

NVIDIA Tegra K1 Embedded Platform Design Guide

Description

This document contains recommendations and guidelines for engineers to follow to create a product that is optimized to achieve the best performance from the common interfaces supported by NVIDIA® Tegra® K1 series processors.

February 2015

DG-07508-001 Version 03

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND ON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo and Tegra are trademarks or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

 $\textbf{Copyright} \ @ \ 2014, \ 2015 \ \textbf{NVIDIA} \ \textbf{Corporation}. \ \textbf{All rights reserved}.$

Revision History

Version	Date	Description
01	NOV 24, 2014	Initial Release
02	DEC 3, 2014	Unused Interface Pins Added missing Special Function section in checklistPower Power - Added missing VPP_FUSE section - Added missing PLL Power Design Guide (in appendix) Video Input - Added missing DTV section UART Added section
03	FEB 06, 2015	Power - Added note under Power Allocation table, indicating correct PMU OPT version - Updated Power tree to show all three power stages for VDD_CPU DRAM - Removed text in various places in DRAM section related to DDR symbol being different from Data Sheet. - Updated DDR3L Pin Multiplexing tables to remove column for different Jetson TK1 ball names & added related note identifying first reference schematic with matching Tegra DDR symbols. - Removed LPDDR3 support - Reduced max DRAM size supported to 4GB USB/PEX/SATA - Updated USB Connections figure/notes to show more ID connection details. - Added note describing differences in USBO_VBUS connections between diagram & reference schematics. - Removed text related to locations of series capacitors for PCle & SATA from all locations except routing guidelines. & updated guidelines with location recommendations for direct connect cases HDMI - Relaxed max trace length for highest freqency Strapping - Removed special requirements for GPIO_PIO - Added note describing limitations for using strapping pins for other purposes after boot. Unused IF Pins Updated to add more detail for PEX_CTL signals & added missing SATA/DCA functions.

Table of Contents

1.0 Introduction	5
1.1 Abbreviations and Definitions	5
1.2 Overview	6
1.3 Tegra K1 Block Diagram	6
2.0 Power	7
2.1 Power Tree	7
2.2 CPU, GPU, CORE & DDR Supply Considerations	10
2.2.1 Power Impedance Specifications	10
2.2.2 Power Sequencing	15
2.3 Power Decoupling Guidelines	15
2.4 Decoupling Capacitor Placement	15
2.5 Remote Power Sense Guidelines	17
2.6 VPP FUSE Supply	
2.7 Thermal Throttling (SOC_THERM)	
2.8 5V Input Considerations	
2.9 Power / Voltage Monitors	
2.9.1 Power Monitor	
2.9.2 Voltage Monitor	
2.10 Deep Sleep Wake Considerations	
2.11 General Power Routing Guideline	20
3.0 Interface Routing Guidelines	21
3.1 Overview	21
3.2 Clocks	23
3.2.1 Oscillator & PLL Power Routing	24
3.2.2 Additional PLL Power Noise Coupling Reduction Guidelines	24
3.2.3 32.768kHz Clock	25
3.2.4 Oscillator Clock	25
3.3 DRAM	27
3.3.1 DDR3L	27
3.3.2 Component Vias	41
3.4 USB/PCIe/SATA Interfaces	41
3.4.1 USB	42
3.4.2 PCIe	48
3.4.3 SATA	51
3.4.4 HSIC	54
3.5 Display	56
3.5.1 eDP/LVDS	56
3.5.2 MIPI DSI	62
3.5.3 HDMI	65
3.6 Video Input Interfaces	69
3.6.1 MIPI CSI (Camera)	69
3.6.2 Digital TV (DTV)	73

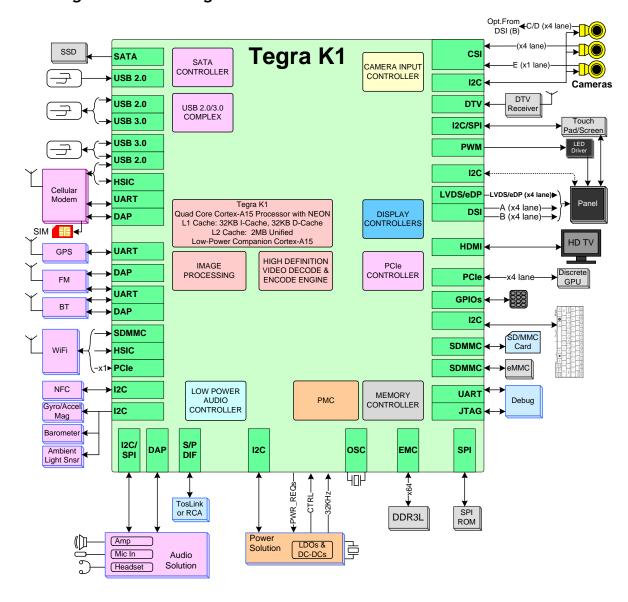
3.7 SDMMC	74
3.7.1 eMMC	74
3.7.2 SD Card Connections	76
3.8 Audio	78
3.9 I2C	80
3.10 UART	82
3.11 SPI	83
3.12 Thermal Sensor	84
3.13 JTAG	85
3.14 Strapping Pins	86
4.0 Pads Controls	88
5.0 Unused Interface Terminations	89
5.1 Unused Muxed Standard CMOS Pad Interfaces	89
5.2 Unused Special Function Interfaces	89
6.0 PCB Pad Layout Recommendations	90
6.1 PCB Stack-up	91
6.2 Breakout Examples	92
7.0 Tegra PLL Power Design Guidelines	95
7.1 PLL Power Routing Design Guide	95
7.1.1 PLLM PLL Power Routing Coupling Minimization Routing	95
7.1.2 PLLA/P/C2/C3 PLL Power Routing Coupling Minimization Routing	96
7.2 Other Design Considerations	98
7.3 PLL Design Guide Specific Checkout List	99
8.0 Design Guideline Glossary	100
9.0 Design Checklists	103

1.0 Introduction

1.1 Abbreviations and Definitions

The following table lists abbreviations that may be used throughout this document and their definitions.

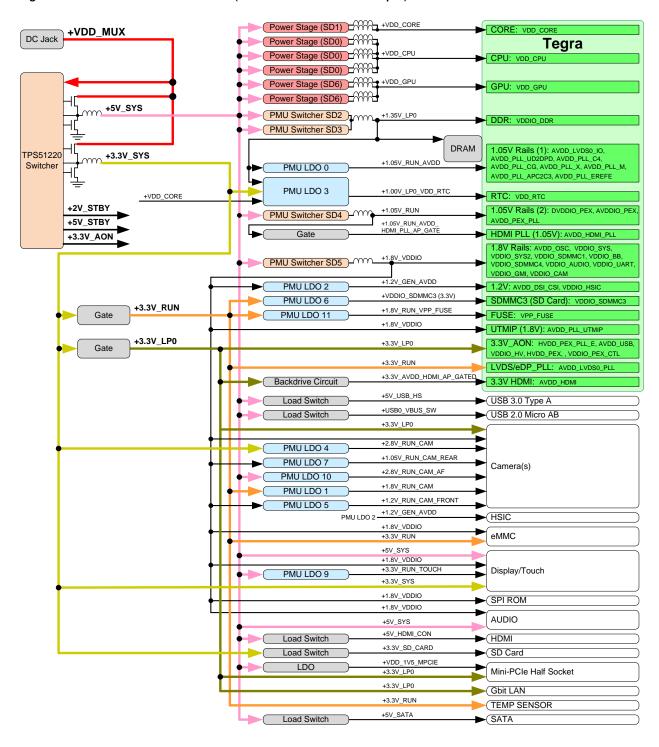
Table 1. Abbreviations and Definitions


Abbreviation	Definition
ВТ	Bluetooth
CEC	Consumer Electronic Control
DDR3L	Double Data Rate DRAM, Third-generation
еммс	Embedded MMC
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HDMI	High Definition Multimedia Interface
HSIC	High Speed Inter Chip Interface
I2C	Inter IC
12S	Inter IC Sound Interface
KBC	Keyboard Controller
LCD	Liquid Crystal Display
LDO	Low Dropout (voltage regulator)
LVDS	Low Voltage Differential Signaling Interface
MMC	Multi-Media Card / High Speed MMC
PCle	Peripheral Component Interconnect Express interface
PCM	Pulse Code Modulation
PHY	Physical Interface (i.e. USB PHY)
PMC	Power Management Controller
PMU	Power Management Unit
RF	Radio Frequency
RTC	Real Time Clock
SATA	Serial "AT" Attachment interface
SDIO	Secure Digital I/O Interface
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver-Transmitter
ULPI	UTMI+ Low Pin-count Interface
USB	Universal Serial Bus
WLAN	Wireless Local Area Network

1.2 Overview

The Jetson platform is based on the NVIDIA® Tegra® K1 application processor. Tegra K1 processors integrate a power optimized version of the same Kepler GPU architecture that powers the highest performing graphics cards and systems in the world. By optimizing this industry acclaimed graphics architecture, Tegra K1 processors are first to enable features like OpenGL® 4.4, DirectX® 11.1 and CUDA/GPGPU for extremely low power use cases. This high performance applications processor, coupled with the unique Tegra 4-PLUS-1™ architecture, DirectTouch™, and PRISM2™ technologies is the foundation that enables visual computing in low power devices.

1.3 Tegra K1 Block Diagram



2.0 Power

2.1 Power Tree

Figure 1. TK1 Embedded Power Tree (Jetson TK1 Platform Example)

The table below shows the allocation of supplies used in the Jetson TK1 platform design & available for use in Embedded designs.

Table 2 Power Supply Allocation

Power Rails	Usage	(V)	Power Supply or Gate	Source	Enable	Time (ms)	Note
+VDD_MUX	Main power - Supplies PMU & various external supplies	12	na	Power Jack	na		
+5V_SYS	Main 5V supply.	5.0	TPS51220 Switcher	+VDD_MUX	PMU EN5V	0	
+3.3V_SYS	Main 3.3V supply	3.3	TPS51220 Switcher	+VDD_MUX	PMU GPIO2	0	
+3.3V_LP0	Gated 3.3V supply. On in D.Sleep.	3.3	SLG5NV-1430V Gate	+3.3V_SYS	REGEN1	7	1
+3.3V_RUN	Gated 3.3V supply. Off in D.Sleep.	3.3	SLG5NV-1430V Gate	+3.3V_SYS	REGEN3	10	2
+VDD_CORE	Tegra VDD_CORE rail	Var.	AS3728 PWR Stage (SD1, x1)	+5V_SYS	PMU GPIO	2	
+VDD_CPU	Tegra main CPU complex	Var.	AS3728 PWR Stage (SD0, x2)	+5V_SYS	PMU GPIO	Off	
+VDD_GPU	Tegra GPU	Var.	AS3728 PWR Stage (SD6, x2)	+5V_SYS	PMU GPIO	Off	
+1.35V_LP0	DDR3L rails (Tegra & DDR)	1.35	PMU Switcher SD2/3	+5V_SYS	Pwr-on Seq	8	3
+1.05_RUN	HDMI & PEX/USB 1.05 rails	1.05	PMU Switcher SD4	+5V_SYS	I2C/PMU	Off	4, 7
+1.8V_VDDIO	Main 1.8V supply.	1.8	PMU Switcher SD5	+5V_SYS	Pwr-on Seq	7	5
+1.05_RUN_AVDD	Tegra 1.05V PLLs & LVDS I/O rails.	1.05	PMU LDO 0	+1.35V_LP0	Pwr-on Seq	9	6
+1.8V_RUN_CAM	Camera 1.8V rail	1.8	PMU LDO 1	+3.3V_RUN	I2C/PMU	Off	
+1.2V_GEN_AVDD	Tegra AVDD_DSI_CSI, VDDIO_HSIC	1.2	PMU LDO 2	+1.8V_VDDIO	I2C/PMU	Off	7
+1.05V_LP0_VDD_RT C	Tegra VDD_RTC	Var.	PMU LDO 3	+1.35V_LP0, +VDD_CORE or +3.3V_SYS	Pwr-on Seq	1	
+2.8V_RUN_CAM	High voltage Camera rail(s)	2.8	PMU LDO 4	+3.3V_SYS	I2C/PMU	Off	
+1.2V_RUN_CAM_FRO	Front Camera 1.2V rail	1.2	PMU LDO 5	+1.8V_VDDIO	I2C/PMU	Off	
+VDDIO_SDMMC3	Tegra SD Card rail	1.8/3. 3	PMU LDO 6	+3.3V_RUN	I2C/PMU	Off	
+1.05V_RUN_CAM_RE AR	Rear camera 1.05V supply	1.05	PMU LDO 7	+1.8V_VDDIO	I2C/PMU	Off	
+3.3V_RUN_TOUCH	High voltage touch rail	3.3	PMU LDO 9	+5V_SYS	I2C/PMU	Off	
+2.8V_RUN_CAM_AF	Camera autofocus rail	2.8	PMU LDO 10	+5V_SYS	I2C/PMU	Off	
+1.8V_RUN_VPP_FUS E	Tegra VPP_FUSE rail	1.8	PMU LDO 11	+3.3V_RUN	I2C/PMU	Off	8
+3.3V_AVDD_HDMI_A P_GATED	Tegra 3.3V HDMI rail	3.3	Dual FET backdrive prevention	+3.3V_RUN	+1.05_RU N	10	

Power Rails	Usage	(V)	Power Supply or Gate	Source	Enable	Time (ms)	Note
+1.05V_RUN_AVDD_ HDMI_PLL_AP_GATE	Tegra AVDD_HDMI_PLL	1.05 or 1.2	Dual FETs as load switch	+1.05V_RUN (1.05V) +1.2V_GEN_AVDD (1.2V)	Tegra GPIO	OFF	7
+VDD_1V5_MPCIE	1.5V Mini-PCIe supply	1.5	APL5910 LDO	+5V_SYS	+3.3V_LP 0	7	
+5V_USB_HS	VBUS: USB 3.0 Type A #1	5.0	TPS2065 Load SW	+5V_SYS	Tegra GPIO	Off	
+USB0_VBUS_SW	VBUS: USB 2.0 Micro AB	5.0	TPS2065 Load SW	+5V_SYS	Tegra GPIO	Off	
+5V_HDMI_CON	5V to HDMI conn.	5.0	TPS2553DRV Load SW	+5V_SYS	Tegra GPIO	Off	
+3.3V_SD_CARD	SD Card socket rail	3.3	TPS2553DRV Load SW	+3.3V_SYS	Tegra GPIO	Off	
+5V_SATA	SATA connector rail	5.0	SLG5NV-1430V Gate	+5V_SYS	Tegra GPIO	Off	

Note: 1. Includes AVDD_USB, VDDIO_HV, HVDD_PEX, HVDD_PEX_PLL_E, VDDIO_PEX_CTL

- 2. Includes AVDD_LVDS0_PLL.
- 3. AMS 3722 PMU OTP version 09 required
- 4. Includes AVDDIO_PEX, AVDD_PEX_PLL, DVDDIO_PEX (source for FETs to AVDD_HDMI_PLL)
- Includes AVDD_OSC, AVDD_PLL_UTMIP, VDDIO_SYS, VDDIO_SYS2, VDDIO_BB, VDDIO_SDMMC1, VDDIO_SDMMC4, VDDIO_AUDIO, VDDIO_UART, VDDIO_CAM & VDDIO_GMI
- 6. Includes AVDD_PLL_UD2DPD, AVDD_PLL_C4, AVDD_PLL_CG, AVDD_PLL_X, AVDD_PLL_APC2C3, AVDD_LVDSO_IO, AVDD_PLL_X, AVDD_PLL_EREFE
- 7. The supply for AYDD_HDMI_PLL must have a discharge circuit. The PMU Switchers have this feature, but since an external load switch is used, ensure it has a discharge circuit.
- 8. Initial designs should include series 0Ω resistor between VPP_FUSE supply & Tegra to allow current measurements during Fuse Audit.

2.2 CPU, GPU, CORE & DDR Supply Considerations

The total power solution for the CPU, GPU, CORE & DDR supplies must meet the requirements listed in the Tegra K1 Data Sheet including:

- Voltage steps required by DVFS software
- Maximum EDP current
- Minimum voltage ramp rates

In addition, in order to meet the full EDP max current, care must be taken in selecting the critical components that make up each supply circuit. These components, including the PMU switcher or external regulators must meet the current requirements and the +/- 7% maximum tolerance allowed at the Tegra power balls including supply DC tolerance, ripple & voltage transients (variations in voltage caused by changes in load).

Impedance simulations should use all the output capacitors (large capacitor[s] just beyond DC-DC inductor), as source, and all the power pins as sinks.

2.2.1 Power Impedance Specifications

Figure 2. Target Impedance Definitions for PCBs

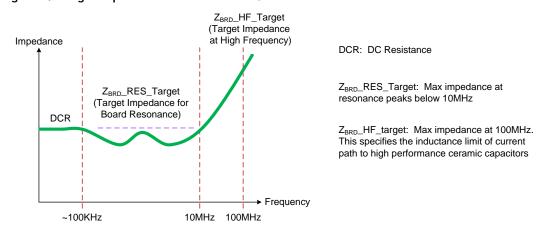


Table 3 CPU, GPU, CORE & DDR Power Impedance Specification

	VDD_CORE	VDD_CPU	VDD_GPU	VDD_DDR1	Comments
DCR (mΩ)	13.3	13.5	11.2	11.0	
ZBRD_RES_Target (mΩ)	12.5	7.2	7.7	11.0	Resonance Peak Impedance <10MHz
Z_{BRD} _HF_Target (m Ω)	82.5	105.2	108.6	120.0	@ 100MHz

 $\textbf{Note:} \quad \textbf{VDD_DDR includes Tegra VDDIO_DDR \& DRAM supplies for full 64-bit memory interface.} \\$

The components shown in the tables on the following pages were selected to meet the above voltage tolerance requirements for each supply. In addition to actual part numbers, critical parameters & values for the components are listed. These should be taken into consideration if different components are used. It is important to work closely with the power supply vendor to ensure that any components selected meet the voltage/current requirements of the supply and Tegra. Impedance simulations should use all the output capacitors (large capacitor[s] just beyond DC-DC inductor), as source, and all the power pins as sinks.

Table 4 Critical VDD_CPU Switcher Components Recommendations (Three Power Stages)

Components	MFG	MFG Part #	Qty	Parameter	Symbol	Conditions	Value	Units
PMIC (Ctrlr)	AMS	AS3722	1	Switching Frequency	f		1.35	MHz
2 phase per Pwr Stage	AMS	AS3728	3	Max Current	I		2x10	A
Inductor	TDK	SPM4015-R68M	6	Inductance	L		0.68	uН
				DC Resistance	DCR		32.7	mΩ
				Size	LxWxH		4.4x4.1x1. 5	mm
				RMS Current	Irms	40C rise	4.7	Α
				Saturation Current	Isat	30% drop	8	Α
Output Capacitor	Taiyo Yuden	JMK212BJ476MG -T	4 per Power Stage)	Data Sheet Capacitance	С		47	uF
				Size	LxW		0805	mm
				Dielectric			X5R	Code
				Rated Voltage	٧		6.3	٧
Input Capacitor	Taiyo Yuden	TMK316BJ106KD -TD	4 per Power Stage)	Data Sheet Capacitance	С		10	uF
				Size	LxW		3.5	mm
				Dielectric			X5R	Code
				Rated Voltage	٧		25	٧

Table 5 Critical VDD_GPU Switcher Components Recommendations (Two Power Stages)

Components	MFG	MFG Part #	Qty	Parameter	Symbol	Conditions	Value	Units
PMIC (Ctrlr)	AMS	AS3722	1	Switching Frequency	f		1.35	MHz
2 phase per Pwr Stage	AMS	AS3728	2	Max Current	I		10	А
Inductor	TDK	SPM4015-R68M	4	Inductance	L		0.68	uН
				DC Resistance	DCR		32.7	mΩ
				Size	LxWxH		4.4x4.1x1.5	mm
				RMS Current	Irms	40C rise	4.7	Α
				Saturation Current	Isat	30% drop	8	Α
Output Capacitor	Taiyo Yuden	JMK212BJ476MG-T	3 per Power Stage	Data Sheet Capacitance	С		47	uF
				Size	LxW		0805	mm
				Dielectric			X5R	Code
				Rated Voltage	٧		6.3	٧
Input Capacitor	Taiyo Yuden	TMK316BJ106KD- TD	4 per Power Stage	Data Sheet Capacitance	С		10	uF
				Size	LxW		1206	mm
				Dielectric			X5R	Code
				Rated Voltage	٧		25	٧

Table 6 Critical VDD_CORE Switcher Components Recommendations (One Power Stage)

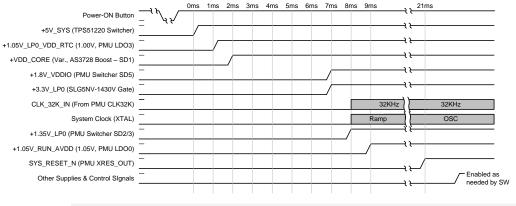
Components	MFG	MFG Part #	Qty	Parameter	Symbol	Conditions	Value	Units
PMIC (Ctrlr)	AMS	AS3722	1	Switching Frequency	f		1.35	MHz
2 phase per Pwr Stage	AMS	AS3728	1	Max Current	I		10	Α
Inductor	TDK	SPM4015-R68M	2	Inductance	L		0.68	uН
				DC Resistance	DCR		32.7	mΩ
				Size	LxWxH		4.4x4.1x1.5	mm
				RMS Current	Irms	40C rise	4.7	Α
				Saturation Current	Isat	30% drop	8	Α
Output Capacitor	Taiyo Yuden	JMK212BJ476MG-T	3	Data Sheet Capacitance	С		47	uF
				Size	LxW		0805	mm
				Dielectric			X5R	Code
				Rated Voltage	٧		6.3	٧
Input Capacitor	Taiyo Yuden	TMK316BJ106KD- TD	4	Data Sheet Capacitance	С		10	uF
				Size	LxW		1206	mm
				Dielectric			X5R	Code
				Rated Voltage	٧		25	٧

Table 7. Basic Tegra Power Control Connections

Ball Name	Туре	Termination (typical)	Description
CLK_32K_IN	I		32.768kHz Clock: input for 32kHz clock used by RTC & PMC blocks
SYS_RESET_N	ı		System Reset: Reset input for Tegra
PWR_I2C_SCL/SD A	O/B	1KΩ pull-up resistor to VDDIO_SYS.	Power I2C: Connect to PMU.
CORE_PWR_REQ	0		Core Power Request: Connect to CORE_PWRREQ on PMU
CPU_PWR_REQ	0		CPU Power Request: Connect to CPU_PWRREQ on PMU
PWR_INT	I		Power Interrupt: Connect to XINT pin on PMU

Table 8. Recommended States for Tegra Power Rails (Typical grouping shown)

Power Rail	Voltage (V)	Early Power-on	For Boot	Deep Sleep	Note
VDD_CORE	Variable	ON	ON	OFF	
VDD_CPU & VDD_GPU	Variable	OFF	OFF	OFF	
VDD_RTC	Variable	ON	ON	ON	
AVDD_OSC/PLL_UTMIP, VDDIO_SYS/SYS2/AUDIO/UART/SDMMC1/SDMMC4, VDDIO_CAM/BB/GMI	1.8	ON	ON	ON	1, 2
VDDIO_DDR	1.35	OFF	ON	ON	3
AVDD_PLL_x, VDDIO_DDR_HS	1.05	ON	ON	OFF	
AVDD_HDMI_PLL, DVDDIO_PEX, AVDDIO_PEX, AVDD_PEX_PLL, VDDIO_SATA, AVDD_SATA_PLL	1.05	OFF	OFF	OFF	4, 5
AVDD_CSI_DSI, VDDIO_HSIC	1.2	OFF	OFF	On	6
AVDD_HDMI	3.3	OFF	OFF	OFF	7
AVDD_USB, HVDD_PEX, HVDD_PEX_PLL_E, VDDIO_HV, VDDIO_PEX_CTL	3.3	See Note	See Note	See Note	4, 5
VDDIO_SDMMC3	1.8/2.8- 3.3	OFF	OFF	OFF	
VPP_FUSE	1.8	OFF	OFF	OFF	3, 8


Note:

- 1. Rail must be on in Deep Sleep if any of the Wake capable pins on these blocks are used for wake
- VDDIO_AUDIO/UART/SDMMC1/SDMMC4/BB are typically combined with other 1.8V rails, such as AVDD_OSC & VDDIO_SYS/SYS2, so would be ON in all three modes shown. If they come from a separate supply, they are not required to be on unless any pins are used for wake or pulled/driven high in Deep Sleep mode.
- 3. Do not power until SYS_RESET_N is asserted & VDD_RTC / VDD_CORE have reached their nominal level. Violating this constraint may permanently damage Tegra.
- 4. AVDD_USB Required for "Boot" for Force Recovery Mode.
- 5. If USB 2.0 Wake (Using USB mechanisms) is required, AVDD_USB must be powered. If USB 3.0 Wake on USB3_TXx/RXx (Using USB mechanisms) is required for connected USB 3.0 devices, HVDD_PEX must be powered in Deep Sleep. AVDDIO_PEX & AVDD_PEX_PLL do not need to be powered & are recommended to be off in Deep Sleep
- VDDIO_HSIC must be on in Deep Sleep if used for Modem or possibly WiFi & connection must be maintained
- AVDD_HDMI must be off in Deep Sleep to pass Voff compliance. Do not combine with 3.3V rails that need to be on.
- 8. **VPP_FUSE** must be off in Deep Sleep or damage can occur. This rail should be off at all times unless actively being used to burn fuses.

2.2.2 Power Sequencing

Figure 3. Power-up Sequence

Note:

- +1.8V_VDDIO Includes: AVDD_OSC/PLL_UTMIP/LVDSO_PLL & VDDIO_SYS/SYS2/BB/SDMMC1/SDMMC4/AUDIO/UART/GMI
- 1.05V_RUN_AVDD Includes:
- AVDD_PLL_UD2DPD/PLL_C4/PLL_CG/PLL_X/PLL_APC2C3/LVDS0_IO/PLL_X/PLL_EREFE.
- Critical relationships:
 - Tegra VDD_RTC (+1.05V_LP0_VDD_RTC) & VDD_CORE (+VDD_CORE) must be valid before other Tegra rails
 - Tegra VDDIO_SYS/SYS2 (+1.8V_VDDIO) must be valid before other Tegra I/O rails.
 - All rails required for boot, 32KHz clock & OSC (System Clock) must be valid before SYS_RESET_N goes high.
 - See Tegra K1 Series Data Sheet for more details on power sequencing.

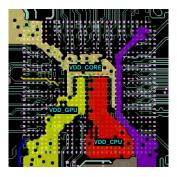
2.3 Power Decoupling Guidelines

See Checklist table at end of document for Decoupling requirements.

2.4 Decoupling Capacitor Placement

For VDD_CPU/GPU/CORE, VDDIO_DDR & DRAM power rails, use areas on multiple layers to reduce the routing resistance from supply to power balls. See the figures in this section for examples.

General Power Routing Guidelines


- Route power using thick areas, duplicated on multiple layers where possible.
- Minimize distance from supply to destination.
- Connect overlapping areas on different layers with multiple vias to reduce resistance/impedance.

