display updates. Research indicates that the total motion -to-photons
latency should be at most 20 milliseconds to ensure that the experience is

comfortable for players. This isndt trivial

pipeline, where input has to be first processed by the CPU, then a new frame has to
be submitted to the GPU and rendered, then finally scanned out to the display.

Traditional real -time rendering pipelines have not been optimized to minimize
latency, so this goal requires us to change our mindset a little bit.

c

NVIDIA.

NVIDIA VRWorks
SDK for VR headset and game developers

> > > @y OO

MULTIRES VR SLI CONTEXT DIRECT FRONT BUFFER
SHADING PRIORITY MODE RENDERING

@ANVIDIA

As a GPU company, of course NVIDIA is going to do all we can to help VR game and

headset developers use our GPUs to create the best VR experiences. To that end,

we 0 v e fidnd ard continuing to build i VRWorks VRWorksis the name for a suite of
technologies wedre developbdbrmne fostahigebtheéi bhedc
framerate , low -latency, stereo, and distorted rendering.

| t has sever al di fferent component s, whi ch we
features, multi -res shading and VR SLlI, are targeted more at game and engine

developers. The last three are more low -level features, intended for VR headset

developers to use in their software stack.

NVIDIA.

SANVIDIA

NVIDIA.

Two eyes...two GPUs!

<ANVIDIA

Given that the two stereo views are independe
obvious that you can parallelize the rendering of them across two GPUs to geta
massive improvement in performance.

In other words, you render one eye on each GPU, and combine both images together

into a single frame to send out to the headset. This reduces the amount of work each

GPU is doing, and thus improves your frameratefi or alternatively, it allows you to use

hi gher graphics settings while staying above
without hurting latency at all.

NVIDIA.

“Normal” SLI
GPUs render alternate frames

Latency

SANVIDIA

BeforewedigintoVR SLILas a qui ck interlude, | e, me firs
non-VRSLIwo r k s . For year s, -frameSilyiewhitchatie GRUstradde nat e

off frames. In the case of two GPUs, one renders the even frames and the other the

odd frames. The GPU start times are staggered half a frame apart to try to maintain

regular frame delivery to the display.

This works well to increase framerate relativeto asingle -GPU sy s
really help with | atency. So thi

NVIDIA.

VR SLI

Each GPU renders one eye—lower latency

@ANVIDIA

A better way to use two GPUs for VR rendering is to split the work of drawing a single
frame across them#fi namely, by rendering each eye on one GPU. This has the nice
property that it improves both framerate and latency relative to a single -GPU system.

NVIDIA.

UINT SetGPUMask(

GPU affinity masking: full control CEnJUINT GPUMask

3

Left eye rendering

0

Shadow maps,
GPU physics,
ele

Right eye rendering

SANVIDIA

| 1l | touch on some of the Hmmatjiternables&PW rr es of 0L
affinity masking: the ability to select which GPUs a set of draw calls will go to. With

our API, you can do this with a simple API call that sets a bitmask of active GPUs.

Then all draw calls you issue will be sent to those GPUs, until you change the mask

again.

With this feature, i f an engine already suppc
easy to enable dual-GPU support. All you have to do is add a few lines of code to set

the mask to the first GPU before rendering the left eye, then set the mask to the

second GPU before rendering the right eye. For things like shadow maps, or GPU

physics simulations where the data will be used by both GPUs, you can set the mask

to include both GPUs, and the draw calls will be broadcast to them. It really is that

simple, and incredibly easy to integrate in an engine.

By the way, all of this extends to as many GPUs as you have in your machine, not just
two. So you can use affinity masking to explicitly control how work gets divided
across 4 or 8 GPUs, as well.

10

NVIDIA.

VR SLI

Broadcasting reduces CPU overhead

Render scene once

<ANVIDIA

GPU affinity masking is a great way to get started adding VR SLI support to your
engi ne. However, note that with affinit
rendering both eyes. After splitting th
top performance bottleneck can easily shift to the CPU.

y mas k
e appc

To alleviate this, VR SLI supports a second style of use, which we call broadcasting.
This allows you to render both eye views using a single set of draw calls, rather than
submitting entirely separate draw calls for each eye. Thus, it cuts the number of
draw calls per frame fi and their associated CPU overheadi roughly in half.