CPU, GPU, CORE & DRAM Routing & Decoupling Placement

Tegra decoupling capacitors should be placed on the bottom, just below the power ball arrays. For DRAM decoupling, they can be below the power balls, or next to the power balls on the same side of the PCB. Use 35-40 mil width traces from the balls to the decoupling capacitors. Make sure that the 35-40 mils shape has a GND references on the adjacent layer.

Figure 4. CPU, CORE, GPU & DRAM Inner Layer Main Power Routing

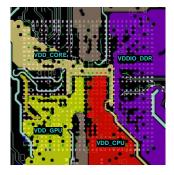
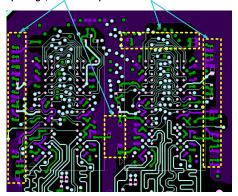


Figure 5. CPU, GPU, CORE & DRAM Decoupling Capacitor Placement

VDD_CORE supply decoupling capacitors – just below the Tegra power balls.


VDD_CPU supply decoupling capacitors – just below the Tegra power balls.

VDD_GPU supply decoupling capacitors – just below the Tegra power balls.

Note: Decoupling capacitors located on the bottom of the PCB, just below the power balls they are associated with.

Figure 6. DRAM Decoupling Capacitor Placement

DDR Power decoupling capacitors – placed next to package, near DRAM power balls.

2.5 Remote Power Sense Guidelines

Tegra processors support remote power sense functionality for the VDD_CPU, VDD_CORE & VDD_GPU rails. For each of the rails there is a positive (SENSE+) & negative (SENSE-) line.

- VDD_CPU_SENSE & GND_CPU_SENSE
- VDD_CORE_SENSE & GND_CORE_SENSE
- VDD_GPU_SENSE & GND_GPU_SENSE

The SENSE+ balls are routed on the Tegra package/die to power rail locations near each load & to provide feedback to the PMU/Regulators so they can adjust to any voltage variances. The SENSE- balls are routed on the Tegra package/die to GND locations near each load.

General Guidelines:

- Keep Sense lines away from noisy components (such as power inductors) and noisy signal traces
- Do not route Sense lines directly under or over noisy power rails.
- Route Sense lines with GND reference plane. If possible, route GND traces on either side of the Sense pairs

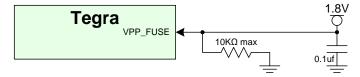
Table 9. General Power Sense Routing Guidelines

Parameter	Requirement	Note
Topology	Point to Point	
Number of loads	1 load	
Reference plane	GND where possible	
Trace Routing	Route as pseudo differential pair with min 4/4/4 trace widths/spacing	
Max Trace Delay	As short as possible	
Trace Spacing (to other nets)	3x dielectric	

Note: Strongly recommend review of sense line routing & other critical items related to VDD_CPU/GPU/CORE supplies by PMU/Regulator vendor

2.6 VPP FUSE Supply

Designs must provide a way to supply a 1.8V power source to the VPP_FUSE pin on Tegra to allow fuses to be burned (unless fuses are only to be burned before assembly). This supply is only required when fuses are burned and should be powered off during normal operation. VPP_FUSE must be powered OFF when Tegra is in Deep Sleep mode.


The supply for VPP_FUSE can be provided using one of several options:

- Test point for external supply (does not support Over-the-Air updates)
- Output of on-board LDO or Switched 1.8V supply controlled by a Tegra GPIO
- Output of PMU, controlled by PWR_I2C from Tegra

The power source must provide a nominal voltage of 1.8V and be able to supply a minimum of 120mA. When not powered, either a pull-down resistor ($<= 10K\Omega$) is required at **VPP_FUSE**, or the supply must provide an equivalent pull-down. A 0.1uF bypass capacitor is also recommended on this line.

Figure 7 EFUSE Connection Example using Switched 1.8V Rail

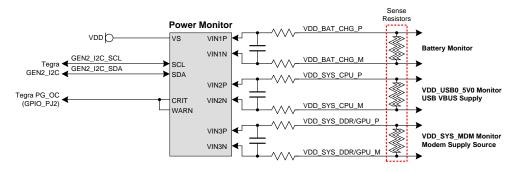
2.7 Thermal Throttling (SOC_THERM)

Tegra has external over-current (OC) detection mechanisms to monitor devices outside Tegra, (such as PMIC, battery, and on-board power sensors) and provides OC alarm signals to the Tegra processor. These are routed to SOC_THERM to throttle the system in these events and are available on the following pins.

Table 10 SOC_Therm Pin Usage

SOC_THERM Pin	Typical Usage
KB_ROW15	Battery Voltage (VDD_SYS) Monitor GPU Power/Thermal Events
GPIO_PK0	Modem Power Report
GPIO_PJ2	Power Monitor Output
CLK_32K_OUT	CPU Power/Thermal Events (may be covered by Power Monitor instead, or in addition to this SOC_THERM)

2.8 5V Input Considerations

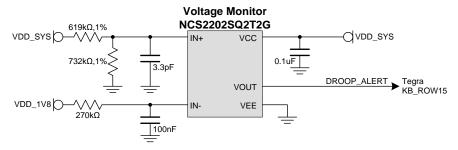

For designs that choose to use 5V input instead of 12V a power & voltage monitor are highly recommended to monitor and alert the system software of potential issues that could cause the supply to drop below acceptable levels.

2.9 Power / Voltage Monitors

2.9.1 Power Monitor

A Power Monitor, such as shown below, is highly recommended where Tegra is used in a 5V design.

Figure 8. Typical Power Monitor Connections


Note: In order to support short and long-term average power limiting thru the Power Monitor, the CRIT & WARN pins should be tied together and routed to the SOC_THERM input, GPIO_PJ2

2.9.2 Voltage Monitor

For 5V input design, a voltage monitor should be connected to the VSYS rail that supplies the system PMIC and other components requiring the VSYS level input. This device will generate an alert quickly, if the rail "droops" below an acceptable level. The voltage monitor circuit is implemented with a fast voltage comparator supplied by VDD_SYS (Battery/Charger level) with a 1.8V (VDD_1V8) reference common with the Tegra IO domain that receives the output signal. The particular part selected is an OnSemi NCS2202SQST2G. This device has an open drain active low output which is pulled low when the VDD_SYS voltage drops below the selected threshold. The open drain output is pulled up by an internal pull-up resistor on the Tegra KB_ROW15 pin.

Figure 9. Voltage Monitor Connections

Threshold Selection

The exact threshold target for the circuit is dependent on the specific system characteristics. There are a number of contributors to the ESR (resistance) of the system from the battery to the input of the system PMU. A higher system ESR will result in a higher IR drop for a specific current level for a specific total amount of power being consumed from the battery.

The voltage threshold should be set based on the minimum system voltage plus a voltage delta. This voltage delta represents the maximum droop below the voltage comparator threshold that is expected for high transient workloads, possibly concurrent with modem transmit cycles.

2.10 Deep Sleep Wake Considerations

Certain events are required to generate a wake condition. This can vary depending on Operation System. Check to see which of the signals in the table below are required as wake events. The wake pins used in the Jetson TK1 reference design are indicated.

Table 11. Signal Wake Events

Potential Wake Event	Tegra Ball Assigned
Touch Screen Interrupt	GPIO_W3_AUD
Modem to AP Wake	GPIO_PV0
Battery Charger Interrupt	GPIO_PJ0
System Overcurrent Alert	GPIO_PJ2
Skin Temperature Alert	GPIO_PI6
PCIe Wake	PEX_WAKE_N
Power Button	KB_COL0
GPU Overcurrent Interrupt	KB_ROW15

Potential Wake Event	Tegra Ball Assigned
Headphone Insertion Detection	KB_ROW7 / Audio Codec pin
SD Card Card Detect	SDMMC3_CD_N
PMIC Interrupt to AP	PWR_INT_N
Low Battery Alert	KB_COL5
Wi-Fi Interrupt	GPIO_PU5
Available Bluetooth Interrupt	GPIO_PU6
HDMI Hot Plug Detect	HDMI_INT
HDMI Consumer Electronic Control	HDMI_CEC

2.11 General Power Routing Guideline

Avoid routing critical signals near power components or noisy power traces/areas, whether on the same layer, or above/below the components or power traces/areas.

3.0 Interface Routing Guidelines

3.1 Overview

This section contains the PCB routing and other guidelines for the following Tegra interfaces

Clocks	DSI	SDMMC	Strapping Pins
DRAM	LVDS	I2S	Thermal Diode
USB	eDP	I2C	
PCIe	HDMI	SPI	
SATA	CSI	UART	
HSIC	DTV	JTAG	

Note: Unless otherwise noted, all resistor values are ±5% & trace impedance values are ±15%

Signal Name Conventions

The following conventions are used in describing the signals for Tegra:

- Signal names use a mnemonic to represent the function of the signal (i.e. Secure Digital Interface #3 CMD signal is SDMMC3_CMD), written in bold to distinguish it from other text. Active low signals usually have an underscore followed by capital N (_N) after the name (i.e. SYS_RESET_N). Differential signals are identified as a pair with the same names that end with _P and _N or just P and N (for positive and negative, respectively). For example, USB1_DP and USB1_DN indicate a differential signal pair.
- I/O Type The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The table below lists the I/O codes used in the signal description tables.

Table 12. Signal Type Codes

Code	Definition
A	Analog
DIFF I/O	Bidirectional Differential Input/Output
DIFF IN	Differential Input
DIFF OUT	Differential Output
1/0	Bidirectional Input/Output
I	Input
0	Output
OD	Open Drain Output
I/OD	Bidirectional Input / Open Drain Output
Р	Power

General SFIO (Special Function IO) & GPIO (General Purpose IO) selection.

• The SFIO and GPIO usage should match those used on Jetson TK1, or alternative "Use-case" options shown in the Jetson TK1 Pinmux spreadsheet.

Routing Guideline Format

The routing guidelines have the following format to specify how a signal should be routed.

- Breakout traces are traces routed from BGA ball either to a point beyond the ball array, or to another layer where full normal spacing guidelines can be met. Breakout trace delay limited to 500 mils unless otherwise specified.
- After breakout, signal should be routed according to specified impedance for differential, single-ended, or both (for example: HDMI). Trace spacing to other signals also specified.
- Follow max & min trace delays where specified. Trace delays are typically shown in mm or in terms of signal delay in pico-seconds (ps) or both.
 - For differential signals, trace spacing to other signals must be larger of specified × dielectric height or inter-pair spacing
 - Spacing to other signals/pairs cannot be smaller than spacing between complementary signals (intrapair).
 - Total trace delay depends on signal velocity which is different between outer (microstrip) & inner (stripline) layers of a PCB.

Signal Routing Conventions

Throughout this document, the following signal routing conventions are used:

SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing

• Single-ended (SE) impedance of trace (along with differential impedance for diff pairs) is achieved by spacing requirement. Spacing is multiple of dielectric height. Dielectric height is typically different for microstrip & stripline. Note: 1 mil = 1/1000th of an inch.

Note: Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to traces making up a differential pair. For this case, spacing/trace widths are chosen to meet differential impedance requirement.

General Routing Guidelines

Pay close attention when routing high speed interfaces, such as DDR, HDMI, USB/HSIC or DSI/CSI. Each of these interfaces has strict routing rules for the trace impedance, width, spacing, total delay, and delay/flight time matching. The following guidelines provide an overview of the routing guidelines and notations used in this document.

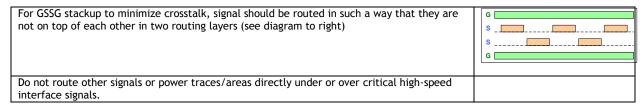
Controlled Impedance

Each interface has different trace impedance requirements & spacing to other traces. It is up to designer to calculate trace width & spacing required to achieve specified single-ended (SE) & differential (Diff) impedances.

Max Trace Lengths/Delays

Trace lengths/delays should include main PCB routing (where Tegra resides) and any additional routing on a Flex/ secondary PCB segment connected to main PCB. The max length/delay should be from Tegra to the actual connector (i.e. USB, HDMI, SD Card, etc.) or device (i.e. onboard USB device, Display driver IC, camera imager IC, etc.)

Trace Delay/Flight Time Matching


Signal flight time is the time it takes for a signal to propagate from one end (driver) to other end (receiver). One way to get same flight time for signal within signal group is to match trace lengths within specified delay in the signal group.

- Except for DRAM or if otherwise stated, always include Tegra substrate trace delay or propagation delay in all trace delay or flight-time matching calculations.
- Total trace delay = substrate trace delay + board trace delay. Do not exceed maximum trace delay specified.
- For six layers or more, it is recommended to match trace delays based on flight time of signals. For example, outer-layer signal velocity could be 150psi (ps/inch) & inner-layer 180psi. If one signal is routed 10 inches on outer layer & second signal is routed 10 inches in inner layer, difference in flight time between two signals will be 300ps! That is a big difference if required matching is 15ps (trace

- delay matching). To fix this, inner trace needs to be 1.7 inches shorter or outer trace needs to be 2 inches longer.
- In this design guide, terms such as intra-pair & inter-pair are used when describing differential pair delay. Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching). Inter-pair matching refers to matching differential pairs average delays to other differential pairs average delays.

General PCB Routing Guidelines

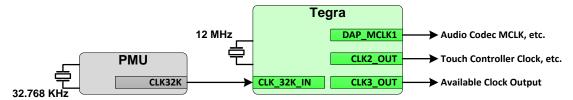

3.2 Clocks

Table 13. Tegra Clock Input & General Output Tree

Туре	Clock	Description / Typical Use	Source	Tegra Pin	Power Rail
Input	32kHz	32.768kHz clock. Used by PMC	PMU	CLK_32K_IN	VDDIO_SYS/SYS2
Internal	OSC	Oscillator. Main Tegra clock source	XTAL or External	XTAL_IN/OUT XTAL_OUT only	AVDD_OSC /VDDIO_SYS/SYS2
Internal	PLLA, PLLP, PLLC2, PLLC3	PLLA Used for Audio. PLLP used for a variety of peripheral blocks. PLLC2/C3 are multi-purpose PLLs	OSC		AVDD_PLL_APC2C3
Internal	PLLC, PLLG	PLLG used for Graphics Engine. PLLC is a multi- purpose PLL	OSC		AVDD_PLL_CG
Internal	PLLU, PLLD, PLLD2, PLLDP	PLLU used for USB 2.0. PLLD/D2 used for Display & MIPI (DSI & CSI). PLLDP used for eDP.	OSC		AVDD_PLL_UD2DPD
Internal	PLLM	Typically used for DRAM controller	OSC		AVDD_PLLM
Internal	PLLC4		OSC		AVDD_PLL_C4
Internal	PLLX	Used for CPU	OSC		AVDD_PLLX
Internal	PLLE, PLL_REFE	Used for USB3, PCIe & SATA blocks	OSC		AVDD_PLL_EREFE
Internal	PEX_PLL	Used for USB3/PCIe PHYs	OSC		AVDD_PEX_PLL
Internal	SATA_PLL	Used for SATA PHY	OSC		AVDD_SATA_PLL
Output	VIMCLK	Used for Camera 1 master reference clock.	Various	CAM_MCLK	VDDIO_CAM
Output	VIMCLK2	Used for Camera 2 master reference clock.	Various	GPIO_PBB0	VDDIO_CAM
Output	EXTPERIPH1_CLK	Used for Audio MCLK, etc.	Various	DAP_MCLK1	VDDIO_AUDIO
Output	EXTPERIPH2_CLK	Used for Touchscreen Clock, etc.	Various	CLK2_OUT	VDDIO_SDMMC1
Output	EXTPERIPH3_CLK	General purpose clock output	Various	CLK3_OUT	VDDIO_UART

Figure 10. Tegra External Clocking Block Diagram

3.2.1 Oscillator & PLL Power Routing

The routing requirements in the table below apply to the following critical clock power rails:

- AVDD_OSC, AVDD_HDMI_PLL
- AVDD_PLL_APC2C3, AVDD_PLL_X, AVDD_PLL_M, AVDD_PLL_UTMIP, AVDD_PLL_C4, AVDD_PLL_CG, AVDD_PLL_EREFE, AVDD_PLL_UD2DPD

Table 14. Clock Power Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND if possible		See note 1
Trace Spacing	3x	Dielectric	
Max Trace Delay	Minimum		See note 3

Note:

- If GND reference is not feasible, as may be the case with GSSG stack-up, keep the routing distance very short and have GND areas/traces next to the rails.
- Use reference platform layout as a guideline for routing & location of bypass capacitors & filters.
- Avoid routing signal traces or other power traces/areas directly above/below or in parallel with these critical rails.

3.2.2 Additional PLL Power Noise Coupling Reduction Guidelines

See the Tegra PLL Power Design Guidelines (section 7) for a detailed descriptions and informative figures, showing design practices to minimize noise coupling between some of the critical PLL power rails and other, noisy power rails. The following tables contain the measureable guidelines that should be followed in addition to other recommendations in section 7.

Table 15. PLL Power & I/O Power Via Coupling Requirements

PLL PWR Via Victim	PLL Power Rail Via Aggressor	Minimum Distance (Via center to via center)	PCB Height	Other Requirements
PLLM PWR, Pin K16	+1.35V_LP0_VDDIO_DDR_AP	1.3 mm	<= 40mil	
PLLM PWR, Pin K16	+1.35V_LP0_VDDIO_DDR_AP	1.5 mm	>= 40mil	
PLLA, PLLP, PLLC2, PLLC3 PWR , Pin B17	+1.05V_DDR_AVDD, Pin A17	1.1 mm	ALL (PWR pins on edge of die to less constraints)	GND via must be placed in between two Power VIAS

Table 16. PLL Power Trace to Power Plane Broadside Coupling Requirements

PLL PWR Via Victim	PLL Power Rail Trace Aggressor	Routing Restriction
PLLM & PLLAPC2C3 PWR Trace	+1.8V (I/O Power) & 1.35V (I/O Power)	PLL power trace not allowed directly below or above the I/O power plane to avoid broadside coupling.

3.2.3 32.768kHz Clock

The 32.768kHz clock is provided by the PMU. This clock is input on the CLK_32K_IN pin which is referenced to the VDDIO_SYS rail. See the Tegra K1 Data Sheet for details on the requirements for this clock.

3.2.4 Oscillator Clock

A crystal is connected to XTAL_OUT and XTAL_IN to generate the reference clock internally. A reference circuit is shown in Figure 11. The table contains the requirements for the crystal used, the value of the parallel bias resistor and information to calculate the values of the two external load capacitors (C_{L1} and C_{L2}) shown in the circuit.

Figure 11. Crystal Connection

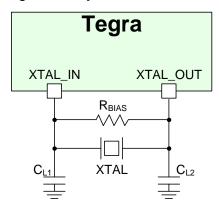


Table 17 Crystal and Circuit Requirements

Symbol	Parameter	Min	Тур	Max	Unit	Note
F _P	Parallel resonance crystal Frequency		12		MHz	1
F _{TOL}	Frequency Tolerance		±50		ppm	1
C _L	Load Capacitance for crystal parallel resonance Typical values used for C_{L1}/C_{L2}	5	12		pF	1, 3, 5
DL	Crystal Drive Level			300	uW	1, 6
ESR	Equivalent Series Resistance			100	Ω	2, 4
T _{START}	Start Time (From AVDD_OSC on or SYS_CLK_REQ active coming out of Deep Sleep)		< 6	10	mS	
T_{BUF_DRV}	Tegra Oscillator Buffer drive strength register value		TBD			7
R _{BIAS}	Bias resistor value		2		ΜΩ	

Note: 1.

- 1. F_P , F_{TOL} , C_L and DL are found in the Crystal Data Sheet
- ESR = RM * (1 + CO/CL)^2 where: RM = Motional Resistance; CO = Shunt Capacitance from Crystal Data Sheet; Data Sheets may specify ESR directly - consult manufacturer if unclear whether ESR or RM are specified.
- 3. C_L = Load capacitance (Crystal Data Sheet). CPCB is PCB capacitance (trace, via, pad, etc.)
- 4. Crystals with lower ESR and C_L requirements are recommended
- Load capacitor values (CLx) can be found with formula: C_L = [(CL1xCL2)/(CL1+CL2)]+CPCB. Or, since CL1 and CL2 are typically of equal value, CL = (CLx/2)+CPCB. CLx = (CL CPCB) x 2
- 6. DL = $0.5*ESR*(2\pi \times F_P \times CL \times V)^2$. V = AVDD_OSC = 1.8V
- If other drive strength settings are used, XTAL_OUT swing should reach below 200mV & above 1.3V over all conditions

Table 18. Crystal Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Topology	Point to Point		
Number of loads	1	load	
Reference plane	GND		Including Crystal itself
Breakout Region Max Delay	Min width/spacing		
Trace Impedance Different Single-enc		Ω	±20% (See Note 1)
Trace Spacing (to other nets) Microst Stript	=	dielectric	Include keep out area around crystal itself.
Max Trace Delay	400	ps	
Max Trace Intra-pair (XTAL_OUT to XTAL_IN) Skew	6 (microstrip) 7 (stripline)	ps	

Note: _

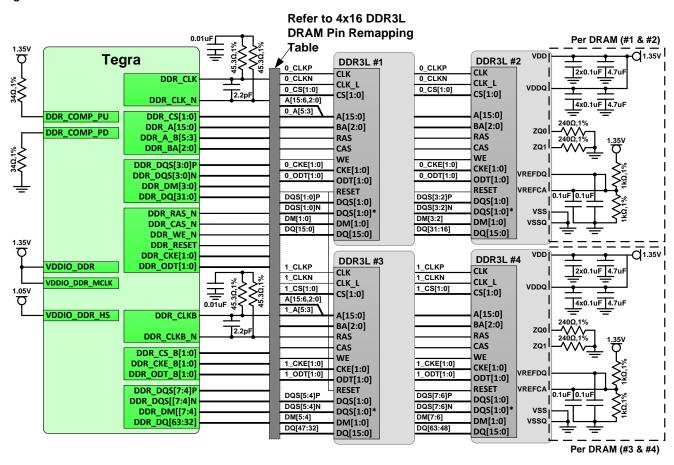
- Keep XTAL_IN/OUT traces away from other signal traces or unrelated power traces/areas or power supply components. Use proper GND isolation around and above/below these sensitive signals.
- Max Trace Delay & Max Trace Delay Skew matching must include substrate pin delays unless otherwise specified
- Routing as differential pair provides better noise immunity

Table 19. XTAL_IN/OUT Signal Connections

Ball Name	Туре	Termination	Description
XTAL_IN XTAL_OUT	A	Load capacitors from XTAL_IN & XTAL_OUT to GND. Typically 12pF, but depends on PCB loading & Crystal Specs.	Crystal Input and Output: Connect to a 12MHz Crystal

Table 20. Crystal Interface Package Delays

Signal Name	Ball #	Package Delay (ps)
XTAL_IN	E3	72
XTAL_OUT	E4	70



3.3 DRAM

Tegra supports the remapping of the Address/Command/Control pins in order to make routing easier/cleaner. A table is provided for each DRAM configuration option supported that shows how the Address/Control/Command/Data pins should be routed to the DRAM devices. This table must be followed exactly.

3.3.1 DDR3L

Figure 12. DDR3L Connections

Note: See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements for Tegra.

Figure 13. Configuration Option #14 (DDR3L, 4x16, 2 Top/2 Bottom Vertical) Placement Example

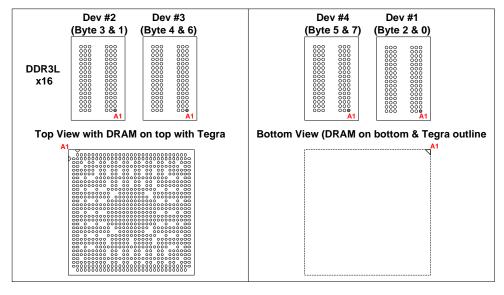
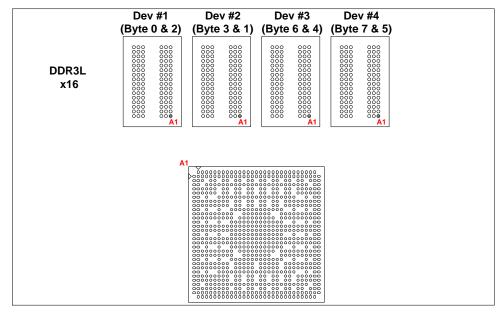



Figure 14. Configuration Option #10 (DDR3L, 4x16, 1x4 Top, Inline) Placement Example

The following tables show the connections from TK1 out to the four DDR3L DRAM devices. The tables include columns that contain the TK1 symbol ball number, the net name used to connect to the DRAM, which device the net is going to, the DDR ball number and finally the DDR ball name. All of these should be duplicated on a design. The same symbol ball out, same net names associated with each ball, etc. should be used to ensure the connections match and can be easily verified against the table and/or reference design.

Table 21 DRAM Pin Multiplexing Option #14 (DDR3L, , 4x16, 2 Top/2 Bottom Vertical)

Bail # Bail Name	DDR DDR DDR	DDR3L	Tegra	Tegra	DDR	DDR	DDR	DDR3L	Tegra	Tegra
H148 DDR. CLK.N DDR. CLKD 3.6 4			-							
H18 DOR CLIKB N DORT CLINN 3 84 4 J7 CLIK N 66 DOR DO[18 DORR DO[25] 2 H7 DO [18] DOR CLIKN N 100 A 44 K7 CLIK N 160 DOR DORR DO[17] 2 F8 DOR 101 DOR AD [18] DOR] 2 F2 DQ2						1 & 2		DDR_CLK	G14
G18 DOR CLKIR N DOR1 CLKN 3 \(\) 4										
E14 DDR, Ad DDR, Ad DDR, Ad DDR, Ad DDR, AD DDR, Edge DDR, Edg										
D14 D0R AL D0R AD(5) 1 2 2 A5 A6 D0R DQ21 D0R DQ27 2 H8 D0 E12 D0R AD D0R AD(4) 1 6 2 P8 A4 F6 D0R DQ32 D0R DQ28 2 F7 D0 D12 D0R AD D0R AD(4) 1 6 2 P8 A4 F6 D0R DQ33 D0R DQ28 2 F7 D0 D12 D0R AD D0R AD(1) A11 A11 F7 A1 C8 D0R DQ52 D0R DQ53 D0R DQ53 2 F7 D12 D0R AD D0R AD(1) A11 A11 F7 A1 C8 D0R DQ52 D0R DQ53 D0R DQ53 2 F7 D12 D0R AD D0R AD(4) A11 A11 F7 A1 C8 D0R DQ52 D0R DQ53 D0R DQ53 2 F7 D12 D0R AD D0R AD(4) A11										
E15 DOR, A2 DOR, MC									_	
E12 DDR.AS DDR.AG DDR.AG 1 6 2 P8 A4										
DIT										
FIT2 DDR. AS										
C12 DDR. Ap									_	
Fif4 DRR, AP DDR, AIT AIL R2 AT G12 DDR, DQ24 DDR, DQ15 2 C3 DB DDR, AB DDR, AB DDR, AB LI J3 AS _ L H12 DDR, DQ25 DDR, DQ15 2 C3 DB DDR, AIO DDR, AIO DDR, AIO AIL R8 A6 AII DDR, DQ26 DDR, DQ15 2 A3 DDR, AIO DDR, AIO DDR, AIO AIL T3 AI T3 T3 T1 DDR, DQ26 DDR, DQ10 2 A7 DDR, AIO DDR, AIO DDR, AIO DDR, AIO AIL T3 AI T3 T3 T1 DDR, DQ26 DDR, DQ10 2 A7 DDR, AIO DDR, AIO DDR, AIO AID AIL T7 AI AI T5 BII DDR, DQ27 DDR, DQ10 2 A7 DDR, AIO DDR, AIO DDR, AIO DDR, AIO DDR, DQ10 DDR, D										
DIT										
B12 DR. A9 DDR. AI(-) AIL R8 A6 A11 DDR. DQ26 DDR. DQ19 2 A3 DDR DQ18 DDR. DQ17 DDR. DQ18 DDR. DQ17 DDR. DQ18 DDR. DQ18 DDR. DQ17 DDR. DQ18 DDR. DQ18 DDR. DQ17 DDR. DQ18 DDR. DQ17 DDR. DQ18 DDR. DQ19 DDR. D										
DIR. A01 DDR A[13]										
G17 DOR. A111 DOR. A112 A11 A11 A11 A14 A15 B11 DOR. DQ29 DOR. DQ111 2 A2 A2 A16 DOR. A12 DOR. A114 A11 T7 A14 F11 DOR. DQ30 DOR. DQ112 2 C6 C6 DOR. A13 DOR. A114 A11 T7 A14 F11 DOR. DQ30 DOR. DQ12 2 C7 DOR. DQ18 A15 DOR. BA11 DOR. BA11 DOR. BA11 A11 N8 BA1 H11 DOR. DQ31 DOR. DQ18 2 D7 DOR. DQ18 A17 DOR. DQ18 DOR. DQ18 A17 DOR. DQ18 DOR. DQ18										
A16 DOR A12 DOR A[15]										
C20 DRR A13 DDR A[14] All T7 A14 F11 DDR DQ30 DDR DQ[12] 2 C8 DE F17 DDR A14 DDR BA[0] All M8 BA0 BA0 D11 DDR DQ31 DDR DQ51P 2 C7 UD F18 DDR A15 DDR BA[1] All N8 BA1 H11 DDR DQ31P DDR DQ51P 2 C7 UD F18 DDR DQ51P DDR DQ51										
E17 DOR. A14 DOR. BA(0) AIL M2 BA(0) B1 DOR. DO(31) DO										
E18 DDR, A15 DDR, BA11 All N8 BA1 H11 DDR, DQ\$39 DDR, DQ\$11P 2 C7 UDR, DDR, DDR, DDR, DDR, DDR, DDR, DDR,										
HIT DDR, A, B3 DDR, A1 5 3 & 4 P2 A5 G11 DDR, DDR, DDS, DDR, DDS, DDR, DDR, DDR,										
EZO DDR A B										
FIT DDR, AB DDR, BA[2] All M3 BA2 G21 DDR, DQ32 DDR, DQ[50] 3 D7 DP DDR DDR DDR DDR All M7 Al2 All DDR, DQ33 DDR, DQ[51] 3 C2 DDR DDR DDR DDR All DDR, DQ13 DDR, DQ14 DDR, DQ15 DDR,										
Fife DOR, BA0 DDR, A[12] All N7 A12 A21 DDR, DQ33 DDR, DQ[51] 3 C2 DD20 DDR, BA1 DDR, A[11] All R7 A11 E21 DDR, DQ33 DDR, DQ[51] 3 C8 DDR, DQ10 DDR, A[11] All L7 A10 F20 DDR, DQ35 DDR, DQ[54] 3 B8 DDR, DQ10 DDR, DQ										
D20 DDR, BA1										
H15 DOR, BA2 DOR, A[10] All L7 A10 F20 DOR, DQ35 DOR, DQ[54] 3 88 DC C14 DDR, CAS, N DDR, A[0] All N3 A0 G20 DDR, DQ36 DDR, DQ[52] 3 A7 DC C15 DDR, RAS, N DDR, A[0] 1 6 2 N2 A3 D21 DDR, DQ37 DDR, DQ[53] 3 A2 DC DDR, DQR, N DDR, CAS, N DDR, CAS, L All K3 CAS, L B21 DDR, DQ37 DDR, DQ[53] 3 A2 DDR, DQR, N DDR, DQR, N DDR, CAS, L All K3 CAS, L B21 DDR, DQ37 DDR, DQ[53] 3 A2 DDR, DQR, N DDR, DQR, N DDR, DQR, DQR, DQR, DQR, DQR, DQR, DQR,										
G15 DDR, RAS, N DDR, A(G) AIL N3 A0 G20 DDR, DQ36 DDR, DQ552 3 A7 DD										
C15 DDR, WE, N DDR, CAS, L All K3 CAS, L B21 DDR, DQ38 DDR, DQ49 3 C3 DDR, DDR, DDR, DDR, DDR, DDR, DDR, DD				G20	A0	N3	All		DDR_CAS_N	C14
F15] 3 A2 DQ13	DDR_DQ[53]	DDR_DQ37	D21	A3	N2	1 & 2	DDR_A0[3]	DDR_RAS_N	G15
B14 DDR_CSS1 N DDR0_CSS1_L 1 & 2] 3 C3 DQ9	DDR_DQ[49]	DDR_DQ38	B21	CAS_L	K3	All	DDR_CAS_L	DDR_WE_N	C15
A12 DDR_CS1 N DDR0_CS0_L 1 & 2 L2 CS0_L H2D DDR_DQS4N DDR_DQS6N 3 G3 U] 3 A3 DQ15	DDR_DQ[55]	DDR_DQ39	C21	RESET_L	T2	All	DDR_RESET_L	DDR_RESET_N	F15
B18 DDR_CS_B0_N DDR_COTT 3 & 4 J1 ODT1 F21 DDR_DM4 DDR_DM[6] 3 E7 U	3 F3 UDQS	DDR_DQS6P	DDR_DQS4P	H21	CS1_L	L1	1 & 2	DDR0_CS1_L	DDR_CSO_N	B14
A19 DDR_CS_B1_N DDR_CS_CE_D 3 & 4 L2 CSO_L D24 DDR_DQ40 DDR_DQ[37] 3 H8 DR_A13 DDR_CKE_D DDR_DCKE_D 1 & 2 K9 CKE_D C24 DDR_DQ41 DDR_DQ[33] 3 F7 DDR_DQ42 DDR_DQ138 3 G2 DDR_DQ42 DDR_DQ138 3 G2 DDR_DQ44 DDR_DQ138 3 G2 DDR_DQ44 DDR_DQ138 3 G2 DDR_DQ44 DDR_DQ138 3 G2 DDR_DQ44 DDR_DQ135 3 F8 DDR_DQ44 DDR_DQ136 3 H3 DDR_DQ136 3 H3 DDR_DQ137 DDR_DQ137 3 H7 DDR_DQ134 3 E3 DDR_DQ146 DDR_DQ147 DDR_DQ146 DDR_DQ146 DDR_DQ147 DDR_DQ146 DD	3 G3 UDQS_L	DDR_DQS6N	DDR_DQS4N	H20	CSO_L	L2	1 & 2	DDR0_CS0_L		
A13 DDR CKEO DDR CKEO 1 ft 2 K9 CKEO C24 DDR DQ41 DDR DQ33] 3 F7 DD										
A14 DDR_CKE_B		_ ,								
A20 DDR_CKE_B0 DDR1_CKE_0 3 & 4 K9 CKE_0 A24 DDR_DQ43 DDR_DQ35 3 F8 DBR_DQ0 DDR_CKE_B1 DDR1_CKE_1 3 & 4 J9 CKE_1 E26 DDR_DQ44 DDR_DQ36 3 H3 DDR_DQ36 J3 H3 DDR_DQ37 J3 J4 DDR_DQ37 J4 J4 DDR_DQ38 J4 J4 DDR_DQ38 J4 J4 DDR_DQ38 J4 J4 DDR_DQ38 J4 J4 J4 DDR_DQ38 J4 J4 J4 J4 J4 J4 J4 J										
B20 DDR_CKE_B1 DDR_CKE_B1 DDR_CKE_B1 3 & 4 J9 CKE_B1 E26 DDR_DQ44 DDR_DQ_36 3 H3 DAR_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDT_DDR_DDR										
A15 DDR ODTO DDRO ODTO 1 & 2 K1 ODTO B26 DDR DQ45 DDR DQ132 3 F2 DDB DDR ODT1 DDRO ODT1 1 & 2 J1 ODT1 A25 DDR DQ46 DDR DQ139 3 H7 DDB ODT3 DDB ODT8 DD										
B15 DDR ODT1 DDRO_ODT1 1 & 2 J1 ODT1 A25 DDR DQ46 DDR_DQ[39] 3 H7 DC										
C18										
A18 DDR_ODT_B1 DDR1_CS1_L 3 & 4										
D26 DDR_DQS5N DDR_DQS4N 3 B7 LI										
B24 DDR_DM5 DDR_DM[4] 3 D3 L1					CS1_L	<u> </u>	3 tt 4	DDK1_C31_L	טטא_טטו_61	AIO
A3 DDR_DQ0 DDR_DQ[23] 1 F8 DQ3 A22 DDR_DQ48 DDR_DQ[62] 4 C3 D A4 DDR_DQ1 DDR_DQ[22] 1 H8 DQ5 E24 DDR_DQ49 DDR_DQ[63] 4 B8 D B5 DDR_DQ2 DDR_DQ161 1 E3 DQ0 A23 DDR_DQ50 DDR_DQ158 4 D7 D C2 DDR_DQ3 DDR_DQ119 1 H3 DQ4 C23 DDR_DQ51 DDR_DQ160 4 C2 D B3 DDR_DQ4 DDR_DQ170 1 G2 DQ6 B23 DDR_DQ51 DDR_DQ160 4 A7 D B2 DDR_DQ4 DDR_DQ171 1 F7 DQ1 G23 DDR_DQ52 DDR_DQ161 4 A8 D B2 DDR_DQ6 DDR_DQ181 1 F7 DQ1 G23 DDR_DQ53 DDR_DQ161 4 C8 D A5 DDR_DQ60						 				
A4 DDR_DQ1 DDR_DQ122 1 H8 DQ5 E24 DDR_DQ49 DDR_DQ163 4 B8 DDR_DD B5 DDR_DQ2 DDR_DQ161 1 E3 DQ0 A23 DDR_DQ50 DDR_DQ158 4 D7 D C2 DDR_DQ3 DDR_DQ191 1 H3 DQ4 C23 DDR_DQ160 4 C2 D B3 DDR_DQ4 DDR_DQ171 1 G2 DQ6 B23 DDR_DQ52 DDR_DQ1561 4 A7 D B2 DDR_DQ5 DDR_DQ177 1 F7 DQ1 G23 DDR_DQ53 DDR_DQ157 4 A3 D C3 DDR_DQ6 DDR_DQ121 1 F2 DQ2 F24 DDR_DQ53 DDR_DQ161 4 C8 D A5 DDR_DQ6 DDR_DQ181 1 H7 DQ7 H23 DDR_DQ54 DDR_DQ161 4 A2 D C5 DDR_DQSOP DDR_DQ52P					DO3	EO	1	DDB DOI331	DDB DOO	۸2
B5 DDR_DQ2 DDR_DQ166 1 E3 DQ0 A23 DDR_DQ50 DDR_DQ158 4 D7 D C2 DDR_DQ3 DDR_DQ191 1 H3 DQ4 C23 DDR_DQ51 DDR_DQ160 4 C2 D B3 DDR_DQ4 DDR_DQ170 1 G2 DQ6 B23 DDR_DQ52 DDR_DQ160 4 A7 D B2 DDR_DQ4 DDR_DQ177 1 F7 DQ1 G23 DDR_DQ53 DDR_DQ1671 4 A3 D C3 DDR_DQ6 DDR_DQ171 1 F7 DQ2 F24 DDR_DQ54 DDR_DQ1611 4 C8 D A5 DDR_DQ6 DDR_DQ181 1 H7 DQ7 H23 DDR_DQ55 DDR_DQ1611 4 C8 D C5 DDR_DQ50P DDR_DQ282P 1 F3 LDQ5 E23 DDR_DQ56P DDR_DQ57P 4 F3 U C1 DDR_DQ50N DDR_DQ										
C2 DDR_DQ3 DDR_DQ[19] 1 H3 DQ4 C23 DDR_DQ51 DDR_DQ[60] 4 C2 DB B3 DDR_DQ4 DDR_DQ[20] 1 G2 DQ6 B23 DDR_DQ52 DDR_DQ[56] 4 A7 DD B2 DDR_DQ5 DDR_DQ[17] 1 F7 DQ1 G23 DDR_DQ53 DDR_DQ[57] 4 A3 DD C3 DDR_DQ6 DDR_DQ[21] 1 F2 DQ2 F24 DDR_DQ54 DDR_DQ[61] 4 C8 D A5 DDR_DQ7 DDR_DQ[18] 1 H7 DQ7 H23 DDR_DQ55 DDR_DQ[59] 4 A2 DD C5 DDR_DQ50P DDR_DQ52P 1 F3 LDQ5 E23 DDR_DQ56P DDR_DQ57P 4 F3 U C5 DDR_DQ50N DDR_DQ52P 1 F3 LDQ5 E23 DDR_DQ56P DDR_DQ57P 4 F3 U C1								DDR_DQ[22]		
B3 DDR_DQ4 DDR_DQ[20] 1 G2 DQ6 B23 DDR_DQ52 DDR_DQ[56] 4 A7 D B2 DDR_DQ5 DDR_DQ[17] 1 F7 DQ1 G23 DDR_DQ53 DDR_DQ[57] 4 A3 D C3 DDR_DQ6 DDR_DQ[21] 1 F2 DQ2 F24 DDR_DQ54 DDR_DQ[61] 4 C8 D A5 DDR_DQ7 DDR_DQ188 1 H7 DQ7 H23 DDR_DQ55 DDR_DQ599 4 A2 D C5 DDR_DQSOP DDR_DQ52P 1 F3 LDQS E23 DDR_DQ56P DDR_DQ57P 4 F3 U D5 DDR_DQSON DDR_DQ52P 1 F3 LDQS E23 DDR_DQ56P DDR_DQ57P 4 F3 U C1 DDR_DQ50N DDR_DQ52P 1 F3 LDQ5 E23 DDR_DQ56P DDR_DQ57P 4 F3 U C5 DDR_										
B2 DDR_DQ5 DDR_DQ177 1 F7 DQ1 G23 DDR_DQ53 DDR_DQ157 4 A3 D C3 DDR_DQ6 DDR_DQ[21] 1 F2 DQ2 F24 DDR_DQ54 DDR_DQ[61] 4 C8 D A5 DDR_DQ7 DDR_DQ181 1 H7 DQ7 H23 DDR_DQ55 DDR_DQ159 4 A2 D C5 DDR_DQ50P DDR_DQ52P 1 F3 LDQ5 E23 DDR_DQ56P DDR_DQ57P 4 F3 U D5 DDR_DQ50N DDR_DQ52N 1 G3 LDQ5 LD23 DDR_DQ56N DDR_DQ57P 4 F3 U C1 DDR_DM0 DDR_DQ52N 1 G3 LDQ5 LD23 DDR_DQ56N DDR_DQ57P 4 F3 U C1 DDR_DM0 DDR_DQ52N 1 G3 LDQ5 LD23 DDR_DQ56N DDR_DQ57P 4 F7 D C9 DDR_D										
C3 DDR_DQ6 DDR_DQ[21] 1 F2 DQ2 F24 DDR_DQ54 DDR_DQ[61] 4 C8 DDR_DQ7 A5 DDR_DQ7 DDR_DQ[18] 1 H7 DQ7 H23 DDR_DQ55 DDR_DQ[59] 4 A2 DU C5 DDR_DQSOP DDR_DQS2P 1 F3 LDQS E23 DDR_DQS6P DDR_DQS7P 4 F3 U C1 DDR_DQS0N DDR_DQS2N 1 G3 LDQS_L D23 DDR_DQS6N DDR_DQS7P 4 F3 U C1 DDR_DM0 DDR_DQS2N 1 G3 LDQS_L D23 DDR_DQS6N DDR_DQS7P 4 F3 U C1 DDR_DM0 DDR_DQS2N 1 G3 LDQS_L D23 DDR_DQS6N DDR_DQS7N 4 G3 U C1 DDR_DM0 DDR_DQS2N 1 G3 LDQS_DQSD DDR_DQM17 4 F7 U C9 DDR_DQ8 DDR_DQ[3]										
A5 DDR_DQ7 DDR_DQ18										
C5 DDR_DQSOP DDR_DQS2P 1 F3 LDQS E23 DDR_DQS6P DDR_DQS7P 4 F3 U D5 DDR_DQSON DDR_DQS2N 1 G3 LDQS_L D23 DDR_DQS6N DDR_DQS7N 4 G3 U C1 DDR_DMO DDR_DM[2] 1 E7 LDM F23 DDR_DM6 DDR_DM[7] 4 E7 U C9 DDR_DQ8 DDR_DQ[3] 1 A7 DQ12 D27 DDR_DQ56 DDR_DQ[45] 4 F7 D F9 DDR_DQ9 DDR_DQ[5] 1 C2 DQ11 C29 DDR_DQ57 DDR_DQ[45] 4 H8 D G8 DDR_DQ10 DDR_DQ[2] 1 A3 DQ15 C27 DDR_DQ58 DDR_DQ[44] 4 H8 D F8 DDR_DQ10 DDR_DQ[6] 1 A2 DQ13 A29 DDR_DQ58 DDR_DQ[41] 4 F2 D F8 DDR										
D5 DDR_DQSON DDR_DQS2N 1 G3 LDQS_L D23 DDR_DQS6N DDR_DQS7N 4 G3 U C1 DDR_DM0 DDR_DM[2] 1 E7 LDM F23 DDR_DM6 DDR_DM[7] 4 E7 U C9 DDR_DQ8 DDR_DQ[3] 1 A7 DQ12 D27 DDR_DQ66 DDR_DQ[45] 4 F7 U F9 DDR_DQ9 DDR_DQ[5] 1 C2 DQ11 C29 DDR_DQ57 DDR_DQ[44] 4 H8 D G8 DDR_DQ10 DDR_DQ[2] 1 A3 DQ15 C27 DDR_DQ58 DDR_DQ[41] 4 F2 D F8 DDR_DQ11 DDR_DQ[6] 1 A2 DQ13 A29 DDR_DQ59 DDR_DQ[46] 4 H7 D E9 DDR_DQ12 DDR_DQ[6] 1 C8 DQ10 C31 DDR_DQ59 DDR_DQ[46] 4 H7 D A9 DDR_										
C9 DDR_DQ8 DDR_DQ[3] 1 A7 DQ12 D27 DDR_DQ56 DDR_DQ[45] 4 F7 DDR_DQ9 F9 DDR_DQ9 DDR_DQ[5] 1 C2 DQ11 C29 DDR_DQ57 DDR_DQ[44] 4 H8 D G8 DDR_DQ10 DDR_DQ[2] 1 A3 DQ15 C27 DDR_DQ58 DDR_DQ[41] 4 F2 D F8 DDR_DQ11 DDR_DQ[6] 1 A2 DQ13 A29 DDR_DQ59 DDR_DQ[46] 4 H7 D E9 DDR_DQ12 DDR_DQ[0] 1 C8 DQ10 C31 DDR_DQ60 DDR_DQ[40] 4 H3 D A9 DDR_DQ13 DDR_DQ[1] 1 B8 DQ14 A27 DDR_DQ60 DDR_DQ[43] 4 E3 D A9 DDR_DQ14 DDR_DQ[7] 1 D7 DQ8 C30 DDR_DQ61 DDR_DQ[42] 4 G2 D B9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
C9 DDR_DQ8 DDR_DQ[3] 1 A7 DQ12 D27 DDR_DQ56 DDR_DQ[45] 4 F7 DDR_DQ9 F9 DDR_DQ9 DDR_DQ[5] 1 C2 DQ11 C29 DDR_DQ57 DDR_DQ[44] 4 H8 D G8 DDR_DQ10 DDR_DQ[2] 1 A3 DQ15 C27 DDR_DQ58 DDR_DQ[41] 4 F2 D F8 DDR_DQ11 DDR_DQ[6] 1 A2 DQ13 A29 DDR_DQ59 DDR_DQ[46] 4 H7 D E9 DDR_DQ12 DDR_DQ[6] 1 C8 DQ10 C31 DDR_DQ60 DDR_DQ[46] 4 H7 D A9 DDR_DQ12 DDR_DQ[0] 1 C8 DQ10 C31 DDR_DQ60 DDR_DQ[40] 4 H3 D A9 DDR_DQ13 DDR_DQ[1] 1 B8 DQ14 A27 DDR_DQ60 DDR_DQ[43] 4 E3 D B9 <	4 E7 UDM	DDR_DM[7]	DDR_DM6	F23	LDM	E7	1	DDR_DM[2]	DDR_DM0	C1
F9 DDR_DQ9 DDR_DQ[5] 1 C2 DQ11 C29 DDR_DQ57 DDR_DQ[44] 4 H8 DDR_DQ10 G8 DDR_DQ10 DDR_DQ[2] 1 A3 DQ15 C27 DDR_DQ58 DDR_DQ[41] 4 F2 DDR_DQ10 DDR_DQ11 DDR_DQ160 1 A2 DQ13 A29 DDR_DQ59 DDR_DQ160 4 H7 DDR_DQ10 E9 DDR_DQ12 DDR_DQ100 1 C8 DQ10 C31 DDR_DQ60 DDR_DQ140 4 H3 DDR_DQ140 A9 DDR_DQ13 DDR_DQ11 1 B8 DQ14 A27 DDR_DQ60 DDR_DQ143 4 E3 DDR_DQ143 A E3 DDR_DQ143 A E3 DDR_DQ141 DDR_DQ17 1 D7 DQ8 C30 DDR_DQ62 DDR_DQ142 4 G2 DR_DQ141 A F8 DDR_DQ141 A F8 DDR_DQ141 A F8 DDR_DQ141 A F8 DDR_DQ141 A F8 <										
F8 DDR_DQ11 DDR_DQ[6] 1 A2 DQ13 A29 DDR_DQ59 DDR_DQ[46] 4 H7 DDR_DQ12 E9 DDR_DQ12 DDR_DQ[0] 1 C8 DQ10 C31 DDR_DQ60 DDR_DQ[40] 4 H3 DDR_DQ13 A9 DDR_DQ13 DDR_DQ11 1 B8 DQ14 A27 DDR_DQ61 DDR_DQ[43] 4 E3 DDR_DQ17 D9 DDR_DQ14 DDR_DQ17 1 D7 DQ8 C30 DDR_DQ62 DDR_DQ142 4 G2 DDR_DQ17 E8 DDR_DQ15 DDR_DQ14 1 C3 DQ9 A28 DDR_DQ63 DDR_DQ147 4 F8 DU G9 DDR_DQ51P DDR_DQ50P 1 C7 UDQ5 B30 DDR_DQ57P DDR_DQ55P 4 C7 LI H9 DDR_DQ51N DDR_DQ50N 1 B7 UDQ5_L B29 DDR_DQ57N DDR_DQ55N 4 B7 LI				C29			1	DDR_DQ[5]		
F8 DDR_DQ11 DDR_DQ[6] 1 A2 DQ13 A29 DDR_DQ59 DDR_DQ[46] 4 H7 DDR_DQ12 E9 DDR_DQ12 DDR_DQ[0] 1 C8 DQ10 C31 DDR_DQ60 DDR_DQ[40] 4 H3 DDR_DQ13 A9 DDR_DQ13 DDR_DQ11 1 B8 DQ14 A27 DDR_DQ61 DDR_DQ[43] 4 E3 DDR_DQ12 D9 DDR_DQ14 DDR_DQ17 1 D7 DQ8 C30 DDR_DQ62 DDR_DQ142 4 G2 DDR_DQ145 E8 DDR_DQ15 DDR_DQ14 1 C3 DQ9 A28 DDR_DQ63 DDR_DQ147 4 F8 DU G9 DDR_DQ51P DDR_DQ50P 1 C7 UDQ5 B30 DDR_DQ57P DDR_DQ55P 4 C7 LI H9 DDR_DQ51N DDR_DQ50N 1 B7 UDQ5_L B29 DDR_DQ57N DDR_DQ55N 4 B7 LI] 4 F2 DQ2			C27			1			G8
A9 DDR_DQ13 DDR_DQ11 1 B8 DQ14 A27 DDR_DQ61 DDR_DQ1431 4 E3 DD D9 DDR_DQ14 DDR_DQ17 1 D7 DQ8 C30 DDR_DQ62 DDR_DQ121 4 G2 D E8 DDR_DQ15 DDR_DQ141 1 C3 DQ9 A28 DDR_DQ63 DDR_DQ1471 4 F8 D G9 DDR_DQ51P DDR_DQ50P 1 C7 UDQ5 B30 DDR_DQ57P DDR_DQ55P 4 C7 LI H9 DDR_DQ51N DDR_DQ50N 1 B7 UDQ5_L B29 DDR_DQ57N DDR_DQ55N 4 B7 LI							1	DDR_DQ[6]		
D9 DDR_DQ14 DDR_DQ17 1 D7 DQ8 C30 DDR_DQ62 DDR_DQ142 4 G2 D E8 DDR_DQ15 DDR_DQ141 1 C3 DQ9 A28 DDR_DQ63 DDR_DQ147 4 F8 D G9 DDR_DQ51P DDR_DQ50P 1 C7 UDQS B30 DDR_DQ57P DDR_DQ55P 4 C7 LI H9 DDR_DQ51N DDR_DQ50N 1 B7 UDQS_L B29 DDR_DQ57N DDR_DQ55N 4 B7 LI										
E8 DDR_DQ15 DDR_DQ14 1 C3 DQ9 A28 DDR_DQ63 DDR_DQ147 4 F8 D G9 DDR_DQS1P DDR_DQS0P 1 C7 UDQS B30 DDR_DQS7P DDR_DQS5P 4 C7 LI H9 DDR_DQS1N DDR_DQS0N 1 B7 UDQS_L B29 DDR_DQS7N DDR_DQS5N 4 B7 LI		DDR_DQ[43]			DQ14		1	DDR_DQ[1]		
G9 DDR_DQS1P DDR_DQS0P 1 C7 UDQS B30 DDR_DQS7P DDR_DQS5P 4 C7 LI H9 DDR_DQS1N DDR_DQS0N 1 B7 UDQS_L B29 DDR_DQS7N DDR_DQS5N 4 B7 LI										
H9 DDR_DQS1N DDR_DQS0N 1 B7 UDQS_L B29 DDR_DQS7N DDR_DQS5N 4 B7 LI		_ ,						_ , ,		
I PO IDDD DM1 IDDD DM101 1 DO INDM DOZ IDDD DM7 DDD DM151 1 DOZ IND										
נים אוין איינען	4 D3 LDM	DDR_DM[5]	DDR_DM7	B27	UDM	D3	1	DDR_DM[0]	DDR_DM1	В9

Note:

- The DDR pin remapping must be followed exactly as shown above.