This works because the draw calls for the two eyes are almost completely the same

to begin with. Both eyes can see the same objects, are rendering the same geometry,

with the same shaders textures, and so on. So when you render them separately,

youdre doing a | ot of redundant work on the (

11

NVIDIA.

VR SLI

Per-GPU constant buffers, viewports, scissors

Multi-GPU

Engine AP

NVAPI_Status VSSetConstantBuffers(
[in] ID3D11DeviceContext *pContext,
[in] UINT GPUMask,
[in] UINT StartSlot,
[in] UINT NumBuffers,
)s

<ANVIDIA

The only difference between the eyes is their view position fjust a few numbers in a
constant buffer. So, VR SLI lets you send different constant buffers to each GPU, so
that each eye view is rendered from its correct position when the draw calls are
broadcast.

So, you can prepare one constant buffer that contains the left eye view matrix, and
another buffer with the right eye view matrix. Then, in our APl we have a
SetConstantBuffers call that takes both the left and right eye constant buffers at

once and sends them to the respective GPUs. Similarly, you can set up the GPUs with
different viewports and scissor rectangles.

Altogether, this allows you to render your scene only once, broadcasting those draw
calls to both GPUs, and using a handful of per -GPU state settings. This lets you
render both eyes with hardly any more CPU overhead then it would cost to render a
single view.

12

NVIDIA.

VR SLI

Cross-GPU data transfer via PCl Express

NvVAPI_Status CopySubresourceRegion(
i ID3D11DeviceContext *pContext,
ID3D11Resource *pDstResource,
UINT DstSubresource,
UINT DstGPUIndex,
UINT DstX,
UINT DstY,
UINT Dstz,
ID3D11Resource *pSrcResource,
UINT SrcSubresource,
UINT SrcGPUIndex,
] D3D11_BOX *pSrcBox,
[in, optional] UINT ExtendedFlags = @

<ANVIDIA

Of course, at times we need to be able to transfer data between GPUs. For instance,

after wedbve finished rendering our two eye Vi
single GPU to output to the display. So we have an API call that lets you copy a

texture or a buffer between two specified GPUs, or to/from system memory, using

the PCI Express bus.

One point worth noting here is PCI Express bus bandwidth. PCle2.0 x16 gives you 8

GB/ sec of bandwi dt h, which i snot a huge amour
eye view wil!/| require about a millisecond. TF
time at 90 Hz, so thatoés something to keep ir

To help work around that problem, our APl supports asynchronous copies. The copy
can be kicked off and done in the background while the GPU does some other
rendering work, and the GPU can later wait for the copy to finish using fences. So you
have the opportunity to hide the PClelatency behind some other work.

13

NVIDIA.

Multi-Resolution Shading

ANVIDIA

14

NVIDIA.

VR headset optics

Distortion and counter-distortion

SANVIDIA

First, the basic facts about how the optics in a VR headset work.

VR headsets have lenses to expand their field of view and enable your eyes to focus
on the screen. However, the lenses also introduce pincushion distortion in the image,
as seen here. Note how the straight grid lines on the background are bowed inward
when seen through the lens.

15

NVIDIA.

VR headset optics

Distortion and counter-distortion

Image Displayed User’s view

GC FeworkS i com <ANVIDIA

So we have to render an i mage thAhamrdl distortiahj st or t €
like what you see on the right fito cancel out the lens effects. When viewed through
the lens, the user perceives a geometrically correct image again.

Chromatic aberration, or the separation of red, green, and blue colors, is another
lens artifact that we have to counter in software to give the user a faithfully
rendered view.

16

NVIDIA.

The troubl e is that GPUsanooliaearfy tistontedviewdileel v r e n d e
thisfi their rasterization hardware is designed around the assumption of linear
perspective projections . Current VR software solves this problem by first rendering a

normal perspective projection (left), then resampling to the distorted view (right) as
a postprocess.

Y o u dotick that the original rendered image is much larger than the distorted view.
In fact, on the Oculus Rift and HTC Vive headsets, the recommended rendered image
size is close to double the pixel count of the final distorted image.

17