 The DDR Devices 1/2/3/4 in the table above correspond to DDR U7B1/U4B1/U4C1/U7C1
- respectively on the Jetson TK1 platform.
- Table matches the Jetson TK1 Development Platform Schematics (Revision 4.03 or later)

Table 22 DRAM Pin Multiplexing Option #10 (23x23mm, DDR3L, 4x16, 1x4 Top, Inline)

Tegra	Tegra Ball	DDR3L Net	DDR	DDR	DDR		Tegra	Tegra Ball	DDR3L Net	DDR	DDR	DDR
	Name	Name	Device	Ball #	Ball Name		Ball #	Name	Name	Device	Ball #	Ball Name
G14	DDR_CLK	DDR0_CLKP	1 & 2	J7	CLK		A8	DDR_DQ16	DDR_DQ[10]	2	F2	DQ2
H14	DDR_CLK_N	DDR0_CLKN	1 & 2	K7	CLK_N		B8	DDR_DQ17	DDR_DQ[8]	2	E3	DQ0
H18	DDR_CLKB	DDR1_CLKP	3 & 4	J7	CLK		C6	DDR_DQ18	DDR_DQ[9]	2	F7	DQ1
G18	DDR_CLKB_N	DDR1_CLKN	3 & 4	K7	CLK_N		E6	DDR_DQ19	DDR_DQ[15]	2	H7	DQ7
E14	DDR_A0	DDR_A[2]	All	P3	A2		A7	DDR_DQ20	DDR_DQ[14]	2	G2	DQ6
D14	DDR_A1	DDR_A0[5]	1 & 2	P2	A5		A6	DDR_DQ21	DDR_DQ[11]	2	F8	DQ3
E15	DDR_A2	DDR_WE_L	All	L3	WE_L		D6	DDR_DQ22	DDR_DQ[13]	2	H8	DQ5
E12	DDR_A3	DDR_A0[4]	1 & 2	P8	A4		F6	DDR_DQ23	DDR_DQ[12]	2	H3	DQ4
D12	DDR_A4	DDR_A[1]	All	P7	A1		C8	DDR_DQS2P	DDR_DQS1P	2	F3	LDQS
F12 C12	DDR_A5	DDR_A[9]	All All	R3	A9		D8	DDR_DQ\$2N	DDR_DQS1N	2	G3	LDQS_L
F14	DDR_A6 DDR_A7	DDR_A[8]	All	T8 R2	A8 A7		B6 G12	DDR_DM2 DDR_DQ24	DDR_DM[1] DDR_DQ[29]		E7	LDM DQ13
D15	DDR_A7	DDR_A[7] DDR_RAS_L	All	J3	RAS_L		H12	DDR_DQ25	DDR_DQ[31]	2	A2 A3	DQ15
B12	DDR_A9	DDR_A[6]	All	R8	A6	_	A11	DDR_DQ25	DDR_DQ[31]	2	C3	DQ13
D18	DDR_A10	DDR_A[0]	All	T3	A13		E11	DDR_DQ27	DDR_DQ[25]	2	C8	DQ10
G17	DDR_A11	DDR_A[13]	3 & 4	N2	A3		A10	DDR_DQ27	DDR_DQ[30]	2	B8	DQ14
A16	DDR_A12	DDR_A[15]	All	M7	A15		B11	DDR_DQ29	DDR_DQ[27]	2	C2	DQ11
C20	DDR_A13	DDR_A[14]	All	T7	A14		F11	DDR_DQ30	DDR_DQ[28]	2	A7	DQ12
E17	DDR_A14	DDR_BA[0]	All	M2	BA0		D11	DDR_DQ31	DDR_DQ[24]	2	D7	DQ8
E18	DDR_A15	DDR_BA[1]	All	N8	BA1		H11	DDR_DQS3P	DDR_DQS3P	2	C7	UDQS
H17	DDR A B3	DDR_A1[5]	3 & 4	P2	A5		G11	DDR_DQS3N	DDR_DQS3N	2	B7	UDQS_L
E20	DDR_A_B4	DDR_A1[4]	3 & 4	P8	A4		C11	DDR_DM3	DDR_DM[3]	2	D3	UDM
F17	DDR_A_B5	DDR_BA[2]	All	M3	BA2		G21	DDR_DQ32	DDR_DQ[34]	3	C8	DQ10
F18	DDR_BA0	DDR_A[12]	All	N7	A12		A21	DDR_DQ33	DDR_DQ[35]	3	C2	DQ11
D20	DDR_BA1	DDR_A[11]	All	R7	A11		E21	DDR_DQ34	DDR_DQ[32]	3	D7	DQ8
H15	DDR_BA2	DDR_A[10]	All	L7	A10		F20	DDR_DQ35	DDR_DQ[38]	3	В8	DQ14
C14	DDR_CAS_N	DDR_A[0]	All	N3	A0		G20	DDR_DQ36	DDR_DQ[36]	3	Α7	DQ12
G15	DDR_RAS_N	DDR_A0[3]	1 & 2	N2	A3		D21	DDR_DQ37	DDR_DQ[37]	3	A2	DQ13
C15	DDR_WE_N	DDR_CAS_L	All	K3	CAS_L		B21	DDR_DQ38	DDR_DQ[33]	3	C3	DQ9
F15	DDR_RESET_N	DDR_RESET_L	All	T2	RESET_L		C21	DDR_DQ39	DDR_DQ[39]	3	A3	DQ15
B14	DDR_CSO_N	DDR0_CS1_L	1 & 2	L1	CS1_L		H21	DDR_DQ\$4P	DDR_DQ\$4P	3	F3	UDQS
A12	DDR_CS1_N	DDR0_CS0_L	1 & 2	L2	CS0_L		H20	DDR_DQS4N	DDR_DQS4N	3	G3	UDQS_L
B18	DDR_CS_B0_N	DDR1_ODT1	3 & 4	J1	ODT1		F21	DDR_DM4	DDR_DM[4]	3	E7	UDM
A19	DDR_CS_B1_N	DDR1_CS0_L	3 & 4	L2	CS0_L		D24	DDR_DQ40	DDR_DQ[53]	3	Н8	DQ5
A13	DDR_CKE0	DDR0_CKE0	1 & 2	К9	CKE0		C24	DDR_DQ41	DDR_DQ[49]	3	F7	DQ1
A14	DDR_CKE1	DDR0_CKE1	1 & 2	J9	CKE1		E27	DDR_DQ42	DDR_DQ[54]	3	G2	DQ6
A20	DDR_CKE_B0	DDR1_CKE0	3 & 4	К9	CKE0		A24	DDR_DQ43	DDR_DQ[51]	3	F8	DQ3
B20	DDR_CKE_B1	DDR1_CKE1	3 & 4	J9	CKE1		E26	DDR_DQ44	DDR_DQ[52]	3	H3	DQ4
A15	DDR_ODT1	DDR0_ODT1	1 & 2	K1	ODT0		B26	DDR_DQ45	DDR_DQ[48]	3	E3	DQ0
B15 C18	DDR_ODT_B0	DDR0_ODT1	1 & 2	J1	ODT1 ODT0		A25 A26	DDR_DQ46	DDR_DQ[55] DDR_DQ[50]	3	H7 F2	DQ7 DQ2
	DDR_ODT_B0	DDR1_ODT0	3 & 4 3 & 4	K1			C26	DDR_DQ47		3		
A18	DDK_OD1_61	DDR1_CS1_L	3 tt 4	L1	CS1_L		D26	DDR_DQS5P	DDR_DQS6P DDR_DQS6N		C7	LDQS
						_	B24	DDR_DQS5N DDR_DM5	DDR_DM[6]	3	B7 D3	LDQS_L LDM
A3	DDR_DQ0	DDR_DQ7	1	H7	DQ7	_	A22	DDR_DQ48	DDR_DQ[46]	4	B8	DQ14
A4	DDR_DQ1	DDR_DQ/	1	G2	DQ/ DQ6		E24	DDR_DQ49	DDR_DQ[40]	4	A3	DQ14 DQ15
B5	DDR_DQ1	DDR_DQ0	1	E3	DQ0		A23	DDR_DQ50	DDR_DQ[47]	4	C8	DQ10
C2	DDR_DQ3	DDR_DQ3	1	F8	DQ3		C23	DDR_DQ50	DDR_DQ[44]	4	A2	DQ10
B3	DDR_DQ4	DDR_DQ4	1	H3	DQ4		B23	DDR_DQ51	DDR_DQ[40]	4	D7	DQ8
B2	DDR_DQ5	DDR_DQ1	1	F7	DQ1		G23	DDR DQ53	DDR_DQ[41]	4	C3	DQ9
C3	DDR_DQ6	DDR_DQ5	1	H8	DQ5		F24	DDR_DQ54	DDR_DQ[45]	4	A2	DQ13
A5	DDR_DQ7	DDR_DQ2	1	F2	DQ2		H23	DDR_DQ55	DDR_DQ[43]	4	C2	DQ11
C5	DDR_DQS0P	DDR_DQS0P	1	F3	LDQS		E23	DDR_DQS6P	DDR_DQS5P	4	F3	UDQS
D5	DDR_DQS0N	DDR_DQS0N	1	G3	LDQS_L		D23	DDR_DQS6N	DDR_DQS5N	4	G3	UDQS_L
C1	DDR_DM0	DDR_DM[0]	1	E7	LDM		F23	DDR_DM6	DDR_DM[5]	4	E7	UDM
C9	DDR_DQ8	DDR_DQ[19]	1	C2	DQ11		D27	DDR_DQ56	DDR_DQ[61]	4	Н8	DQ5
F9	DDR_DQ9	DDR_DQ[21]	1	A2	DQ13		C29	DDR_DQ57	DDR_DQ[60]	4	H3	DQ4
G8	DDR_DQ10	DDR_DQ[18]	1	C8	DQ10		C27	DDR_DQ58	DDR_DQ[57]	4	F7	DQ1
F8	DDR_DQ11	DDR_DQ[22]	1	B8	DQ14		A29	DDR_DQ59	DDR_DQ[62]	4	G2	DQ6
E9	DDR_DQ12	DDR_DQ[16]	1	D7	DQ8		C31	DDR_DQ60	DDR_DQ[56]	4	E3	DQ0
A9	DDR_DQ13	DDR_DQ[17]	1	C3	DQ9		A27	DDR_DQ61	DDR_DQ[59]	4	F8	DQ3
D9	DDR_DQ14	DDR_DQ[23]	1	A3	DQ15		C30	DDR_DQ62	DDR_DQ[58]	4	F2	DQ2
E8	DDR_DQ15	DDR_DQ[20]	1	A7	DQ12		A28	DDR_DQ63	DDR_DQ[63]	4	H7	DQ7
G9	DDR_DQS1P	DDR_DQS2P	1	C7	UDQS		B30	DDR_DQS7P	DDR_DQS7P	4	C7	LDQS
H9	DDR_DQS1N	DDR_DQS2N	1	B7	UDQS_L		B29	DDR_DQS7N	DDR_DQS7N	4	B7	LDQS_L
B9	DDR_DM1	DDR_DM[2]	1	D3	UDM		B27	DDR_DM7	DDR_DM[7]	4	D3	LDM

Note: The DDR pin remapping must be followed exactly as shown above.

DDR3L Design Guidelines

- Note:

 The topology for each signal must be followed exactly as shown in the figures included for each signal group. The Requirements are 32-bit channel except the DDR0_CLKP/DDR0_CLKN to DDR1_CLKP/DDR1_CLKN requirement.
 - New Skew requirement term definitions:
 - "Center, +/-" mean the skew is measured from the clock/strobe (center signal) to the related signals, either before or after the strobe/clock and must meet the required max value.
 - "Absolute" mean the maximum skew between any of the signals listed is within the required max value.
 - "Load to Load" means that the skew is the total of the path from Tegra out to the
 destination (load) for each signal involved in the requirement. This allows for
 asymmetric routing of the different branches in T-topologies, as long as the total
 lengths/delays are within the requirement value.

Figure 15. Single Rank, 16-bit DDR3L DQ, DQS, DQM (Point-Point Topology - Used w/2-T Address Topology)

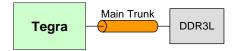


Table 23. DDR3L, 4x16 Data Signal Group Routing Requirements

Parameter		Requirement	Units	Note
Max Frequency / Data Rate		933 / 1866	MHz/Mbps	See note 1
Switching Period (T)		0.5	Т	
Topology		Direct		
Configuration / Device Organization		1	load	
Termination (VTT & ODT)		None		
Reference plane		GND		
Max PCB breakout length		6.35	mm	
Via proximity (Signal to reference)		< 3.8 (24)	mm (ps)	See note 2
Capacitance				
Min Input/Output Capacitance (DQ/DM/DQS)		1.4	pF	
Max Input/Output Capacitance (DQ/DM/DQS)		2.1	pF	
Input Capacitance Delta (DQSP & DQSN)	Min / Max	0 / 0.15	pF	
Input Capacitance Delta(DQ, DM, DQSP, DQSN)	Min / Max	-0.5 / 0.3	pF	
Impedance/Spacing				
Trace Impedance	DQ / DM DQS Single Ended DQS Differential		Ω	$\pm 15\%$. Options are for $40\Omega/45\Omega/80\Omega$ or $50\Omega/50\Omega/90\Omega$
Trace Spacing Mi	icrostrip / Stripline	3x / 2x	dielectric	
Max Via Count				
Max Number of Vias (Tx to Rx (Per device) / Tx t	2			
Trace Lengths/Delays				
Max Trace Length/Delay (PCB Main Trunk)		33.34 (210)	mm (ps)	

Parameter	Requirement	Units	Note
Skew Matching			
Max Trace Length/Delay Skew from DQS to DQ / DM	1.575 (Center +/- 10)	mm (ps)	
Max Trace Length/Delay Skew from DQSP & DQSN	0.32 (2)	mm (ps)	
Max Trace Length/Delay Skew from CLK to DQS (load to load) PCB Main Trunk + Branch (CLK) compared withPCB Main Trunk (DQS)	25.40 (160)	mm (ps)	
Max Trace Length/Delay Skew from DQ to DQ (within byte)	3.18 (Absolute 20)	mm (ps)	
Max Trace Length/Delay Skew from DQ to DQ (within same 32-bit partition)	12.70 (80)	mm (ps)	
Max Trace Length/Delay Skew from DQ (Lower 32-bit partition) to DQ (Upper 32-bit partition)	12.70 (80)	mm (ps)	
General DQ/DM/DQS Routing Considerations			
DQ/DM/DQS in each byte should be kept on same layer			

Note:

- Max frequency is target. Actual frequency may depend on characterization results, and achievable PLL frequency used to clock the EMC block
- 2. Up to 4 signal vias can share a single GND return via

Table 24. DDR3L, 4x16 Data Signal Group Connections

Signal Name	Туре	Termination	Description	1				
DDR_DQ[63:0] DDR_DM[7:0] DDR_DQS[7:0]P/ N	I/O O DIFF I/O	No VTT or ODT (On- Die Termination) Required	Data Mask: Data Strobe	es: Connect (Groupings) Data Mask	DM pins on to DQSxP/D per channel	DRAMs (see QSxN pins o	table below	table below)

Note: The Tegra DRAM ball names may not correspond to the signal brought out on that ball. Use the DRAM Pin Multiplexing table to select the correct Tegra ball to connect to each DDR3L ball.

Figure 16. DDR3L, 4x16 Address (A[15:6,2:0), Command (RAS_N, CAS_N, WE_N & RESET_N) 2-T Topology

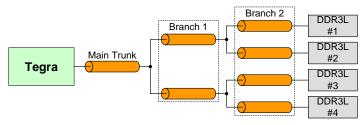


Table 25. DDR3L, 4x16 Address/Command Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency / Data Rate	466.5 / 466.5	MHz/Mbps	Note 1
Switching Period (T)	2	Т	
Topology	Т-Т		
Configuration / Device Organization	4	load	
Reference Pplane	GND		
Max PCB breakout length	6.35	mm	
Via proximity (Signal to Reference)	< 3.8 (24)	mm (ps)	See Note 2
Capacitance			
Input Capacitance Min / N	0.75 / 1.2	pF	
Input Capacitance Delta (All Add/Cmd) Min / N	-0.4 / 0.4	pF	
Impedance/Spacing			
Trace Impedance	50	Ω	±15%
Trace Spacing Microstrip / Stripli	3x / 2x	dielectric	
Max Via Count			
Max Number of Vias (Tx to Rx (Per device) / Tx to all loads):	4 / 8		
Trace Lengths/Delays			
Max Trace Length/Delay (PCB Main Trunk)	41.28 (260)	mm (ps)	
Max Trace Length/Delay: Branch 1	14.29 (90)	mm (ps)	
Max Trace Length/Delay: Branch 2	14.29 (90)	mm (ps)	
Max Trace Length/Delay Asymmetry for Branch 1	7.17 (45)	mm (ps)	
Max Trace Length/Delay Asymmetry for Branch 2	7.17 (45)	mm (ps)	
Skew Matching			
Max Trace Length/Delay Skew between Addr/Cmd & Clk PCB Main Trunk +Branch 1 + Branch 2	25.4 (160)	mm (ps)	
Max Trace Length/Delay Skew between any Add/Cmd to any other Add/Cmd.	25.4 (160)	mm (ps)	

 $\mbox{\it Max}$ frequency is target. Actual frequency may depend on characterization results, and achievable PLL frequency used to clock the EMC block Note:

Up to 4 signal vias can share a single GND return via Address: DDR_A[15:6,2:0], DDRO_A[5:3], DDR1_A[5:3], DDR_BA[2:0]. Command: DDR_RAS, DDR_CAS & DDR_WE

Table 26. DDR3L, 4x16 Address/Command Signal Group Connections

Signal Name	Туре	Termination	Description
DDR_A[15:6,2:0]	0		Address 15:6, 2:0: Connect to matching Ax pins of all DRAM
DDR_BA[2:0]	0		Bank Address: Connect to BAx pins of all DRAMs
DDR_CAS	0		Column Add. Strobe: Connect to CAS pins of all DRAMs
DDR_RAS	0		Row Address Strobe: Connect to RAS pin of all DRAMs
DDR_WE	0		Write Enable: Connect to WE pin of all DRAMs
DDR_RESET_N	0		Reset: Connect to RESET pin of all DRAMs

Note: The Tegra DRAM ball names may not correspond to the signal brought out on that ball. Use the DRAM Pin Multiplexing table to select the correct Tegra ball to connect to each DDR3L ball.

Figure 17. DDR3L, 4x16 Address (A[5:3] for 32-bit partitions [1:0]) 1-T Topology

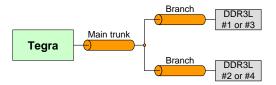


Table 27. DDR3L, 4x16 Address (A[5:3] for 32-bit partitions [1:0]) Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency / Data Rate	466.5 / 466.5	MHz/Mbps	Note 1
Switching Period (T)	2	Т	
Topology	T-Branch		
Configuration / Device Organization	2	load	
Reference Pplane	GND		
Max PCB breakout length	6.35	mm	
Via proximity (Signal to Reference)	< 3.8 (24)	mm (ps)	See Note 2
Capacitance			
Input Capacitance Min / M	0.75 / 1.2	pF	
Input Capacitance Delta (All Add/Cmd) Min / Min	-0.4 / 0.4	pF	
Impedance/Spacing			
Trace Impedance	50	Ω	±15%
Trace Spacing Microstrip / Stripl	3x / 2x	dielectric	
Max Via Count			
Max Number of Vias (Tx to Rx (Per device) / Tx to all loads):	4 / 8		
Trace Lengths/Delays			
Max Trace Length/Delay (PCB Main Trunk)	42.86 (270)	mm (ps)	
Max Trace Length/Delay: Branch	14.29 (90)	mm (ps)	
Max Trace Length/Delay Asymmetry for Branch	7.17 (45)	mm (ps)	Absolute
Max Trace Length/Delay: Branch	14.29 (90)	mm (ps)	Absolute

Parameter	Requirement	Units	Note
Skew Matching			
Max Trace Length/Delay Skew, Addr & Clk (PCB Main Trunk +Branch A/B)	12.7 (80)	mm (ps)	Center (Clk) +/-
Max Trace Length/Delay Skew: Any Add to any other Add (for A[5:3] & A_B[5:3], this requirement is within each group, not between the groups).	25.4 (160)	mm (ps)	Absolute

Note: 1. Max frequency is target. Actual frequency may depend on achievable PLL frequency used to clock the EMC block

2. Up to 4 signal vias can share a single GND return via

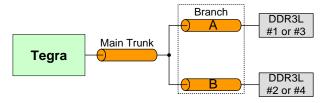

Address: DDR_A[15:0], DDR_A_B[5:3], DDR_BA[2:0]. Command: DDR_RAS, DDR_CAS & DDR_WE

Table 28. DDR3L, 4x16 Address (A[5:3] for 32-bit partitions [1:0]) Signal Group Connections

Signal Name	Туре	Termination	Description
DDR_A[5:3]	0		Address 5:3: Connect to matching Ax pins of DRAM in lower 32-bit data
DDR_A_B[5:3]	0		Address B 5:3: Connect to matching Ax pins of DRAM in upper 32-bit data

Note: The Tegra DRAM ball names may not correspond to the signal brought out on that ball. Use the appropriate DRAM Pin Multiplexing tables included after each placement diagram to select the correct connections

Figure 18. DDR3L, 4x16 Control 1-T Topology

Note: There are two sets of control signals. Primary set routes to DDR3L devices #1 & #2. Secondary set routes to #3 & #4.

Table 29. DDR3L, 4x16 Control Signal Routing Requirements

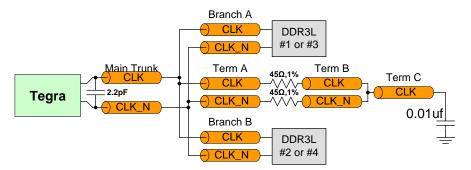
Parameter	Requirement	Units	Note
Max Frequency / Data Rate	933 / 933	MHz/Mbps	Note 1
Switching Period (T)	1	Т	
Topology	T-Branch		
Configuration / Device Organization	2	load	
Reference Pplane	GND		
Max PCB breakout length	6.35	mm	
Via proximity (Signal to Reference)	< 3.8 (24)	mm (ps)	See Note 2
Capacitance			
Input Capacitance Min / I	0.75 / 1.2	pF	

Parameter	Requirement	Units	Note
Input Capacitance Delta (All Ctrl) Min / I	-0.4 / 0.2	pF	
Impedance/Spacing			
Trace Impedance	50	Ω	±15%
Trace Spacing Microstrip / Stripl	3x / 2x	dielectric	
Max Via Count			
Max Number of Vias (Tx to Rx (Per device) / Tx to all loads):	4 / 8		
Trace Lengths/Delays (T Topology)			
Max Trace Length/Delay (PCB Main Trunk)	42.86 (270)	mm (ps)	
Max Trace Length/Delay: Branch	14.29 (90)	mm (ps)	
Max Trace Length/Delay Asymmetry for Branches	7.14 (45)	mm (ps)	Absolute
Skew Matching			
Max Trace Length/Delay Skew: Ctrl & Clk (PCB Main Trunk +Branch A/B)	12.7 (80)	mm (ps)	Center (Clk) +/-
Max Trace Length/Delay Skew in Branch A/B	7.14 (45)	mm (ps)	Absolute
Max Trace Length/Delay Skew: Any Ctrl to any other Ctrl within 32-bit half.	25.4 (160)	mm (ps)	Absolute

Max frequency is target. Actual frequency may depend on achievable PLL frequency used to Note: 1. clock the EMC block

2.

Up to 4 signal vias can share a single GND return via
Control: DDR[1:0]_CS[1:0], DDR[1:0]_CKE[1:0] & DDR[1:0]_ODT[1:0]. 3.


Table 30. DDR3L, 4x16 Control Signal Group Connections

Signal Name	Туре	Termination	Description
DDR0_CS[1:0] DDR1_CS[1:0]	0		Chip Select: Connect to CSx pins of all DRAM in lower 32-bit data Chip Select: Connect to CSx pins of all DRAM in upper 32-bit data
DDRO_CKE[1:0] DDR1_CKE[1:0]	0		Clock Enable: Connect to CKEx pin of all DRAM in lower 32-bit data Clock Enable: Connect to CKEx pin of all DRAM in upper 32-bit data
DDR0_ODT[1:0] DDR1_ODT[1:0]	0		On-Die Termination Control: Connect to ODTx pin of all DRAM in lower 32-bit data On-Die Termination Control: Connect to ODTx pin of all DRAM in upper 32-bit data

The Tegra DRAM ball names may not correspond to the signal brought out on that ball. Use the appropriate DRAM Pin Multiplexing tables included after each placement diagram to select the correct

Figure 19. DDR3L, 4x16 Clock 1-T Topology

Note: There are two sets of differential clock signals. The primary set routes to DDR3L devices #1 & #2 while the secondary set routes to #3 & #4.

Table 31. DDR3L, 4x16 Clock Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency	933	MHz	Note 1
Switching Period (T)	0.5	Т	
Topology	T-Branch		
Configuration / Device Organization	2	load	
Reference plane	GND		
Max PCB breakout length	6.35	mm	
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 2
DDR_CLK/CLK_N AC Source Termination. Max Length/Delay from Capacitor to Tegra	2.54 (16ps)	mm (ps)	2.2pF capacitor between CLK & CLK_N
Capacitance			
Input Capacitance Min / N	0.75 / 1.2	pF	
Input Capacitance Delta (CLK_P/CLK_N) Min / N	0 / 0.15	pF	
Impedance/Spacing			
Trace Impedance Single Ended / Differen	50 / 90	Ω	±15%
Trace Spacing Microstrip / Stripl	3x / 2x	dielectric	
Max Via Count			
Max Number of Vias (Tx to Rx (Per device) / Tx to all loads):	4 / 8		
Trace Lengths/Delays			
Max Trace Length/Delay: PCB Main Trunk	30.16 (190)	mm (ps)	Note 5
Max Trace Length/Delay: Branch	14.29 (90)	mm (ps)	Note 5
Max Trace Length/Delay Asymmetry for Branches	7.14 (45)	mm (ps)	Absolute
Max Trace Length/Delay: Term_A	12.7 (80)	mm (ps)	Absolute
Max Trace Length/Delay: Term_B	3.18 (20)	mm (ps)	Absolute
Max Trace Length/Delay: Term_C	3.18 (20)	mm (ps)	Absolute

Parameter	Requirement	Units	Note
Skew Matching			
Max Trace Length/Delay Skew CLK/CLK_N (Main Trunk + T-Branch A/B)	0.79 (5)	mm (ps)	Absolute
Max Trace Length/Delay Skew from DDR_CLK/DDR_CLK_N (lower 32-bit clock pair) to DDR_CLKB/DDR_CLKB_N (upper 32-it clock pair)	4.76 (30)	mm (ps)	Absolute

Note: 1. Max frequency is target. Actual frequency may depend on characterization results, and achievable PLL frequency used to clock the EMC block.

Up to 4 signal vias can share a single GND return via

 45Ω AC load termination resistors should be on top layer without any vias. 0.01uF capacitor

from resistors should be on top layer with single via to GND

Max Trace Length/Delay for PCB Main Trunk + Branch & the Max Trace Length/Delay: Branch requirements must be met. The Max Trace Length/Delay: PCB Main Trunk can be exceeded as long as the Branch is adjusted to meet the Max Trace Length/Delay for PCB Main Trunk + Branch requirement.

Table 32. DDR3L, 4x16 Clock Connections

Signal Name	Туре	Termination	Description
DDRO_CLKP DDRO_CLKN	DIFF OUT	90Ω between CLKP & CLKN & 0.01uF cap center-tapped to GND. 2 x 45Ω (closest 1% value). 2.2pF cap between the CLKP & CLKN lines near Tegra	Differential Clock for Lower 32-bit Channel: Connect CLK_P/CLK_N pins of DRAM for Channel 0.
DDR1_CLKP DDR1_CLKN	DIFF OUT	Same as for CLKP/CLKN above	Differential Clock for Upper 32-bit Channel: Connect to CLK_P/CLK_N pins of DRAM for Channel 1.

The Tegra DRAM ball names may not correspond to the signal brought out on that ball. Use the appropriate DRAM Pin Multiplexing tables included after each placement diagram to select the correct connections.

Miscellaneous DDR3L Guidelines

Table 33. General DDR Guidelines

Guideline	Description / Illustration
Avoid routing over voids in the GND reference in the ball-out area. The figure to the right shows a "GOOD" example, where the GND continues between the BGA balls with the DDR CLK routing staying over the GND. Avoid the "BAD" example, where the GND has a break and the signal passes over this break (or Void). This guideline should be used for DDR Clock, and if possible Data/DQS/DM.	GOOD Retrod C. N
Separate critical DDR traces (CLK, DQ/DQS/DM, VREF, COMP, etc.) from other signal traces or unrelated power areas or power supply components	

Table 34. DDR_COMP_PU/PD Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND if possible		See note 1
Trace Impedance	50	Ω	±20%
Max Trace Delay	19 (120)	mm (ps)	See note 3

Note: 1.

- If GND reference is not feasible, as may be the case with GSSG stack-up, keep the routing distance very short and have GND areas/traces surrounding the DDR_COMP_PU/PD traces.
- Use reference platform layout as a guideline for routing & location of the DDR_COMP_PU/PD
- Avoid routing signal traces directly below and in parallel with this critical rail.

Table 35. DRAM VREF_DQ/CA & ZQ Routing Requirements

Parameter	Requirement	Units	Note
Reference Plane	GND if possible		See note 1
Max Capacitance	5	pF	VREF & ZQ only - See note 2
Trace Spacing	3x	Dielectric	To other signals
Max Trace Delay	Minimum		See note 3

- Note: 1. If GND reference not feasible, keep routing distance very short & have GND areas/traces next to
 - 2. Maximum external load capacitance on ZQ pin, including package, PCB, resistor & DRAM device(s).
 - 3. Use reference platform layout as a guideline for routing & location of bypass caps & resistors (ZQ & VREF).
 - Avoid routing signal traces directly below and in parallel with this critical rail.
 - Locate capacitors & resistors related to VREF & ZQ very near associated DRAM balls.

Table 36. Miscellaneous Tegra DDR Connections

Ball Name	Туре	Termination	Description
DDR_COMP_PU	Α	$34Ω$, 1% to VDDIO_DDR	DRAM Compensation Pull-up. See termination requirement
DDR_COMP_PD	А	34Ω, 1% to GND	DRAM Compensation Pull-down: See termination requirement
VDDIO_DDR	Р		DRAM Interface I/O Power Rail: Connect to 1.35V supply for DDR3L
VDDIO_DDR_MCLK	Р		DRAM Clock I/O Power Rail: Connect to 1.35V supply for DDR3L
VDDIO_DDR_HS	Р		DRAM Interface High Speed Power Rail: Connect to 1.05V supply

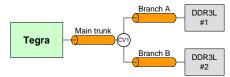
Table 37. Miscellaneous DDR Connections

DDR3L Ball Name	Туре	Termination	Description
VREF_DQ VREF_CA	A	Resistor Divider with one end to 1.35V & other end to GND - Recommend one per DRAM. See note under Connection diagram.	DRAM Voltage Reference Data & Command/Address: Connect both VREF(CA) and VREF(DQ) pins of DRAM each to center of voltage divider described in Termination column.
ZQ0, ZQ1	А	240Ω, 1% to GND	DRAM Zero Compensation pins: Connect each ZQ[1:0] pin to a separate resistor and then to GND as described in Termination column
VDD, VDDQ	Р		DRAM Power Rails: Connect to same source as VDDIO_DDR
VSS, VSSQ	Р		DRAM Ground pins: Connect to GND

Table 38. DRAM Interface Package Delays

Signal Name	Ball #	Pkg Delay	Signal Name	Ball #	Pkg Delav	Signal Name	Ball #	Pkg Delav	Signal Name	Ball #	Pkg Delay
		(ps)			(ps)			(ps)			(ps)
DDR_A_B3	H17	53	DDR_CS_B0_N	B18	78	DDR_DQ28	A10	82	DDR_DQ58	C27	73
DDR_A_B4	E20	80	DDR_CS_B1_N	A19	77	DDR_DQ29	B11	70	DDR_DQ59	A29	86
DDR_A_B5	F17	55	DDR_CSO_N	B14	76	DDR_DQ3	C2	77	DDR_DQ6	C3	91
DDR_A0	E14	63	DDR_CS1_N	A12	84	DDR_DQ30	F11	53	DDR_DQ60	C31	97
DDR_A1	D14	65	DDR_DM0	C1	79	DDR_DQ31	D11	71	DDR_DQ61	A27	82
DDR_A10	D18	56	DDR_DM1	В9	85	DDR_DQ32	G21	58	DDR_DQ62	C30	86
DDR_A11	G17	51	DDR_DM2	В6	76	DDR_DQ33	A21	85	DDR_DQ63	A28	88
DDR_A12	A16	81	DDR_DM3	C11	76	DDR_DQ34	E21	55	DDR_DQ7	A5	84
DDR_A13	C20	64	DDR_DM4	F21	69	DDR_DQ35	F20	63	DDR_DQ8	C9	71
DDR_A14	E17	64	DDR_DM5	B24	79	DDR_DQ36	G20	56	DDR_DQ9	F9	55
DDR_A15	E18	55	DDR_DM6	F23	67	DDR_DQ37	D21	70	DDR_DQS0N	D5	79
DDR_A2	E15	63	DDR_DM7	B27	76	DDR_DQ38	B21	73	DDR_DQS0P	C5	77
DDR_A3	E12	57	DDR_DQ0	A3	87	DDR_DQ39	C21	70	DDR_DQS1N	H9	63
DDR_A4	D12	66	DDR_DQ1	A4	77	DDR_DQ4	В3	78	DDR_DQS1P	G9	60
DDR_A5	F12	59	DDR_DQ10	G8	84	DDR_DQ40	D24	77	DDR_DQS2N	D8	71
DDR_A6	C12	62	DDR_DQ11	F8	71	DDR_DQ41	C24	71	DDR_DQS2P	C8	69
DDR_A7	F14	57	DDR_DQ12	E9	65	DDR_DQ42	E27	71	DDR_DQS3N	G11	64
DDR_A8	D15	67	DDR_DQ13	Α9	84	DDR_DQ43	A24	93	DDR_DQS3P	H11	66
DDR_A9	B12	76	DDR_DQ14	D9	59	DDR_DQ44	E26	62	DDR_DQS4N	H20	62
DDR_BA0	F18	51	DDR_DQ15	E8	70	DDR_DQ45	B26	79	DDR_DQS4P	H21	59
DDR_BA1	D20	65	DDR_DQ16	A8	84	DDR_DQ46	A25	85	DDR_DQS5N	D26	76
DDR_BA2	H15	55	DDR_DQ17	B8	71	DDR_DQ47	A26	92	DDR_DQS5P	C26	75
DDR_CAS_N	C14	61	DDR_DQ18	C6	79	DDR_DQ48	A22	83	DDR_DQS6N	D23	63
DDR_CKE_B0	A20	78	DDR_DQ19	E6	73	DDR_DQ49	E24	63	DDR_DQS6P	E23	65
DDR_CKE_B1	B20	78	DDR_DQ2	B5	75	DDR_DQ5	B2	83	DDR_DQS7N	B29	87
DDR_CKE0	A13	82	DDR_DQ20	A7	89	DDR_DQ50	A23	78	DDR_DQS7P	B30	85
DDR_CKE1	A14	81	DDR_DQ21	A6	86	DDR_DQ51	C23	78	DDR_ODT_B0	C18	74
DDR_CLK	G14	57	DDR_DQ22	D6	67	DDR_DQ52	B23	70	DDR_ODT_B1	A18	77
DDR_CLK_N	H14	59	DDR_DQ23	F6	88	DDR_DQ53	G23	52	DDR_ODT0	A15	79
DDR_CLKB	H18	78	DDR_DQ24	G12	57	DDR_DQ54	F24	67	DDR_ODT1	B15	71
DDR_CLKB_N	G18	80	DDR_DQ25	H12	61	DDR_DQ55	H23	83	DDR_RAS_N	G15	46
DDR_COMP_P											
D	D17	67	DDR_DQ26	A11	70	DDR_DQ56	D27	74	DDR_RESET_N	F15	52
DDR_COMP_P U	C17	73	DDR_DQ27	E11	57	DDR_DQ57	C29	77	DDR_WE_N	C15	65

3.3.2 Component Vias


Component vias (also called Rat-T vias) are used to replace T-points which are unstable & tend to move around on the board layout. The designer must keep relocating the T-points back to the correct location. Component vias stay in the location they are placed & are easier to manage when routing or creating topologies.

Creating Component Vias

A component via is simply a single-pin IC symbol. For Allegro, a component via is created for each via in the library including test points & via pad-stack data is used for the IC pin. For Concept schematic capture, create one component via symbol & add a different component-via JEDEC type in Parts table. Once the schematic has been loaded, the designer will be able to select which component via is best for the design.

When to use component vias

A component via is used wherever a T-point is needed, or when trying to control trace delays mid-route. The net topology is controlled by dividing it up into multiple segments. Each section has a maximum delay associated. In addition, after each T, branches also have relative delay (skew) requirements. To control these items, component vias are added to divide the nets into main trunk & the two branches as shown below:

The above example indicates the location of the component vias (CV1). Each via must be added to the schematic before loading it into the layout file. The final outcome is shown below.

Table 39. Example Segment Measurements using Component Vias

Max Delays	Measurement (mm)	Max Skews	Measurement (mm)
Tegra to CV1	45		
CV1 to DRAM 1	12	CV1 to DRAM1 verses CV1 to DRAM2	6
CV1 to DRAM 2	12		

The cost of using component vias is the time required to add each via to the schematic and place them on the layout. The benefits are many though:

- Flowing T-point issue is eliminated
- Easier to see the how topology is to be routed & to perform routing checks& to see topology in Constraint manager
- Easier to move component vias to maximize routing strategy
- Easier to relocate components & busses to different areas of board

3.4 USB/PCIe/SATA Interfaces

Tegra has three USB 2.0 controllers.

- Controller #1 can drive a USB 2.0 PHY (supports USB Recovery mode). Device & Host modes are supported.
- Controller #2 can support either a USB 2.0 PHY or HSIC. Only Host mode is supported for the PHY.
- Controller #3 can be configured to drive either a PHY or HSIC IF. Only Host mode is supported for the PHY.

The XUSB3 controller supports up to two USB 3.0 interfaces and can also be configured to drive the USB 2.0 PHYs.

Two PCIe controllers supporting up to 5 PCI lanes (two interfaces) and a single SATA controller/interface is provided. See the table below for possible USB 3.0, PCIe & SATA lane mappings.

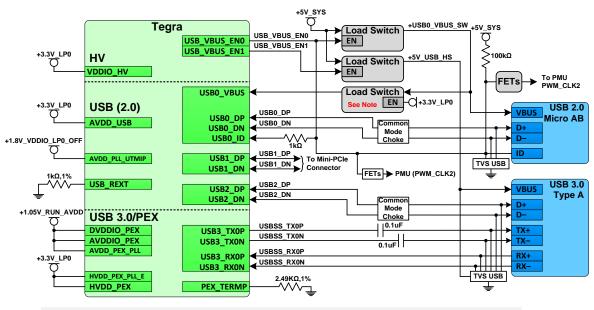


Table 40. USB 3.0, PCIe & SATA Lane Mapping Use Cases

Use Case	USB 3.0	PCle	SATA	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	SATA
TK1 Pins				USB3_TX0 USB3_RX0	PEX_USB3_T X1 PEX_USB3_R X1	PEX_TX2 PEX_RX2	PEX_TX3 PEX_RX3	PEX_TX4 PEX_RX4	SATA_TX SATA_RX
Jetson TK1				USB_SS#0	Unused	PCle#1_0 (LAN)	Unused	PCIe#0_0 (Mini PCIe)	SATA
1	2	1 x1 & 1 x2	1	USB_SS#0	USB_SS#1	PCle#1_0	PCIe#0_1	PCIe#0_0	SATA
2	1	1 x4	1	USB_SS#0	PCIe#0_3	PCIe#0_2	PCIe#0_1	PCIe#0_0	SATA
3	0	1 x1 & 1 x4	1	PCIe#1_0	PCIe#0_3	PCIe#0_2	PCIe#0_1	PCIe#0_0	SATA
4	1	1 x1 & 1 x4	0	PCle#1_0	PCIe#0_3	PCIe#0_2	PCle#0_1	PCIe#0_0	USB_SS#1

3.4.1 USB

Figure 20 TK1 USB Connections

- Note:
- . The connections for Tegra USBO_VBUS shown above differ from the reference design. Instead of USBO_VBUS being tied directly to +3.3V_LPO, a buffered version of VBUS from the connector is used. This allows SW to detect when a host is connected/disconnected.
- 2. Ensure bulk capacitance meets USB 3.0 requirements for Type A connector.
- 3. Any ESD solution must also maintain signal quality & meet USB requirements.
- 4. See Reference design for details on ID connections.
- 5. If USB Wake w/USB DP/DN mechanisms is required for connected devices, AVDD_USB must be powered in Deep Sleep. If USB 3.0 Wake on USB3_TXx/RXx (Using USB mechanisms) is required, HVDD_PEX must be powered in Deep Sleep. AVDDIO_PEX & DVDDIO_PEX do not need to be powered & are recommended to be off in Deep Sleep.
- See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.
- Connector used must be USB-IF certified.

USB 2.0 Design Guidelines

Table 41. USB 2.0 Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency (High Speed) Bit Rate/UI period/Frequen	480/2.083/240	Mbps/ns/MHz	
Max Loading High Speed / Full Speed / Low Spee	10 / 150 / 600	pF	
Reference plane	GND		
Breakout Region Impedance	Min width/spacing		
Trace Impedance Diff pair / Single Ende	90 / 50	Ω	±15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Max Trace Delay Microstrip / Striplin	1280 (~8) / 1150 (~7)	ps (in)	See Note 2
Max Intra-Pair Skew between USBx_DP & USBx_DN	7.5	ps	See Note 2

Note:

- 1. Up to 4 signal vias can share a single GND return via.
- Max Trace Delay & Max Trace Delay Skew matching must include substrate pin delays unless otherwise specified
- 3. Default USB drive strength, slew rate, termination values are fused at the factory for each Tegra device. Default fused settings will meet USB Electrical specification using max trace delays listed in table above. If adjustments to the settings are required, they MUST be done as an offset to default values instead of overwriting those values. Consult AE & CE team for assistance

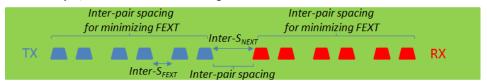
USB 3.0 Design Guidelines

The requirements following apply to the USB 3.0 controller PHY interface (USB3_RXON/P & USB3_TXON/P)

Table 42. USB 3.0 Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Data Rate / UI period	5.0 / 200	Gbps / ps	
Max Number of Loads	1	load	
Termination	90 differential	Ω	On-die termination at TX & RX
Reference plane	GND		
Breakout Region Max length	7.62	mm	4x dielectric spacing preferred
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See note 1
Trace Spacing Microstrip / Striplin To Ref plane & capacitor pa To unrelated high-speed signa	5x / 3x	dielectri c	
Max Trace Length	152	mm	See Note 2
Max PCB Via distance from BGA ball	7.62	mm	
Max Intra-Pair Skew (RX/TXN to RX/TXP)	0.15 (1)	mm (ps)	See Note 2
Intra-pair matching between subsequent discontinuities	0.15 (1)	mm (ps)	See note 3
Via placement (GND Via distance)	< 1x	Diff via pitch	See note 3
Max Number of Vias	4		
Via stub length	< 0.4	mm	

Parameter	Requirement	Units	Note
AC coupling capacitor	0.1	uF	Discrete 0402
AC coupling capacitor Location	< 8 (53)	mm (ps)	From adjacent discontinuities (e.g., connector)
SMT Connector GND Voiding			GND plane under signal pad should be voided. Size of void should be the same size as the pad.


Note:

- 1. Up to 4 signal vias can share a single GND return via
- Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.
- Recommend trace length matching to <1ps before Vias or any discontinuity to minimize common mode conversion.
- 4. Place GND Vias as symmetrically as possible to data pair Vias.

Table 43. Additional USB 3.0 Routing Guidelines

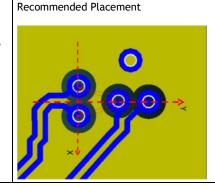
TX & RX routing to minimize Xtalk.

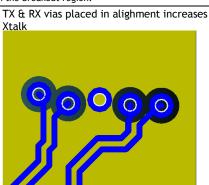
- 1. Ideal solution is to breakout TX & RX breakout on different layers.
- 2. If in same layer, recommend not interleaving TX & RX traces

for minimizing NEXT

If routing on the same layer, increase inter-pair spacing using the methods below.

a) Use the recommended trace dimension for breakout & main route & length limitation from the table below.


PCB	Н	DI	Standard	
Line Type	Stripline-Sta	ackup=GSSG	Micro-strip	
Section	breakout	main trace	breakout	main trace
Trace Widths	1x	1.32x	1.32x	1.32x
Inter-S (Within Pair)	1.167x	1.68x	1.32x	1.32x
Inter-S _{NEXT} (Between TX/RX)	4.85x	>3x	1.32x	>4x
Inter-S _{FEXT} (Between TX/TX or	>1x	>1x	1x	
RX/RX)	^ IX	^ IX	1.8	>1x
Length	<11mm	<170mm-L _{brk}	<4mm	<170mm-L _{brk}


 $[\]dot{}$ all Nx values in the table are for trace spacing, in terms of the minimum dielectric height

Note:

- If the TX/RX sequence cannot be non-inerleaved in the breakout, all the inter-pair spacing should follow the rule of inter-SNEXT. Having different trace dimensions for breakout & main route provides optimal near-end Xtalk suppression. Strongly suggest to have non-interleaved sequence in the main route.
- Since breakout route is much shorter than main route, min trace width should be selected for breakout trace to increase inter-pair spacing.
- Having different trace dimensions for breakout & main route provide optimal near-end Xtalk suppression. b) Do not perform serpentine routing for intra-pair skew compensation in the breakout region.

Y-Pattern Via If TX & RX vias are near each other, place the pairs orthogonally as shown in figure to the right.

^{*} L_{brk} is the breakout trace length

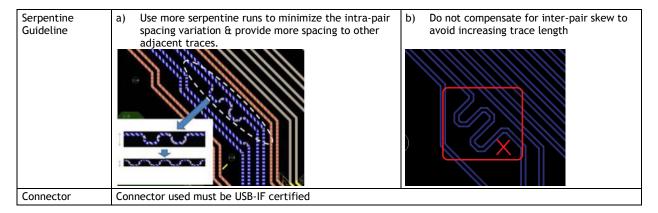


Table 44. USB_REXT Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND if possible		See note 1
Trace Impedance	50	Ω	±15%
Max Trace Delay	75	ps	Include only PCB routing delay

Note

- If GND reference is not feasible, as may be the case with GSSG stack-up, keep the routing distance as short as possible & have GND areas/traces next to the USB_REXT trace.
- 2. Use reference platform layout as a guideline for routing & location of USB_REXT resistor.
- 3. Avoid routing signal traces directly below and in parallel with these critical rails.

Table 45. PEX_TERMP Routing Requirements (required for USB3 or PCle)

Parameter	Requirement	Units	Note
Reference plane	GND if possible		See note 1
Trace Impedance	50	Ω	±15%
Max Trace Delay	75	ps	Include only PCB routing delay

Note:

- If GND reference is not feasible, keep the routing distance as short as possible & have GND areas/traces next to the PEX_TERMP traces.
- 2. Use reference platform layout as a guideline for routing & location of PEX_TERMP resistor.
- Avoid routing signal traces directly below and in parallel with these critical rails.

Common USB Routing Guidelines

Guideline

If routing to USB device or USB connector includes a flex or 2^{nd} PCB, the total routing including all PCBs/flexes must be used for the max trace & skew calculations.

Keep critical USB related traces such as USB3_TX/RX, USB_REXT & PEX_TERMP etc. away from other signal traces or unrelated power traces/areas or power supply components

Table 46. USB 2.0 Signal Connections

Ball Name	Туре	Termination	Description
USB[2:0]_DP USB[2:0]_DN	DIFF I/O	90Ω common-mode chokes close to connector. ESD Protection between choke & connector on each line to GND	USB Differential Data Pair: Connect to USB Micro AB connector D+/D- pins.
USB0_VBUS	A		USB Bus 5V Supply: Connect to +USB2_VBUS_SW (VBUS supply for Micro AB connector) through load switch.
USBO_ID	Α	100Ω series resistor. 100kΩ pull-up to +5V_SYS & ESD Protection near connector	USB Identification: Connect to USB Micro AB ID pin. Also connect ID pin from connector to PMU PWM_CLK2 pin through FETs. See reference design for details.
USB_REXT	Α	1KΩ, 1% to GND (see Note)	External Reference: Connect through resistor to GND
AVDD_USB	Р		USB PHY Power Rail: Connect to +3.3V_LP0 supply
AVDD_PLL_UTMIP	Р	30Ω@100MHz ferrite bead to 1.8V	USB PHY PLL Power Rail: Connect to +1.8V_VDDIO_LPO_OFF supply through filter

Table 47. USB 2.0 Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
USB0_DN	AH20	80	USB2_DN	AE20	64
USB0_DP	AJ20	80	USB2_DP	AD20	63
USB1_DN	AF20	74	USB_REXT	AL19	76
USB1_DP	AG20	74			

Table 48. USB 3.0 Signal Connections

Ball Name	Туре	Termination	Description
USB3_TX0N/P	DIFF I/O	Series 0.1uF caps close to connector. ESD Protection between cap & conn. to GND	USB 3.0 Differential Transmit Data Pair: Connect to USB 3.0 connector.
USB3_RXON/P	DIFF I/O	ESD Protection between cap & conn. to GND	USB 3.0 Differential Receive Data Pairs: Connect to USB 3.0 connector.
PEX_TERMP	Α	2.49KΩ, 1% to GND	PCIe/USB3 Calibration: Connect through resistor to GND
DVDDIO_PEX	Р		PCIe /USB PHY Digital Power Rail: Connect to 1.05V supply
AVDDIO_PEX	Р		PCIe/USB PHY Analog Power Rail: Connect to 1.05V supply
AVDD_PEX_PLL	Р		PCIe/USB PHY PLL Power Rail: Connect to 1.05V supply
HVDD_PEX	Р		PCIe/USB 3.0 High Voltage Power Rail: Connect to 3.3V supply
HVDD_PEX_PLL _E	Р		PCIe/USB 3.0 PLL High Voltage Power Rail: Connect to 3.3V supply
VDDIO_PEX_CTL	Р		PCIe/USB Control Block Rail: Connect to 3.3V supply.

Table 49. USB 3.0 ESD Protection Device Requirements

Parameter	Requirement	Units	Note
Recommended ESD protection device	SEMTECH RClamp0524p		
Max Reverse Stand-Off Voltage (V _{RWM})	5	٧	Any I/O pin to GND
Min Reverse Breakdown Voltage (V _{BR})	6	٧	It=1mA - Any I/O pin to GND
Max Reverse Leakage Current (I _R)	1	uA	V _{RWM} =5V, T=25C - Any I/O pin to GND
Max Clamping Voltage (V _C)	15	٧	I _{PP} -1A, tp=8/20us - Any I/O pin to GND
Typ/Max Junction Capacitance (C _j)	0.3/0.4	pF	V _R =0V, f=1MHz - Between I/O pins
Max Junction Capacitance (C _j)	0.8	pF	V _R =0V, f=1MHz - Any I/O pin to GND

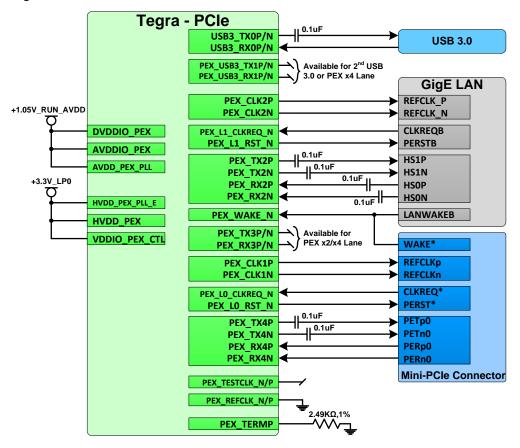
Note: The junction capacitance of ESD devices has an effect on signal integrity. Choose components with low capacitance with package optimized for high speed links. SEMTECH Rclamp0524p has been well verified with its 0.3pF capacitance. See detailed characteristics above.

Table 50. USB 3.0 Common Mode Choke Requirements (Optional - Only used if rare EMI issue is seen)

Parameter	Requirement	Units	Note
Common mode impedance (at 100MHz)	/ 65 N 90	Ω	
Rdc (Max)	0.3	Ω	
Differential mode impedance Z0 at 2.5GHz	90	Ω	+/- 15%
Differential insertion loss (Sdd21 at 2.5GHz)	<2.22	dB	
Common-to-Common insertion loss (Scc21 at 2.5GHz)	>19.2	dB	

Table 51. USB 3.0 Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
USB3_RX0N	AL21	43	PEX_USB3_RX1N	AL23	46
USB3_RX0P	AK21	43	PEX_USB3_RX1P	AK23	46
USB3_TX0N	AJ21	36	PEX_USB3_TX1N	AG21	26
USB3_TX0P	AH21	35	PEX_USB3_TX1P	AF21	26
PEX_TERMP	AL22	54			


Note: If the USB 3.0 interface is coming from the SATA balls, get the package delays from the table at the end of the SATA section.

3.4.2 PCle

Tegra contains two PCIe controllers that support up to 5 lanes, and 2 separate interfaces. These narrow, high-speed interfaces can be used to connect to a variety of high bandwidth devices. The example below is from the Jetson TK1 design. See the table "USB 3.0, PCIe & SATA Lane Mapping Use Cases" at the beginning of the "USB/PCIe/SATA Interfaces" section for other PCIe options.

Figure 21. Jetson PCIe Connections

Note: See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements

PCIe Design Guidelines

Table 52. PCIe Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency / UI Period	5.0 / 200	Gbps / ps	2.5GHz, half-rate architecture
Topology	Point-point		Unidirectional, differential
Configuration / Device Organization	1	Load	
Max Load (per pin)	N/A	pF	See return loss spec in PCIe 2.0 spec
Termination	50	Ω	To GND Single Ended for P & N
Reference plane	GND		
Breakout Region Width/line spaci pair spaci		Mils	Maximum pair spacing of 500 mils
Trace Impedance differential / Single Endo	90 45 - 60	Ω	±15%
Pair to Pair Trace Spacing Stripline / Microstr	3x / 4x	Dielectric	
Tx to Rx spacing			Recommend Tx & Rx signals routed on separate layers w/GND between for isolation. See note 1
Spacing to planes/cap. pads Stripline / Microstr	3x / 4x	Dielectric	
Max Trace Length/Delay	10" (1700)	in (ps)	For trace with loss <=0.4dB/in @ 2.5GHz. See note 2 & 3
Max Within Pair Trace Delay Skew	1	ps	See note 3 & 4
Max Pair to Pair Trace Delay Skew (RX to RX or TX to TX - Within Link)	600	ps	See note 3 & 4
Trace Width Options	4/5/6	Mils	See note 2

Note: 1.

- If routing in the same layer is necessary, route group TX & RX separately wo/mixing RX/TX routes & keep distance between nearest TX/RX trace & RX to other signals 3x RX-RX separation
- For with trace loss >= 0.7dB/in @ 2.5GHz, the max trace length should be 7.5 inches. To reduce trace loss, ensure the loss tangent of the dielectric material & roughness of the metal are tightly
- Include Package & PCB routing delays for Max trace delays and max trace delay skew
- parameters.

 Do trace length matching before the vias to transition to different layers or any discontinuity to minimize common mode conversion

Table 53. Additional PCIe Interface Signal Routing Guidelines

Maximum # of Vias	Maximum of 4 vias per TX traces and 2 vias per RX trace.
Routing signals over the antipad	Not allowed
Routing over voids	When signal pair approaches vias, the maximal trace length across the void on the plane is 50mil;
Serpentine line rule	For microstrip line, minimal spacing between each turn is 4x dielectric; For stripline, it is 3x dielectric height (3x of thinner of above & below)
PTH (Plated Through-hole) Vias	Keep GND via as close as possible
Ground sliver between BGA pads	Remove ground slivers between BGA pads & feedthrus to via to reduce the capacitive loading of BGA pad
DC Blocking capacitor location	Place DC blocking capacitors on Tegra TX lines within 0.3" of the connector if one exists. For direct

	Device connection, place DC blocking capacitors on all lines. Recommendation is for capacitors to be located near TX for both Tegra & Device. Alternatively, capacitors can be located at either end, but should be near either Tegra or Device.		
Ground plane under AC cap pads	Remove GND plane under AC blocking capacitor pads. If board has ICT pads, remove plane under those as well. Void is size of pad + ring equal to dielectric thickness.		
Serpentine line rule	- Avoid tight bends - No 90deg bends; impact to loss and jitter budgets - Keep angles >= 135deg (a) - maintain adequate air gap - A >= 4x trace width - Lengths of B, C >= 1.5x trace width - Serpetines length is at least 3w for jog		

PEX_TERMP is shared by PCIe & USB3 blocks. See routing requirements in USB section.

Table 54. PCIe Signal Connections

Ball Name	Туре	Termination	Description	
PEX_USB3_TX0P/N PEX_TX[4:2]P/N	DIFF OUT	Series 0.1uF capacitors	Differential Transmit Data Pairs: Connect to PCIe TX_P pins of PCIe device/connector through AC cap according to supported configuration. See Note 1.	
PEX_USB3_RX0P/N PEX_RX[4:2]P/N	DIFF IN	Series 0.1uF caps only if direct device connection.	Differential Receive Data Pairs: Connect to PCIe RX_P pins of PCIe device/connector through AC cap according to supported configuration.	
PEX_L[1:0]_CLKRE Q_N	I		PCIe Clock Request: Connect to CLKREQ pins on device/connector(s)	
PEX_L[1:0]_RST_N	1		PCIe Reset: Connect to PERST pins on device/connector(s)	
PEX_WAKE_N	I	100KΩ pullup to +3.3V_LP0 supply	PCIe Wake: Connect to WAKE pins on device or connector	
PEX_TERMP	А	2.49KΩ, 1% to GND	PCIe Calibration: Connect to GND through termination (resistor)	
PEX_REFCLKP/N	DIFF OUT		PCIe Reference Clock: Unused, connect to GND. See note 1.	
PEX_TSTCLKP/N	DIFF OUT		PCIe Test Clock: Unused - Leave NC	
DVDDIO_PEX	Р		PCIe Digital I/O Power Rail: Connect to 1.05V supply	
AVDDIO_PEX	Р		PCIe Analog I/O Power Rail: Connect to 1.05V supply through bead	
AVDD_PEX_PLL	Р		PCIe Analog Power Rail for Transmit PLL: Connect to 1.05 supply	
HVDD_PEX	Р		PCIe High Voltage Power Rail: Connect to 3.3V supply	
HVDD_PEX_PLL_E			PCIe High Voltage Power Rail for Transmit PLL: Connect to 3.3V supply	
VDDIO_PEX_CTL	Р		PCIe Control I/O Block Power Rail: Connect to 3.3V supply	

Table 55. PCIe Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
PEX_CLK1N	AG26	73	PEX_USB3_TX 1N	AG21	26	PEX_RX3N	AK24	45	PEX_TX4N	AH26	39
PEX_CLK1P	AF26	72	PEX_USB3_TX 1P	AF21	26	PEX_RX3P	AL24	45	PEX_TX4P	AJ26	39
PEX_CLK2N	AC27	67	PEX_RX2N	AE21	39	PEX_TX3N	AG23	29	PEX_TERMP	AL22	54
PEX_CLK2P	AC26	64	PEX_RX2P	AD21	38	PEX_TX3P	AF23	28			
PEX_USB3_RX 1N	AL23	46	PEX_TX2N	AJ23	37	PEX_RX4N	AL26	49			
PEX_USB3_RX 1P	AK23	46	PEX_TX2P	AH23	36	PEX_RX4P	AK26	48			

3.4.3 SATA

A Gen 2 SATA controller is implemented on Tegra. The example below is from the Jetson design which brings this interface to a standard SATA connector & provides control for an LED & power connector.

Figure 22. Jetson SATA Connections

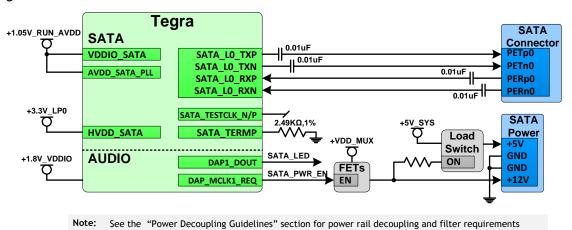


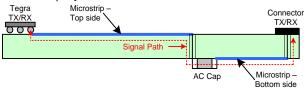
Table 56. SATA Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency Bit Rate /	3.0 / 333.3	Gbps / ps	1.5GHz
Topology	Point to point, unidirectional, differential		
Configuration / Device Organization	1	load	
Max Load (per pin)	0.5	pf	
Termination	100	Ω	On die termination
Reference plane	GND		
Breakout Region Impedance Trace Width / Line separati	4 4	mils	
Trace Impedance Differential Pair / Single End	90 55	Ω	±15%
Pair to Pair Trace Spacing Stripline / Microst	3x / 3x	Dielectric	
Max Trace Delay	1360 (8)	ps (in)	See Note 1 & 2
Max Intra-Pair Trace Delay Skew	1	ps	See Note 1 & 2
V I DCI (CATA I . I . I . DCI (CAT			ć .i i.

Keep critical PCIe/SATA related traces such as PCIe/SATA_TX/RX, PCIe/SATA_TERMP etc. away from other signal traces or unrelated power traces/areas or power supply components

Note:

- If routing to SATA device or SATA connector includes a flex or 2nd PCB, the total routing including all PCBs/flexes must be used for the max trace & skew calculations
- Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.


Table 57. SATA_TERMP Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND		
Trace Impedance	50	Ω	±15%
Max Trace Delay	75	ps	Include only PCB routing delay

Table 58. Additional SATA Interface Signal Routing Guidelines

Preferred routing layer for through-hole SATA Connector

Place AC caps on bottom layer if possible. PCB trace connecting AC cap & SATA connector should be on bottom layer as microstrip. PCB trace connecting the Chip to the AC caps should be on the top layer

In case AC cap has to be put on the top layer because of design constraints then the PCB trace connecting the connector to the AC cap should be on the bottom layer as shown below.

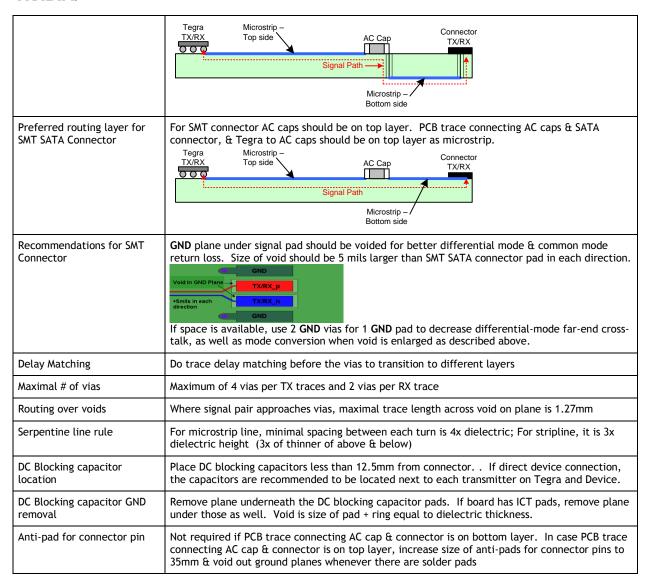
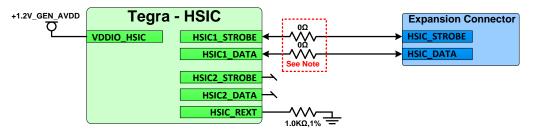


Table 59. SATA Signal Connections

Ball Name	Туре	Termination	Description
SATA_LO_TXP/N	DIFF OUT	Series 0.01uF caps	Differential Transmit Data Pair: Connect to SATAN/P/pins of SATA device/connector through termination (capacitor)
SATA_LO_RXP/N	DIFF IN	Series 0.01uF caps	Differential Receive Data Pair: Connect to SATAN/P pins of SATA device/connector through termination (capacitor)
SATA_TERMP	А	2.49KΩ, 1% to GND	SATA Calibration: Connect to GND through termination (resistor)
SATA_TSTCLKP/N	DIFF OUT		SATA Test Clock: Unused - Leave NC
VDDIO_SATA	Р		SATA I/O Power Rail: Connect to 1.05V supply.
AVDD_SATA_PLL	Р		SATA Analog Power Rail for Transmit PLL: Connect to 1.05V supply
HVDD_SATA	Р		SATA High Voltage Power Rail: Connect to 3.3V supply


Table 60. SATA Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
SATA_LO_RXN	AH27	44	SATA_L0_TXN	AK27	50
SATA_LO_RXP	AJ27	44	SATA_LO_TXP	AL27	49
SATA_TERMP	AL25	55			

3.4.4 HSIC

Tegra supports two HSIC interfaces. These 2-pin, 1.2V CMOS interfaces can connect to compatible modems, Wi-Fi controllers, USB PHYs, etc. The example below from the Jetson design brings the HSIC1 interface to the General Expansion Header.

Figure 23. Jetson HSIC connections

- Note:
- VDDIO_HSIC must remain powered in Deep Sleep if connected device must maintain connection.
 Powering off/on VDDIO_HSIC will require re-enumeration of the HSIC interface.
- Series resistors near Tegra are recommended for early builds for use as test points, or possible signal conditioning
- See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements

HSIC Design Guidelines

Table 61. HSIC Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency (High Speed) Bit Rate / UI period / Fre	480 / 2.083 / 240	Mbps / ns / MHz	
Input Buffer Loading	1 - 5	pF	
Reference plane	GND		
Max PCB breakout delay	17	ps	
Trace Impedance	50	Ω	±15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing Microstrip / Stripli	4x / 3x	dielectric	
Trace Delay Min / N	133 / 667	ps	See Note 2
Max Trace Delay Skew between HSIC[2:1]_STROBE & DATA	15	ps	See Note 2

- Note: 1. Up to 4 signal vias can share a single GND return via
 - Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Table 62. HSIC_REXT Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND if possible		See note 1
Trace Impedance	50	Ω	±15%
Max Trace Delay	140	ps	Include Package & PCB routing delays

Keep HSIC related traces including HSIC_REXT away from other signal traces or unrelated power traces/areas or power supply components

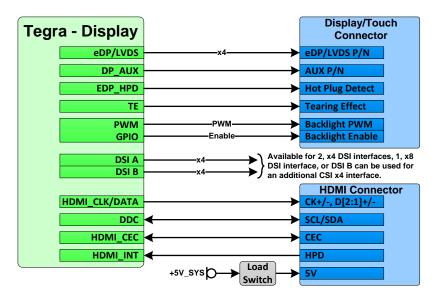
Note:

- 1. If stack-up makes GND reference difficult, keep routing distance very short & have GND areas next to ${\it HSIC_REXT}$ trace.
- 2. Use reference platform layout as a guideline for routing & location of HSIC_REXT resistor.
- 3. Avoid routing signal traces directly below and in parallel with these critical rails.

Table 63. HSIC Signal Connections

Ball Name	Туре	Termination	Description
HSIC[2:1]_STRO BE	1/0	0Ω series resistors (for early designs)	HSICx Strobe: Connect to STROBE pins on HSIC device
HSIC[2:1]_DAT A	1/0	Same as above	HSICx Data: Connect to DATA pins on HSIC device
HSIC_REXT	A	1.0KΩ, 1% to GND	HSIC External Reference Resistor. Connect to termination to GND

Table 64. HSIC Interface Package Delays


Signal Name	Ball #	Pkg Delay (ps)
HSIC1_DATA	AF18	54
HSIC1_STROBE	AE18	55
HSIC2_DATA	AG18	57
HSIC2_STROBE	AD18	82
HSIC_REXT	AH18	58

3.5 Display

Tegra supports eDP, LVDS or DSI for embedded displays as well as HDMI for external displays. The Jetson TK1 design provides access to the eDP/LVDS display options on the Display/Touch Expansion header.

Figure 24: Jetson Display Block Diagram

3.5.1 eDP/LVDS

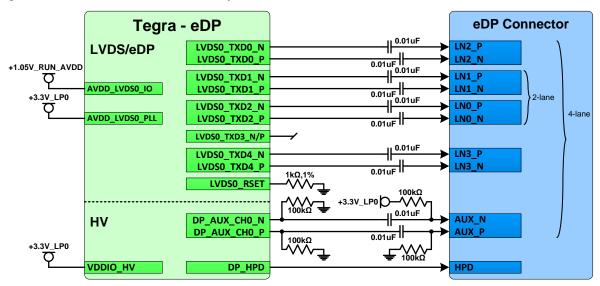

Jetson supports up to a 4-lane single-link LVDS interface or up to a 4-lane eDP interface. The maximum resolution supported with LVDS is 1920x1200 @ 60fps (24bpp color depth). With eDP, the maximum supported using the full 4 lanes is 3840x2160 @ 60fps. LVDS and eDP are multiplexed on the same pins. See LVDS/eDP Pin Assignment Options table below for pin assignments for each interface.

Table 65. eDP/LVDS Pin Assignment Options

Tegra Ball	LVDS (3-lane)	LVDS (4 lane)	eDP
LVDS0_TXD0_P/N	LVDS lane 0	LVDS lane 0	eDP lane 2
LVDS0_TXD1_P/N	LVDS lane 1	LVDS lane 1	eDP lane 1
LVDS0_TXD2_P/N	LVDS lane 2	LVDS lane 2	eDP lane 0
LVDS0_TXD3_P/N	N/A	LVDS lane 3	N/A
LVDS0_TXD4_P/N	LVDS clock lane	LVDS clock lane	eDP lane 3

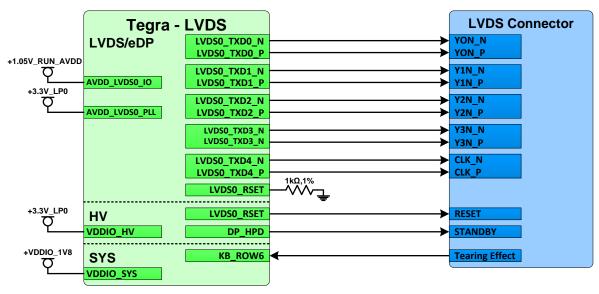


Figure 25: eDP 4-Lane Connection Example

- Note:
 Filters on the DSI signals are not recommended. If EMI is a concern, other solutions, such as using PCB GND layers or other shielding is preferred. If EMI devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing & Vil/Vih requirements at the receiver & not introduce glitches on the signal edges. Any ESD solution must also maintain signal quality and meet requirements for the frequencies supported by the design.
 - See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

Figure 26: LVDS 4-Lane Connection Example

- Note:

 Filters on the DSI signals are not recommended. If EMI is a concern, other solutions, such as using PCB GND layers or other shielding is preferred. If EMI devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing & Vil/Vih requirements at the receiver & not introduce glitches on the signal edges. Any ESD solution must also maintain signal quality and meet requirements for the frequencies supported by the design.
 - See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

eDP Design Guidelines

Table 66. eDP (HBR2) Main Link Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Data Rate (per data lane)HBR2 / HBR / R	5.4 / 2.7 / 1.62	Gbps	
Min UI HBR2 / HBR / RE	185 / 370 / 617	ps	
Number of Loads	1	load	
Topology			Point-Point, Differential, Unidirectional
Termination	100	Ω	On die at TX/RX
Reference plane	GND		
Max PCB breakout length	7.63 (0.3)	mm (in)	
Trace Impedance Diff pair / Single Ended	90 / 45-60	Ω	±15%
Stripline Routing for Main Trunk			
	215 (8.5) 165 (6.5) 1137	mm (in) mm (in) ps	See Note 1 175ps/inch delay assumption for stripline
Max number of signal vias RBR,HBR / HBF	4 / 2		HBR2: One more test via right after AC cap OK
PCB pair-to-pair spacing	3x	dielectric height	3x of the thinner of above and below
PCB main link to AUX Spacing	3x	dielectric height	3x of the thinner of above and below
Max stub length on the Vias Allowed			Rout below core to minimize stub length
Microstrip Routing for Main Trunk			
Max trace length from Tegra TX pin to connector RBR/HE HBR2 (5x / 7x spacin Max Propagation Delay - HBR2 (5x / 7x spa	215 (8.5) 127 (5) / 152.4 (6) 750 / 900	mm (in) mm (in) ps	See Note 1 150ps/inch delay assumption for microstrip
Max number of signal vias RBR,HBR / HBR	4 / 2		HBR2: One more test via right after AC cap OK
PCB pair-pair spacing RBR,HBR / HBF	4x / 5x-7x	dielectric height	
PCB main link to AUX Spacing	5x	dielectric height	
Signal Skews (Stripline or Microstrip)			
Max Intra-pair (within pair) Skew	1	ps	See Note 1 & 2
Max Inter-pair (pair-pair) Skew	150	ps	See Note 1 & 2

Note: _

- $\label{thm:max-problem} \mbox{Max Trace Delay Skew matching must include substrate pin delays unless otherwise specified}$
- Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion

Table 67. Additional eDP Requirements/Recommendations

Parameter	Requirement	Units	Note
	H No requirement 7.63 (0.3)	mm (in)	
Max signal transition vias	2		Recommend = 2 for predominately stripline routing & </=n 4 for predominately microstrip routing.</td
Main Trunk routing	Stripline		Recommended
Max GND transition via distance	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical ground stitching via near signal vias.
AC coupling cap	100	nF	Discrete 0402
Max Distance from AC cap to conn. RBRA	H No requirement B 0.5	in	RBR and HBR: no requirement HBR2: less than 0.5 inch
	H No voiding B required Voiding required		HBR2: Voiding the plane directly under the pad 3-4 mils larger than the pad size is recommended.
	H No voiding B required Voiding required		HBR2: Standard DP Connector: Voiding requirement is stack-up dependent. For typical stack- ups, voiding on the layer under the connector pad is recommended to be 5.7mil larger than the connector pad.
ESD protection device			ESD protection required to meet device testing beyond 2kV HMM (human metal model) direct pin injection test.

Table 68. eDP Auxiliary Channel Signal Routing Requirements

Parameter	Requirement	Units	Note
Termination, Reference plane, Max breakout, Impedance, Max trace length, Max Vias	Same as Main Link		
PCB pair-to-pair spacing Stripline/Microstr	2x/3x	dielectric height	
Max Intra-pair (within pair) Skew	Same as Main Link		
Max Inter-pair (pair-pair) Skew	No requirement		

Table 69. LVDS Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency / Bit Rate	135 / 945	MHz / Mbps	
Number of Loads	1	load	
Topology			Point-Point or Multi-drop, Differential, Unidirectional
Termination	100	Ω	At the receiver (on die or on board)
Reference Plane	GND		
Trace Impedance Diff pair / Single Ende	90 / 45-55	Ω	±15%

Parameter	Requirement	Units	Note
Max Trace Length Stripline / Microstr	10 / 12	in	See Note 1
PCB pair-to-pair spacing Stripline / Microstr	3x / 4x	dielectric height	3x of the thinner of above and below
Max Intra-pair (within pair) Skew	5	ps	See Note 1
Max Inter-pair (pair-pair) Skew	100	ps	See Note 1

Note: Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Table 70. LVDS Multi-drop Signal Routing Requirements

Parameter	Requirement	Units	Note
Stub length	< 15	% (of rise time)	
External termination resistor	100	Ω	Placed at the far end (last receiver).
On chip termination receiver	90 ≤ ZL ≤ 132	Ω	Total load

Table 71. LVDSO_RSET Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND if possible		See note 1
Trace Impedance	50	Ω	±15%
Max Trace Delay	40	ps	Include only PCB routing delay

Note: If stack-up makes GND reference difficult, keep routing distance very short & have GND areas next to LVDSO_RSET trace.

Common eDP/LVDS Routing Guidelines

Guideline

If routing to eDP or LVDS device includes a flex or 2^{nd} PCB, the max trace & skew calculations must include all the PCBs/flex routing

Keep critical eDP/LVDS related traces including differential clock/data traces & RSET trace away from other signal traces or unrelated power traces/areas or power supply components

Table 72. eDP Signal Connections

Ball Name	Туре	Termination	Description	
LVDS0_TXD[4:0]_P /N	0	eDP: Series 0.1uF capacitors	eDP/LVDS CLK/Data Lanes: See eDP/LVDS Pin Assignment Options table or diagrams for correct connection to display connector.	
LVDS0_RSET	Α	1KΩ, 1% to GND	eDP Current Reference: Connect to resistor to GND.	
AVDD_LVDS0_IO	Р	Note 1	eDP IO Power Rail: Connect to 1.05V supply	
AVDD_LVDS0_PLL	Р	Note 1	eDP Dedicated PLL Power Rail: Connect to 3.3V supply for eDP	
DP_AUX_CHO_P/N	0	100K Ω pull-downs on both lines near Tegra, series 0.1uF capacitors, then 100K Ω pull-down on AUX_P & 100K Ω pull-up on AUX_N.	eDP Auxiliary Channel: Connect to AUX_CH_P/N on display connector.	

Ball Name	Туре	Termination	Description
DP_HPD	I/OD		eDP Hot Plug Detect: Connect to HPD on display connector.

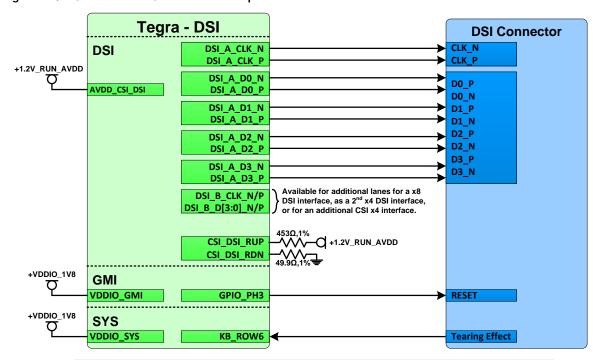
Note: - DP_AUX_CH0_P/N (I2C6) & DP_HPD only supported when IF block powered by VDDIO_HV is from 2.8-3.3V.

Table 73. LVDS Signal Connections

Ball Name	Туре	Termination	Description
LVDS0_TXD[4:0]_P /N	0		LVDS CLK/Data Lanes: See eDP/LVDS Pin Assignment Options table or diagrams for correct connection to display connector.
LVDS0_RSET	Α	1KΩ, 1% to GND	LVDS Current Reference: Connect to resistor to GND.
AVDD_LVDS0_IO	Р	Note 1	LVDS IO Power Rail: Connect to 1.05V supply
AVDD_LVDS0_PLL	Р	Note 1	LVDS Dedicated PLL Power Rail: Connect to 1.8V for LVDS.

Table 74. LVDS/eDP Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
LVDS0_TXD0N	AJ2	50	LVDS0_TXD3N	AG1	46
LVDS0_TXD0P	AJ3	51	LVDS0_TXD3P	AG2	47
LVDS0_TXD1N	AG3	44	LVDS0_TXD4N	AF3	38
LVDS0_TXD1P	AG4	45	LVDS0_TXD4P	AF4	38
LVDS0_TXD2N	AG5	30	LVDS0_RSET	AK3	46
LVDS0_TXD2P	AG6	30			


3.5.2 MIPI DSI

Tegra supports eight total MIPI DSI data lanes and two clock lanes, allowing up to two 4-lane interfaces. Each data channel has peak bandwidth up to 1.5Gbps.

Additional Functions:

- Tearing Effect input to allow the display controller to synchronize to panel drivers with their own timing controllers.
- Backlight PWM
- Various GPIOs to support display power sequencing, power management, etc.

Figure 27: DSI 2 x 4-Lane Connection Example

- Note:

 Filters on the DSI signals are not recommended. If EMI is a concern, other solutions, such as using PCB GND layers or other shielding is preferred. If EMI devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing & Vil/Vih requirements at the receiver & not introduce glitches on the signal edges. Any ESD solution
 - must also maintain signal quality and meet requirements for the frequencies supported by the design.
 - See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

MIPI DSI and CSI Design Guidelines

Table 75. MIPI DSI & CSI Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency/Data Rate (per data lane)	750 / 1500	MHz/Mbps	
Number of Loads / Max Loading (per pin)	1 / 10	Load / pf	
Reference plane	GND or PWR		See Note 1
Breakout Region Impedance Diff pair / Single End	90 / 45-55	Ω	±15%
Max PCB breakout delay	48	ps	
Trace Impedance Diff pair / Single End	90 / 45-55	Ω	
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 2
Trace spacing Microstrip / Stripli	2x / 2x	dielectric	
Max Trace Delay	1620	ps	See Note 3
Max Intra-pair Skew	1	ps	See Note 3
Max Trace Delay Skew between DQ & CLK	10	ps	See Note 3

If routing to DSI or CSI device includes a flex or 2^{nd} PCB, the max trace & skew calculations must include all the PCBs/flex routing

Keep critical DSI/CSI related traces including DSI/CSI clock/data traces & RDN/RUP traces away from other signal traces or unrelated power traces/areas or power supply components

Note:

- 1. If PWR, 0.01uF decoupling cap required for return current
- 2. Up to 4 signal vias can share a single GND return via
- Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Table 76. CSI_DSI_RDN/RUP Routing Requirements

Parameter	Requirement	Units	Note	
Reference plane	GND if possible		See note 1	
Trace Impedance	50	Ω	±15%	
Max Trace Delay	40	ps	Include only PCB routing delay	

Note:

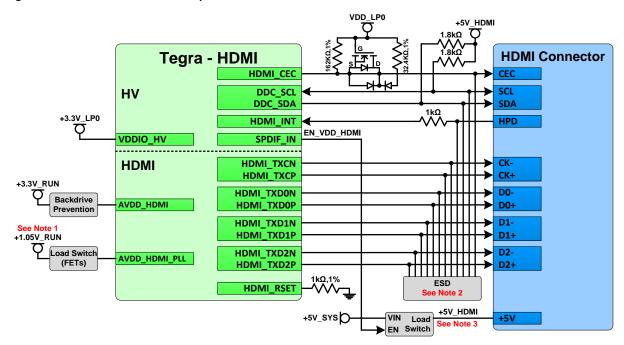
- If stack-up makes GND reference difficult, keep routing distance very short & have GND areas next to CSI_DSI_RDN/RUP traces.
- Use reference platform layout as a guideline for routing & location of CSI_DSI_RDN/RUP resistors.
- 3. Avoid routing signal traces directly below and in parallel with these critical rails.

Table 77. MIPI DSI Signal Connections

Ball Name	Туре	Termination	Description
DSI_A_CLK_N/P	0		DSI Differential A Clock: Connect to CLKn & CLKp pins of receiver
DSI_A_D[3:0]_N/P	1/0		DSI Differential A Data Lanes: Connect to up to 4 sets of Dn & Dp pins of Primary DSI display
DSI_B_CLK_N/P	0		Differential B Clock: Connect to CLKn & CLKp pins of secondary receiver

Ball Name	Туре	Termination	Description
DSI_B_D[3:0]_N/P	1/0		Differential B Data Lanes: Connect to up to 4 sets of Dn & Dp pins of secondary DSI display, or second set of 4 lanes to primary display.
CSI_DSI_RDN	Α	49.9Ω, 1% to GND	DSI/CSI Voltage Reference Pulldown:
CSI_DSI_RUP	Α	453Ω, 1% to 1.2V	DSI/CSI Voltage Reference Pull-up:
AVDD_CSI_DSI	Р		MIPI DSI & CSI Shared Power Rail: Connect to 1.2V supply

Table 78. DSI Interface Package Delays


Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
DSI_A_CLK_N	AJ14	66	DSI_A_D2_N	AL15	75	DSI_B_D0_N	AH12	67	DSI_B_D3_N	AF12	55
DSI_A_CLK_P	AH14	66	DSI_A_D2_P	AK15	75	DSI_B_D0_P	AJ12	67	DSI_B_D3_P	AG12	56
DSI_A_D0_N	AK11	76	DSI_A_D3_N	AG14	56	DSI_B_D1_N	AE12	47	CSI_DSI_RDN	AG11	61
DSI_A_D0_P	AL11	75	DSI_A_D3_P	AF14	57	DSI_B_D1_P	AD12	48	CSI_DSI_RUP	AF11	61
DSI_A_D1_N	AD14	50	DSI_B_CLK_N	AJ11	68	DSI_B_D2_N	AL12	74			
DSI_A_D1_P	AE14	51	DSI_B_CLK_P	AH11	67	DSI_B_D2_P	AK12	73			

3.5.3 HDMI

A standard HDMI V1.4b interface is supported.

Figure 28: HDMI Connection Example

- Note:
- The backdrive block associated w/AVDD_HDMI is used to prevent current passing back through Tegra when the 3.3V supply is off, but the device is connected to a powered display.
- 2. Any ESD solution must also maintain signal integrity & meet the HDMI requirements for the modes to be supported
- Ensure AVDD_HDMI supply can handle >= 100mA as there can be an increase in power
 consumption for ~1second when the HDMI cable is unplugged from the display device before SW
 has a chance to disable the HDMI pads.
- 4. Filters on HDMI Clock/Data lines are not recommended. If EMI devices are necessary, they must be tuned to maximize signal quality, which must meet the HDMI specification for the modes to be supported.
- 5. See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements

HDMI Design Guidelines

Figure 29: HDMI Differential Clock & Data Topology

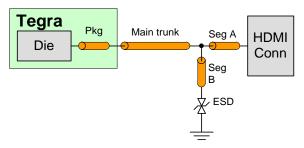


Table 79. HDMI Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency	297	MHz	Data rate (1/UI) is ten times larger than the pixel frequency (1/T_pixel)
Topology	Point to point		
Termination At Rece On-bo		Ω	To 3.3V at receiver To GND near connector
Reference plane	GND		
Max Breakout Length / Delay	7.62 (52.5)	mm (ps)	
Trace Impedance Diff pair / Single Er	90 / 45-60	Ω	±15%
Trace spacing Microstrip / Strip	4x / 3x	dielectric	See Note 1
	140/5.5 (850) 152/6 (1050)	mm/in (ps)	See Note 2 & 3
	254/10 (1500) 204/8 (1400)	mm/in (ps)	See Note 2 & 3
	320/12.5 (1870) 254/10 (1500)	mm/in (ps)	See Note 2 & 3
Max distance from ESD to connector (Seg A)	12.7 (87)	mm (ps)	
Max distance from signal line to ESD pad (Seg B)	6.35 (37.5)	mm (ps)	Keep stub connecting ESD to signal trace very short or overlay pad on signal trace. See example layout figure below table)
Max Intra-Pair (within pair) Skew	1	ps	See Note 2 & 3
Max Inter-Pair (pair to pair) Skew	150	ps	See Note 2 & 3

Note:

- Microstrip routing is recommended for HDMI due to limited eye height and has longer MAX length Include Package & PCB routing delays for Max trace delays and max trace delay skew 2.
- If routing to HDMI connector includes a flex or 2nd PCB, the max trace delay & skew calculations must include all the PCBs/flex routing

Figure 30: Example HDMI high-speed trace & component layout

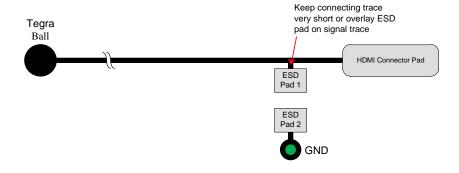


Table 80. Additional HDMI Requirements/Recommendations

Parameter	Requirement	Units	Note
Max signal transition vias	2		Recommend = 2 for predominately stripline routing & </=n 4 for predominately microstrip routing.</td
Stripline routing			Recommend routing near bottom layer to minimize via stub lengths
GND transition via	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical ground stitching via near signal vias. GND via distance should be < 1X diff pair via pitch
Padstack of signal via (pad/drill/antipad)	0.45/0.25/0.8 6	mm	Recommended to reduce capacitance and loss (Guideline intended for PTH - Plated Through-Hole Vias)
Connector voiding			Voiding GND below the signal lanes 5.7mil larger than the pin itself is recommended (see figure)
ESD protection device			ESD protection required to meet device testing beyond 2kV HMM (human metal model) direct pin injection test.
Filter Capacitor on 5V	100	pF	0402 size capacitor on the 5V output is required for EMI reduction
Routing Over void not allowed			Exception is anti-pad at connector pins which causes voids. Route traces w/min. void references.
Routing away from sources of noise			Keep critical HDMI related traces including differential clock/data traces & RSET trace away from other signal traces or unrelated power traces/areas or power supply components

Table 81. HDMI_RSET Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND if possible		See note 1
Trace Impedance	50	Ω	±15%
Trace Spacing	2x	dielectric	
Max Trace Delay	75	ps	Include only PCB routing delay

Note:

- 1. If stack-up makes GND reference difficult, keep routing distance very short & have GND areas next to HDMI_RSET trace.
- 2. Use reference platform layout as a guideline for routing & location of HDMI_RSET resistor.
- 3. Avoid routing signal traces directly below and in parallel with these critical rails.

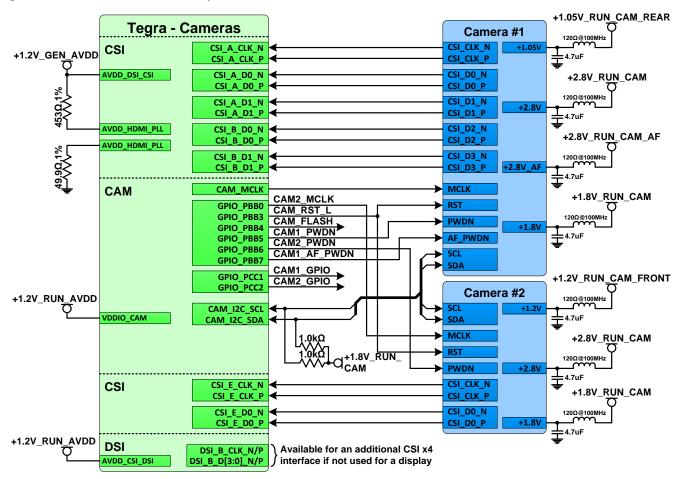
Table 82. HDMI Signal Connections

Ball Name	Туре	Termination (see note on ESD)	Description
HDMI_TXCN/P	0		HDMI Differential Clock: Connect to CN/CP pins on HDMI Connector
HDMI_TXD[2:0]N/P	0		HDMI Differential Data: Connect to D[2:0]+/- pins HDMI Connector
HDMI_INT	1	Series 1KΩ resistor	HDMI Interrupt (Hot Plug Detect): Connect to HP_DET on HDMI Connector w/termination described.
HDMI_CEC	I/OD	See reference schematics for details	HDMI Consumer Electronics Control: Connect to CEC on HDMI Connector through circuitry shown in connection

Ball Name	Туре	Termination (see note on ESD)	Description
			example.
HDMI_RSET	Α	1KΩ, 1% to GND	HDMI Current Reference: Connect to resistor to GND.
AVDD_HDMI	Р	Dual FET back-drive blocking circuitry - See "HDMI Connection Example" diagram	HDMI I/O Power Rail: Connect to 3.3V supply gated by AVDD_HDMI_PLL (see note under connection figure)
AVDD_HDMI_PLL	Р		HDMI PLL Power Rail: Connect to +1.05V (≤ 165MHz) or +1.2V (>165MHz) supply through FET (load switch) enabled by GPIO_PH7.
DDC_SCL/SDA	I/OD	120 Ω @100mhz bead & 1.8K Ω pull-up resistor to +5V_HDMI supply each.	DDC Interface - Clock and Data: Connect to SCL/SDA on HDMI Connector w/termination described.
VDDIO_HV	Р		High Voltage Tolerant I/O Power Rail: Connect to +3.3V_LP0 supply.
+5V_HDMI		120Ω@100mhz bead & 0.1uF decoupling capacitor	HDMI 5V supply to connector: Connect through filter to +5V on HDMI Connector.

Table 83. HDMI Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)									
HDMI_TXCN	AF5	29	HDMI_TXD0N	AD5	29	HDMI_TXD1N	AD4	38	HDMI_TXD2N	AD2	49
HDMI_TXCP	AF6	29	HDMI_TXD0P	AD6	29	HDMI_TXD1P	AD3	39	HDMI_TXD2P	AD1	50
HDMI_RSET	AF2	43									


3.6 Video Input Interfaces

3.6.1 MIPI CSI (Camera)

Tegra supports three MIPI CSI interfaces, allowing a variety of device types and combinations to be supported. Up to two quad lane & one single lane connections are available. Each data channel has peak bandwidth of up to 1.2Gbps.

The figure below shows the configuration supported on the Jetson TK1 platform, supporting two CSI imagers (Camera #1 & #2). Camera #1 uses 4 CSI lanes (CSIA[1:0] & CSIB[1:0]). Camera #2 uses a single lane (CSIE[0]). Other combinations are possible, and listed in the CSI Configurations table.

Figure 31: Camera Connection Example

- Note: 1. Filters on CSI, MCLK & I2C signals are not recommended. If EMI is a concern, other solutions (PCB GND layers, external shielding, etc.) is preferred. If EMI devices are used, they must be tuned such that the signals meet the timing & electrical requirements of the related specification for the frequencies to be supported.
 - 2. If Tegra is providing flash control (as shown above), GPIO_PBB[4] must be used.
 - Care must be taken to ensure any ESD and/or EMI solution must support the frequencies required in the design.
 - A privacy LED may be a requirement in some designs. Ensure the LED is on whenever the camera
 is active such that this cannot be disabled through software means.
 - See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

Table 84. CSI Configurations (Including optional use of DSI_B pins as additional CSI lanes)

Tegra Ball Names	CSI Signals	Camera 1	Camera 2 (> 1 lane)	Stereo Re (dual 4-lane c sho	Camera 2 (1 lane)	
regra batt Hames	CSI Signats			Left RF	Right RF	
		up to x4	up to x4	up to x4	up to x4	x 1
CSI_A_CLK_N/P	CSI_A_CLK_N/P	ſ		ſ		
CSI_A_D[1:0]_N/P	CSI_A_D[1:0]_N/P	I		I		
CSI_B_D[1:0]_N/P	CSI_B_D[1:0]_N/P	I		I		
DSI_B_CLK_N/P	CSI_C_CLK_N/P		I		ſ	
DSI_B_D[1:0]_N/P	CSI_C_D[1:0]_N/P		I		ſ	
DSI_B_D[3:2]_N/P	CSI_D_D[1:0]_N/P		I		Į	
CSI_E_CLK_N/P	CSI_E_CLK_N/P					I
CSI_E_D_N/P	CSI_E_D_N/P					J

CSI Design Guidelines

Table 85. MIPI CSI Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency/Data Rate (per data lane)	750 / 1500	MHz/Mbps	
Number of Loads	1	load	
Max Loading (per pin)	10	pF	
Reference plane	GND or PWR		See Note 1
Breakout Region Impedance Diff pair / Single End	90 / 45-55	Ω	±15%
Max PCB breakout delay	48	ps	
Trace Impedance Diff pair / Single End	90 / 45-55	Ω	
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 2
Trace spacing Microstrip / Stripli	2x / 2x	dielectric	
Max Trace Delay	1620	ps	See Note 3
Max Intra-pair Skew	1	ps	See Note 3
Max Trace Delay Skew between DQ & CLK	10	ps	See Note 3

Note: If PWR, 0.01uF decoupling cap required for return current

Up to 4 signal vias can share a single GND return via Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Table 86. CSI_DSI_RDN/RUP Routing Requirements

Parameter	Requirement	Units	Note	
Reference plane	GND if possible		See note 1	
Trace Impedance	50	Ω	±15%	

Parameter	Requirement	Units	Note	
Max Trace Delay	40	ps	Include only PCB routing delay	

Note:	1.	If stack-up makes GND reference difficult, keep routing distance very short & have GND areas next to CSI_DSI_RDN/RUP traces.
	2.	Use reference platform layout as a guideline for routing & location of CSI_DSI_RDN/RUP resistors.
	3.	Avoid routing signal traces directly below and in parallel with these critical rails.

Additional CSI Routing Guidelines

Guideline

If routing to DSI or CSI device includes a flex or 2^{nd} PCB, the max trace & skew calculations must include all the PCBs/flex routing

Keep critical DSI/CSI related traces including DSI/CSI clock/data traces & RDN/RUP traces away from other signal traces or unrelated power traces/areas or power supply components

Table 87. MIPI CSI Signal Connections

Ball Name	Туре	Termination	Description
CSI_A_CLK_N/P	I		CSI A Differential Clock: Connect to CLKn & CLKp pins of Camera #1
CSI_A_D[1:0]_N/ P CSI_B_D[1:0]_N/ P	1/0		CSI A/B Differential Data Lanes: Connect to Dn & Dp pins of Camera #1
CSI_E_CLK_N/P	I		CSI E Differential Clock: Connect to CLKn & CLKp pins of Camera #2.
CSI_E_D_N/P	1/0		CSI E Differential Data Lanes: Connect to Dn & Dp pins of Camera #2
CSI_DSI_RDN	А	49.9Ω to GND	DSI/CSI Voltage Reference Pull-down: Connect through termination to GND
CSI_DSI_RUP	A	453 Ω to +1.2V_GEN_AVDD	DSI/CSI Voltage Reference Pull-up: Connect through termination indicated to same rail as AVDD_CSI_DSI
AVDD_CSI_DSI	Р		MIPI DSI & CSI Shared Power Rail: Connect to +1.2V_GEN_AVDD supply

Note: Depending on the mechanical design of the platform and camera modules, ESD protection may be necessary. Any ESD solution must be compatible with the frequency required by the design.

Table 88. Miscellaneous Camera Connections

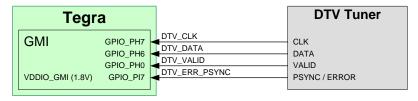
Ball Name	Туре	Termination	Description
CAM_I2C_SCL CAM_I2C_SDA	1/0	Pull-ups to +1.8V_RUN_CAM.	Camera I2C Interface: Connect to I2C SCL & SDA pins of cameras
CAM_MCLK	0		Camera #1 Master Clock: Connect to Camera #1 reference clock input.
GPIO_PBB0	1/0		CAM2_MCLK - Camera #2 Master Clock: Connect to Camera #2 clock input.
GPIO_PBB3			CAM_RST_L - Camera Reset: Connect to Camera reset inputs.
GPIO_PBB4			CAM_FLASH - Camera Flash: Connect to Flash driver enable if

Ball Name	Туре	Termination	Description
			supported.
GPIO_PBB5			CAM1_PWND - Camera #1 Powerdown: Connect to Camera #1 powerdown input.
GPIO_PBB6			CAM2_PWND - Camera #1 Powerdown: Connect to Camera #2 powerdown input.
GPIO_PBB7			CAM1_AF_PWND - Camera #1 Autofocus Powerdown: Connect to Camera #1 Autofocus powerdown input.
GPIO_PCC1			CAM1_GPIO - Camera #1 General Purpose IO: Available GPIO for Camera #1
GPIO_PCC2			CAM1_GPIO - Camera #2 General Purpose IO: Available GPIO for Camera #2

Note: Depending on the mechanical design of the platform and camera modules, ESD protection may be necessary. Any ESD solution must be compatible with the frequency required by the design.

Table 89. CSI Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)									
CSI_A_CLK_N	AE11	46	CSI_A_D1_N	AE9	61	CSI_B_D1_N	AJ9	66	CSI_E_D0_N	AF9	57
CSI_A_CLK_P	AD11	46	CSI_A_D1_P	AD9	62	CSI_B_D1_P	AH9	67	CSI_E_D0_P	AG9	58
CSI_A_D0_N	AK9	81	CSI_B_D0_N	AK8	78	CSI_E_CLK_N	AJ8	67	CSI_DSI_RDN	AG11	61
CSI_A_DO_P	AL9	81	CSI_B_D0_P	AL8	79	CSI_E_CLK_P	AH8	68	CSI_DSI_RUP	AF11	61


Note: If additional CSI pins are used from the DSI block, the package delays for those can be found at the end of the DSI section.

3.6.2 Digital TV (DTV)

Tegra has a DTV interface to support compatible DTV, DVB-D & ISDB-T tuners. The interface is located on the GMI block as shown in the figure below:

Figure 32. Basic DTV Connections

Note: See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

DTV Design Guidelines

Table 90. DTV Interface Signal Routing Requirements

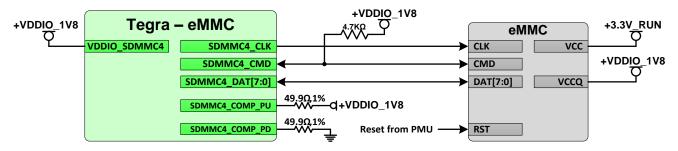
Parameter	Requirement	Units	Note
Max Frequency	32	MHz	
Configuration / Device Organization	1	load	
Max Loading (total of all loads)	15	pF	
Reference plane	GND		
Breakout Region Impedance	Minimum width & spacing		
Max PCB breakout delay	75	ps	
Trace Impedance	50 - 60	Ω	±15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing Microst Stripli		dielectric	
Max Trace Delay	850 (~5)	ps (in)	See Note 2
Max Trace Delay Skew DATA, VALID & ERR_PSYNC to CLK	30	ps	See Note 2

Note:

- 1. Up to 4 signal vias can share a single GND return via
- Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Table 91. DTV Signal Connections

Function Name	Туре	Termination	Description
DTV_CLK	1		DTV Clock.: Connect to Tuner CLK pin
DTV_DATA	1		DTV Serial Data input: Connect to Tuner DATA pin
DTV_VALID	1		DTV Valid input: Connect to Peripheral Tuner VALID pin
DTV_ERR_PSYNC	I		DTV Error packet indicator or packet sync input: Connect to Tuner ERROR or PSYNC pin


3.7 SDMMC

Tegra has four SD/MMC controllers. Jetson uses SDMMC3 for an SD Card interface and SDMMC4 to interface to an eMMC device (one of the boot options). SDMMC1 is available to use as SDIO to connect to a WiFi controller. SDMMC2 on the GMI block is available for SDIO use as well.

For the SD card and SDIO interfaces, SDMMC[3:1] support up to UHS-1. For eMMC, SDMMC4 supports up to HS200.

3.7.1 eMMC

Figure 33. Jetson eMMC Device Connections

Note:

- An EMI filter on SDMMC4_CLK or other eMMC signals is not recommended. If EMI is a concern, other solutions (PCB GND layers, external shielding, etc.) are preferred. If EMI devices are used, they must be tuned such that the signals meet the timing & electrical requirements of the eMMC specification. If included, the filter should be near Tegra
- See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

SDMMC4 (eMMC) Design Guidelines

Table 92. SDMMC4 Interface Signal Routing Requirements

Parameter			Requirement	Units	Note
Max Frequency		52M DDR 52M HS200	26 (26) 52 (52) 52 (104) 200 (200)	MHz (MB/s)	w/8-bit width See Note 1
Topology			Point to point		
Max Loading			10	pF	
Reference plane			GND or PWR		See Note 2
Breakout Region In	npedance		45-50	Ω	±15%
Max PCB breakout	delay		30	ps	
Trace Impedance			45-50	Ω	±15%
Via proximity (Sign	al to reference)		< 3.8 (24)	mm (ps)	See Note 3
Trace spacing	Microstrip	/ Stripli	4x / 2x	dielectric	
Max Trace			730	ps	See Note 4
Max Trace Delay SI	kew in/between CLK & CMI	D/DAT	50	ps	See Note 4

Note:

- Actual frequencies may be lower due to clock source/divider limitations. Where frequencies cannot be achieved, the next lower divider option will be used. The clock source used for all but HS200 is PLLP at 408MHz.
- 2. If PWR, 0.01 uF decoupling cap required for return current

- Up to 4 signal vias can share a single GND return via Include Package ${\mathfrak k}$ PCB routing delays for Max trace delays and max trace delay skew parameters.

Table 93. SDMMC4_COMP_PU/PD Routing Requirements

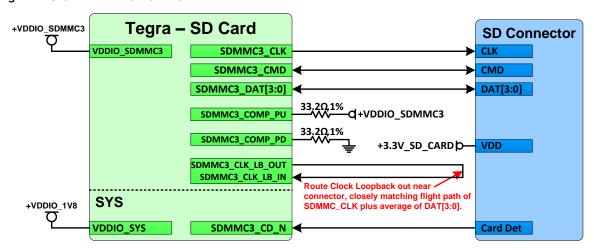
Parameter	Requirement	Units	Note
Reference plane	GND if possible		See Note
Trace Impedance	50	Ω	±15%
Max Trace Delay	240	ps	Include Package & PCB routing delays

Note: Keep SDMMC_COMP_PU/PD routing away from other traces on same layer or on adjacent layers.

Table 94. SDMMC4 (eMMC) Signal Connections

Function Signal Name	Туре	Termination	Description
SDMMC4_CLK	0		eMMC Clock: Connect to CLK pin of device
SDMMC4_CMD	1/0	4.7KΩ pull-up to VDD_1V8	eMMC Command: Connect to CMD pin of device
SDMMC4_DAT[7:0]	1/0	No external pull-ups required	eMMC Data: Connect to Data pins of device
SDMMC4_COMP_PU SDMMC4_COMP_PD	A	49.9Ω, 1% to VDD_1V8 49.9Ω, 1% to GND	SDMMC4 Compensation Pull-up/Pull-down Connect as shown in termination column
eMMC RST			eMMC Reset: Connect PMU system reset output (same as used for Tegra SYS_RST_IN to RST_N line of eMMC device

Table 95. SDMMC4 Interface Package Delays


Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
SDMMC4_CLK	G31	74	SDMMC4_DAT1	F30	71	SDMMC4_DAT4	D31	79	SDMMC4_DAT7	F28	62
SDMMC4_CMD	E31	85	SDMMC4_DAT2	E28	66	SDMMC4_DAT5	E30	79	SDMMC4_COMP_PD	H29	67
SDMMC4_DAT0	F29	63	SDMMC4_DAT3	H31	71	SDMMC4_DAT6	E29	71	SDMMC4_COMP_PU	H30	75

3.7.2 SD Card Connections

The Figure shows a standard Micro SD socket. An SD Card should use SDMMC3 which includes a loopback clock feature to improve read timing. The internal Pull-up resistors on the SDMMC Data/CMD lines are strong (see Tegra K1 Data Sheet for values), so external pull-ups are not required.

Figure 34. Jetson TK1 SD Card Connections

- Note: If EMI devices are used, they must be tuned so the signals meet the timing & electrical
 - requirements of the SD specification for the modes supported. If included, the filter should be near the Tegra processor.
 - See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.
 - Any supply used to power the SD Card must be current limited if the supply is shorted to GND.

Table 96. SDMMC[3:1] Interface Signal Routing Requirements

Parameter		Requirement	Units	Note
Max Frequency	SDR25 SDR50 SDR104		MHz (MB/s)	See Note 1 SDMMC1 & SDMMC3 only SDMMC1 & SDMMC3 only SDMMC1 & SDMMC3 only
Topology		Point to point		
Max Loading		10	pF	
Reference plane		GND or PWR		See Note 2
Breakout Region Impeda	nce	45-50	Ω	±15%
Max PCB breakout delay		30	ps	
Trace Impedance		45-50	Ω	±15%
Via proximity (Signal to	reference)	< 3.8 (24)	mm (ps)	Up to 4 signal vias can share 1 GND return via
Trace spacing	Microstrip / Stripl	4x / 2x	dielectric	
Max Trace Delay	SDR12, SDR25, SDR SDR1		ps	See Note 3 & 4
Max Trace Delay Skew in	r/between CLK & CMD/DAT SDR12, SDR25, SDR SDR1		ps	See Note 3 & 4

Parameter	Requirement	Units	Note
Loopback Clock Routing: LB_OUT to LB_IN = CLK length + Average of DAT[3:0]	+/- 150	ps	

Keep SDMMC CLK/CMD/DATA/COMP & Loopback traces away from other signal traces or unrelated power traces/areas or power supply components

Note:

- 1. Actual frequencies may be slightly different due to clock source/divider limitations.
- 2. If PWR, 0.01uF decoupling cap required for return current
- Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.
- 4. If routing to SD/SDIO device/socket includes a flex or 2nd PCB, the max trace & skew calculations must include all the PCBs/flex routing. Maximum frequencies may not be achievable, even if max trace & skew delays met due to impact on signal quality caused by additional connector & dependent on flex design.

Table 97. SDMMC[3:1]_COMP_PU/PD Routing Requirements

Parameter	Requirement	Units	Note
Reference plane	GND		
Trace Impedance	50	Ω	±15%
Max Trace Delay	240	ps	Include Package & PCB delays

Note: Keep SDMMCx_COMP_PU/PD routing away from other traces on same layer or on adjacent layers.

Table 98. SD/SDIO Signal Connections

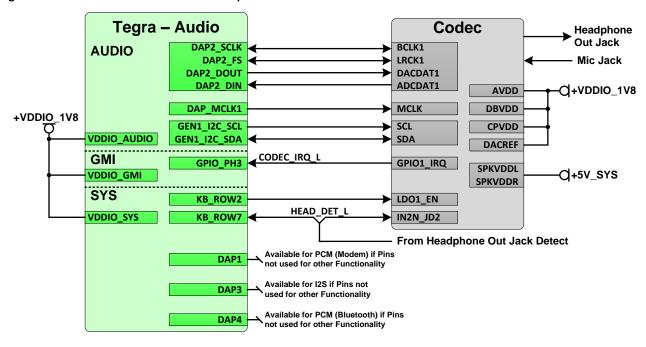
Function Signal Name	Туре	Termination	Description
SDMMC[3:1]_CLK	0	See note for ESD protection	SDMMC Clock: Connect to CLK pin of device or socket
SDMMC[3:1]_CMD	1/0	No external pull-ups required See note for ESD protection	SDMMC Command: Connect to CMD pin of device or socket
SDMMC[3,1]_DAT[3:0] SDMMC2_DAT[7:0]	1/0	No external pull-ups required. See note for ESD protection	SDMMC Data: Connect to Data pins of device or socket
SDMMC3_CLK_LB_OUT/IN			SDMMC3 Loopback Clock Out/In: Route trace out from SDMMC3_CLK_LB_OUT and back to SDMMC_CLK_LB_IN. Length should match SDMMC3_CLK + Average of SDMMC3_DAT[3:0].
SDMMC[3:1]_COMP_PU SDMMC[3:1]_COMP_PD	Α	33.2Ω, 1% to VDDIO_SDMMC3 33.2Ω, 1% to GND	SDMMC Compensation Pull-up/Pull-down: Connect as shown in termination column
SD Card Detect	I	See note for ESD protection	SDMMC Card Detect: Connect GPIO to Card Detect pin on socket. Use Wake-capable pin if wake required on insertion.

Note: - ESD protection strongly recommended for SDMMC3 when used as the SD Card socket interface.

- SDMMC3_COMP_PU/PD resistors can be 49.9Ω, 1%, if limited to SDR25 (50MHz) operation

Table 99. SDMMC[3:1] Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
SDMMC1_CLK	L7	97	SDMMC3_CLK	F5	63	GPIO_PK1 (SDMMC2_CLK)	R3	63
SDMMC1_CMD	L8	86	SDMMC3_CMD	F2	76	GPIO_PH7 (SDMMC2_CMD)	U2	71
SDMMC1_DAT0	L2	68	SDMMC3_DAT0	H2	74	GPIO_PH4 (SDMMC2_DAT0)	R5	80
SDMMC1_DAT1	L3	68	SDMMC3_DAT1	H1	89	GPIO_PI5 (SDMMC2_DAT1)	U7	52
SDMMC1_DAT2	L1	69	SDMMC3_DAT2	F1	77	GPIO_PH5 (SDMMC2_DAT2)	R4	67



Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
SDMMC1_DAT3	J8	90	SDMMC3_DAT3	G1	72	GPIO_PH6 (SDMMC2_DAT3)	U8	52
SDMMC1_COMP_PD	L6	56	SDMMC3_CLK_LB_IN	F3	72	GPIO_PK3 (SDMMC2_DAT4)	R2	71
SDMMC1_COMP_PU	J7	63	SDMMC3_CLK_LB_OU T	F4	73	GPIO_PK4 (SDMMC2_DAT5)	T1	77
			SDMMC3_COMP_PD	E5	86	GPIO_PI2 (SDMMC2_DAT6)	V1	76
			SDMMC3_COMP_PU	E2	77	GPIO_PI6 (SDMMC2_DAT7)	R1	74
						SDMMC2_COMP_PD	R6	78
						SDMMC2_COMP_PU	U5	54

3.8 Audio

Tegra supports Multiple PCM/I2S audio interfaces & includes a flexible audio-port switching architecture. Jetson uses DAP2 to interface to an audio Codec. The Codec receives a master audio-reference clock from the DAP_MCLK1 pin on Tegra.

Figure 35. Audio Device Connection Example

Note: See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

12S Design Guidelines

Table 100. I2S Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Configuration / Device Organization	1	load	
Max Loading	8	pF	
Topology	Point to Point		
Reference plane	GND		
Breakout Region Impedance	Min width/spacing		
Trace Impedance	50	Ω	±20%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing Microstrip / Stripli	2x / 2x	dielectric	
Max Trace Delay	3600 (~22)	ps (in)	See Note 2
Max Trace Delay Skew between SCLK & SDATA_OUT/IN	250 (~1.6")	ps (in)	See Note 2

Note: 1.

Up to 4 signal vias can share a single GND return via Include Package & PCB routing delays for Max trace delays and max trace delay skew 2.

Table 101. I2S Signal Connections

Tegra Ball Name	Function Name	Туре	Termination	Description
DAP[4:1]_SCLK	12S[3:0]-SCLK	1/0		DAP Serial Clock: Connect to I2S/PCM CLK pin of audio device.
DAP[4:1]_FS	12S[3:0]-LRCK	1/0		DAP Field Select (Word Select for I2S): Connect to WS (I2S) or FS/SYNC (PCM) pin of audio device.
DAP[4:1]_DOUT	I2S[3:0]- SDATA_OUT	0		DAP Data Output: Connect to Data Input pin of audio device.
DAP[4:1]_DIN	12S[3:0]-SDATA_IN	I		DAP Data Input: Connect to Data Output pin of audio device.
DAP_MCLK1	EXTPERIPH1_CLK	0		External Peripheral 1 Clock: Connect to MCLK pin of Audio device if reference clock required.

Table 102. DAP[4:1] (I2S[3:0]) Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)									
DAP1_DIN	H28	66	DAP2_DIN	L30	69	DAP3_DIN	AF17	56	DAP4_DIN	P3	66
DAP1_DOUT	L28	58	DAP2_DOUT	J29	61	DAP3_DOUT	AE17	53	DAP4_DOUT	P5	61
DAP1_FS	J28	59	DAP2_FS	R30	78	DAP3_FS	AE15	55	DAP4_FS	P1	72
DAP1_SCLK	P31	82	DAP2_SCLK	M29	64	DAP3_SCLK	AJ17	66	DAP4_SCLK	N1	71

3.9 I2C

Tegra has six I2C controllers: PWR_I2C, I2C1 (GEN1_I2C), I2C2 (GEN2_I2C), I2C3 (CAM_I2C) I2C4 (DDC) & I2C6 (eDP option). The following assignments should be used for the I2C interfaces:

I2C Pins (Function/Controller)	I/O Block	Use
GEN1_I2C (I2C1)	UART	General use (Codec, Sensors, etc.)
GEN2_I2C (I2C2)	GMI	Touch Screen, Battery Pack
CAM_I2C (I2C3)	CAM	Cameras & camera related functions (AF, etc.)
DDC (I2C4)	HV	НДМІ
PWR_I2C (I2C5)	SYS	PMU, Ext. CPU Regulator (if required). See PWR_I2C Usage Restrictions section.
I2C6 (on DP_AUX_CH0_P/N pins)	HV	eDP. I2C6 can only operate with VDDIO_HV at 2.8-3.3V

12C Design Guidelines

Care must be taken to ensure I2C peripherals on same I2C bus connected to Tegra do not have duplicate addresses. Addresses can be in two forms: 7-bit, with the Read/Write bit removed or 8-bit including the Read/Write bit. Be sure to compare I2C device addresses using the same form (all 7-bit or all 8-bit format).

Note: Due to the general purpose design of the I2C drivers the strong drive strengths of the Tegra pads violate the minimum fall time specification for FM mode & minimum rise/fall time specification for HS mode. We do not expect the faster rise/fall times to cause any functional failures for I2C but to be fully compliant with the NXP I2C V.3 specifications, implement the following board level solution:

- For FM mode: Include a provision to add a shunt capacitor close to the Tegra drivers before the
 pull-up resistors. Ensure the total minimum capacitance on the SCL/SDA signals is 350pF. The
 total capacitance includes capacitance of the slave devices, trace capacitance & any required
 shunt capacitance. Calculate the value of the shunt capacitance accordingly.
- For HS mode: Include a provision to add an RC circuit close to the Tegra drivers before the pullup resistors. Ensure the series resistor of the RC circuit has a resistance of 150 Ohms. Ensure
 the total capacitance on the SCL/SDA signals is 100pF. The total capacitance includes
 capacitance of the slave devices, trace capacitance & any required shunt capacitance.
 Calculate the value of the shunt capacitance of the RC circuit accordingly

PWR_I2C Usage Restrictions

The PWR_I2C interface latencies must be controlled, therefore the following restrictions must be observed:

- Devices do not stretch clock pulses (exception is any stretching performed by the approved PMUs, which
 have been evaluated & do not risk increasing the latency significantly enough to be a concern).
- Limit the number of devices on the PWR_I2C bus to lower bus capacitance in order to hit Fast-mode Plus (FM+) speeds (>1Mbps). Only external CPU regulator or possibly Pre-PMU should be on the bus with the PMU.
- All slave devices on the physical PWR_I2C bus should support Fm+ bus speeds.

Table 103. I2C Interface Signal Routing Requirements for Standard, Fast & HS (High-Speed) Modes

Parameter		Requirement	Units	Note
Max Frequency	Standard / Fast Mode / Fast Mode Pi High-Speed Mo		kHz MHz	See Note 1
Topology		Single ended, bi-directional, multiple masters/slaves		
Max Loading	Standard / Fast Mode / Fast Mode Pl High-Speed Mo		pF	Total of all loads
Reference plane		GND or PWR		

Parameter		Requirement	Units	Note
Trace Impedance		50 - 60	Ω	±15%
Trace Spacing		1x	dielectric	
Max Trace Delay	Standard Mo Fast Mode, Fast Mode Plus & HS Mod		ps (in)	Include Package & PCB routing delays

Note: 1. DDC supports only up to Fast Mode Plus speeds

- Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
- 3. No requirement for decoupling caps for PWR reference

Table 104. I2C Signal Connections

Function Name	Туре	Termination	Description
PWR_I2C_SCL/SD A	OD	Pull-up (see note 1) to 1.8V	Power I2C Clock & Data. Connect to CLK & Data pins of any devices
GEN1_I2C_SCL/S DA	OD	Pull-up (see note 1) to 1.8V or up to 3.3V	Generic I2C 1 Clock & Data. Connect to CLK & Data pins of any devices
GEN2_I2C_SCL/S DA	OD	Pull-up (see note 1) to 1.8V or up to 3.3V	Generic I2C 2 Clock & Data. Connect to CLK & Data pins of any devices
CAM_I2C_SCL/SD A	OD	Pull-up (see note 1) to 1.8V or up to 3.3V	Camera I2C Clock & Data. Connect to CLK & Data pins of any devices
DDC_SCL/SDA	Pull-up (see note 1) to VDDIO_HV level (2.8V-3.3V - See note 2) if level shifters used (5V if direct to HDMI connector) DDC I2C 2 Clock & Data any devices		DDC I2C 2 Clock & Data. Connect to DDC CLK & Data pins of any devices
I2C6			I2C 6 interface on DP_AUX_CH0_P/N pins: See eDP connections.

Note:

- 1. To determine pull-up resistor values for SCL/SDA for various loading conditions, refer to section 7.1 of the NXP/Philips I2C-bus specification & user manual (Version 3). $1K\Omega$ pull-up resistors recommended for the most common loading conditions for Standard Mode, Fast Mode and Fast Plus Mode and 750Ω pull-up resistors for High Speed mode.
- If the DDC_SCL/SDA interface is not used for HDMI DDC, not used, or used as an I2C interface to a device that operates at 1.8V, VDDIO_HV can operate at 1.8V.
- 3. GEN[2:1]_I2C, CAM_I2C, PWR_I2C & I2C6 are 3.3V tolerant. If all devices on one of these I2C interfaces require 3.3V levels, the bus can be pulled up to 3.3V instead of the normal 1.8V power rail voltage. DDC is 5V tolerant.
- 4. If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
- 5. Disable OD (Open Drain) option for I2C interfaces pulled up to 1.8V. Enable for I2C interfaces pulled up to \ge 2.8V.

De-bounce

The tables below contain the allowable De-bounce settings for the various I2C Modes.

Table 105. De-bounce Settings (Fast Mode Plus, Fast Mode & Standard Mode)

I2C Mode	Clock Source	Source Clock Freq	I2C Source Divisor	SM/FM Divisor	De-bounce Value	I2C SCL Freq
					0	1016KHz
FM+	PLLP_OUT0	408MHz	5 (0x04)	10 (0x9)	5:1	905.8KHz
					7:6	816KHz
FM	PLLP_OUT0	408MHz	5 (0x4)	26 (0x19)	7:0	392KHz
SM	PLLP_OUT0	408MHz	20 (0x13)	26 (0x19)	7:0	98KHz

Table 106. Debounce Settings (High-Speed Mode)

Mode	Source	PLLP_OUT0	I2C Source Div	HS Div	De-bounce	I2C Freq
HS	PLLP OUT0	408MHz	3 (0x2) 3 (0x2)	3 (0×2)	0	3.48MHz
113	FLLF_0010	400MHZ	3 (0X2)	3 (0X2)	7:1	Not allowed

Table 107. I2C Interface Package Delays

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
CAM_I2C_SCL	AF8	51	GEN1_I2C_SCL	P6	61	GEN2_I2C_SCL	Y2	74	PWR_I2C_SCL	J4	70
CAM_I2C_SDA	AG8	55	GEN1_I2C_SDA	M6	61	GEN2_I2C_SDA	AA2	87	PWR_I2C_SDA	J3	70

3.10 UART

Tegra has multiple UART controllers. See the Tegra K1 Data Sheet Multiplexing tables for where these interfaces are available. Work closely with your NVIDIA support team when choosing which location to ensure there are no conflicts and the configurations are fully supported by the software.

Figure 36. Basic 4-wire UART Connections

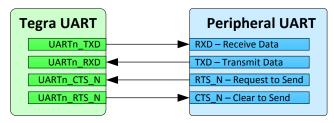
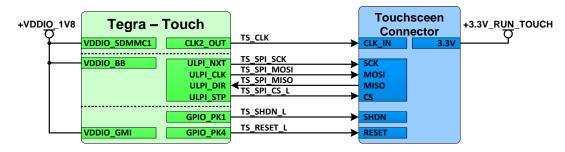


Table 108. UART Signal Connections

Ball Name	Туре	Termination	Description
UART1.x-TXD	0		UART Transmit: Connect to Peripheral RXD pin of device
UART1.x-RXD	1		UART Receive: Connect to Peripheral TXD pin of device
UART1.x-CTS	I		UART Clear to Send: Connect to Peripheral RTS_N pin of device
UART1.x-RTS	0		UART Request to Send: Connect to Peripheral CTS pin of device


3.11 SPI

Tegra has multiple SPI controllers. Jetson uses SPI4 on the GMI block for a SPI ROM (optional boot device) and SPI1 for an interface option to a touchscreen controller. SPI2 is also available for use & is located on the ULPI data lines on the BB block.

Figure 37. Jetson SPI ROM Connections

Figure 38. Jetson Touchscreen Connector Connections

SPI Design Guidelines

Table 109. SPI Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Max Frequency	50	MHz	
Max Loading (total of all loads)	15	pF	
Reference plane	GND		
Max PCB breakout delay	75	ps	
Trace Impedance	50 - 60	Ω	±15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing Microstrip / Stripl	4x / 3x	dielectric	
Max Trace Delay	890 (~5)	ps (in)	See Note 2
Max Trace Delay Skew between MOSI (DOUT), MISO (DIN) & CS to SCK	50	ps	

Note: 1. Up to 4 signal vias can share a single GND return via

 Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Table 110. SPI Signal Connections

Function Name	Туре	Termination	Description
SPIx-SCK	1/0		SPI Clock.: Connect to Peripheral CLK pin
SPIx-MOSI	1/0		SPI Master Out / Slave In: Connect to Peripheral MOSI pin
SPIx-MISO	1/0		SPI Master In / Slave Out: Connect to Peripheral MISO pin
SPIx-CSx	1/0		SPI Chip Selects.: Connect to Peripheral CS_N pin per

Table 111. SPI Interface Package Delays

Signal Name (SPI1A - Touch, etc.)	Ball #	Pkg Delay (ps)	Signal Name (SPI4 - SPI ROM, etc.)	Ball #	Pkg Delay (ps)
ULPI_NXT (SPI1A_SCK)	AK17	71	GPIO_PG5 (SPI4_SCK)	AA3	66
ULPI_STP (SPI1A_CS0)	AL16	75	GPIO_PI3 (SPI4_CS0)	V7	54
ULPI_CLK (SPI1A_DOUT)	AK17	71	GPIO_PG6 (SPI4_DOUT)	Y8	64
ULPI_DIR (SPI1A_DIN)	AL18	80	GPIO_PG7 (SPI4_DIN)	V3	69

3.12 Thermal Sensor

External Thermal Sensor

Tegra contains a single, on-die thermal diode that is accessed via an external i2c temperature monitor (TI TMP451). The same temperature monitor IC used for accessing the thermal diode also contains an internal temperature sensor, whose sensed temperature is referred to as Tboard. This temperature is correlated to the internal PCB temperature and not entirely dominated by the Tegra temperature. This board sensor is a required and essential part of the Tskin estimation and governing mechanisms. It is recommended that the external thermal sensor should be located ~15-20mm from Tegra and between the PMIC and CPU.

When the external temperature monitor detects that the TDIODE temperature is above a pre-programmed Tshutdown, the monitor's THERM output signals the PMIC to shut down the system without any software control. This is a back-up mechanism to the internal sensor-based shutdown, so its Tshutdown is intentionally margined to a higher temperature to avoid contention with internal sensor-based shutdown

Figure 39: External Thermal Diode Connection Example

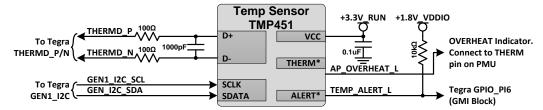


Table 112. Thermal Diode / Temperature Sensor Interface Signal Routing Requirements

Parameter	Requirement	Units	Note
Configuration / Device Organization	1	load	
Reference plane	GND		
Breakout Region Impedance	Min width/spacing		

Parameter		Requirement	Units	Note
Max PCB breakout delay		100	ps	minimum spacing rules
Trace Impedance	Differential / Single-en	90 / Nominal	Ω	±15%
Via proximity (Signal to refe	< 3.8 (24)	mm (ps)	See Note 1	
Trace spacing	Microstrip / Stripli	4x / 3x	dielectric	See Note 2.
Max Trace Delay		1700 (~10)	ps (in)	See Note 3
Max Trace Intra-pair Skew		5ps	ps	between all discontinuities & overall. See Note 3

Note: 1. Up to 4 signal vias can share a single GND return via

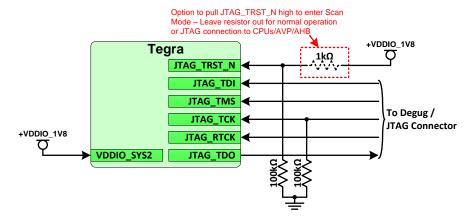
2. Keep switch-mode supply as distant as possible

3. Include Package & PCB routing delays for Max trace delays and max trace delay skew

Table 113. Thermal Diode Signal Connections

Ball Name	Туре	Termination	Description
THERMD_P/N	DIFF IN	1000pF cap between signals & 100 Ω Series resistors	Thermal Diode: Connect THERMD_P/N pins to sensor D+/-
GEN1_I2C_SC L GEN1_I2C_SD A	OD I/OD	Pull-up resistor to VDDIO_UART. See I2C section for appropriate values based on frequency & load.	I2C Clock & Data: Connect to I2C interface on Thermal Sensor for configuration and to read temperature data.
ALERT (Sensor)	OD	10KΩ to GPIO rail (depends on GPIO used - not required in Phone case using GPIO_X6_AUD.	Thermal Alert Notification: Connect to appropriate GPIO on Tegra.
THERM (Sensor)	OD		Critical Thermal Indication: Connect to PMU or other circuitry that will power off device in case of critical Thermal issue.

Table 114. Thermal Sensor Interface Package Delays

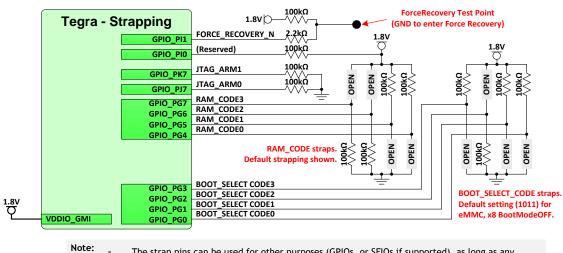

Signal Name	Ball #	Pkg Delay (ps)	Signal Name	Ball #	Pkg Delay (ps)
THERM_DN	U29	63	THERM_DP	U28	62

3.13 JTAG

JTAG is not required, but may be useful for new design bring-up. Regardless of whether JTAG is implemented, the JTAG_TCK pull-down resistor shown in the figure is required. Note that JTAG_TRST_N is not used as a conventional JTAG reset line. Instead, this pin selects whether JTAG is to be used for communicating with the Tegra CPU complex, or for Test/Scan purposes. When JTAG_TRST_N is pulled low, the JTAG interface is enabled for access to the CPU complex. When high, it is in Test/Scan mode. For normal operation, JTAG_TRST_N must be pulled low.

Figure 40. JTAG Connections

Note: See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.


Table 115. JTAG Signal Connections

Ball Name	Туре	Termination	Description			
JTAG_TMS	I		JTAG Mode Select: Connect to TMS pin of connector			
JTAG_TCK	I	100kΩ to GND	JTAG Clock: Connect to TCK pin of connector			
JTAG_TDO	0		JTAG Data Out: Connect to TDO pin of connector			
JTAG_TDI	I		JTAG Data In: Connect to TDI pin of connector			
JTAG_RTCK	I		JTAG Return Clock: Connect to RTCK pin of connector			
JTAG_TRST_N	I	100kΩ to GND	JTAG Reset (Repurposed to select Normal JTAG or Scan mode): - Normal operation: Pulldown only Scan test mode: Pull strongly (~1kΩ) to +1.8V_VDDIO.			

3.14 Strapping Pins

The straps are sampled at the rising edge of SYS_RESET_N and must remain valid for \geq 12.5us.

Figure 41. Power-on Strapping Connections

The strap pins can be used for other purposes (GPIOs, or SFIOs if supported), as long as any connected device does not keep them from being at the correct strap level when SYS_RESET_N goes high & for 12.5us afterward.

- Boot Select can be selected via Fuses instead of straps.
- GPIO_PI1 (FORCE_RECOVERY strap) has internal Pull-up (~50K Ω) enabled at boot. Pull-down resistor must be strong enough to overcome the internal resistor. 2.2K Ω is recommended.
- External Pull-up on GPIO_PIO is optional (has internal Pull-up).
- See the "Power Decoupling Guidelines" section for power rail decoupling and filter requirements.

Table 116. Power-on Strapping Breakdown

Strap Options	Strap Pins	Description
USB_RECOVERY	GPIO_PI1	0: USB Recovery Mode 1: Boot from secondary device
Reserved	GPIO_PIO	0: Not Allowed 1: Normal Operation
JTAG_ARM1 JTAG_ARM0	GPIO_PK7, GPIO_PJ7	00: Serial JTAG chain, MPCORE and AVP 01: MPCore only JTAG 10: AVP only JTAG 11: Reserved
RAM_CODE[3:0]	GPIO_PG[7:4]	[3:2] Selects secondary boot device configuration set within the BCT [1:0] Selects DRAM configuration set within the BCT
BOOT_SELECT_CODE[3:0]	GPIO_PG[3:0]	Software reads value and determines Boot device to be configured and used 1000 = SPI Flash 1011 = eMMC x8 BootModeOFF 1111 = Use fuse data Others Reserved
Nvidia Test Mode	TESTMODE_EN	Tie to GND for normal operation

4.0 Pads Controls

The MPIO pins have output drive & input related controls that are on a Pin Config group basis. The control options available for the Pin Config groups are:

HSM	High Speed Mode (Enable/Disable). For better matching of rise/fall delays in outbound & inbound paths for driver & receiver. May be useful for clocks & high speed signaling where matching timings are critical.				
SCHMT	Schmitt Trigger (Enable/Disable): Optional Schmitt Trigger mode for improved noise immunity.				
DRVDN / UP	Drive Down / Up: Up to 5 bits (32 settings) of output drive strength control (see note)				
DRVDN/UP_SLWR	Drive Down / Up Slew Rate: 4 levels of falling/rising edge (Drive Down/up) signal slew controls				

Note:	-	Schmitt Trigger mode should not be enabled for the OD type pads (Used for DDC_SCL/SDA & HDMI_INT) as this may result in V_{IL}/V_{IH} levels not meeting the DC Characteristics specifications in the Data Sheet.
	-	Not all controls listed in the table are available for all pin groups.

The table below provides estimated output drive values across minimum/maximum DRVUP/DRVDN settings. There are values for 1.8V, 2.8V and 3.3V power rail voltages.

Table 117. Output Drive Current Estimates across Pad Output Control settings

	1.8V		2.8V			3.3V			
	Dri	ve current (r	mA)	Drive current (mA)		Drive current (mA)		nA)	
DRVUP DRVDN	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
		, ,	•		. , , ,	711474	7,1111	1,75	max
00000	7.2	15.5	23.8	11.9	22.2	32.5	16.5	28.3	40.0

5.0 Unused Interface Terminations

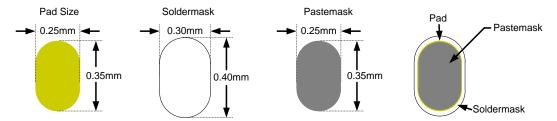
5.1 Unused Muxed Standard CMOS Pad Interfaces

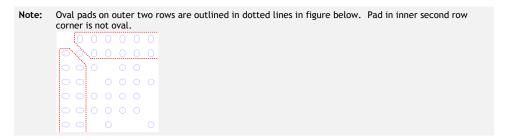
The following interfaces use the I/O pins that support multiple special functions (SFIO) and GPIO capabilities. Any unused interfaces or portions of these interfaces that are not used can be left unconnected or used for other SFIO functions or as GPIOs. Any of the power rails associated with these interfaces that are not used for any purpose can be left as no connects, or connected to GND.

Function/Interface	Block	Power Rail
SDMMC1_x	SDMMC1	VDDIO_SDMMC1
SDMMC2_x	GMI	VDDIO_GMI
SDMMC3_x	SDMMC3, SYS	VDDIO_SDMMC3, VDDIO_SYS
SDMMC4_x	SDMMC4	VDDIO_SDMMC4
12Sx	Various	Various
Ux3/IR3x (UART)	Various	Various
SPIx	Various	Various
PWFMx	Various	Various
EXTPERIPHx_CLK	Various	Various
GPIOx	Various	Various
I2Cx, I2CPMU, DDC	Various	Various
SPDIFx	HV	VDDIO_HV
DTVx	GMI, UART	VDDIO_GMI, VDDIO_UART
DCAx	SYS	VDDIO_SYS
PEX_CTL (PEx_CLKREQ_L, PEXx_RST_L, PEX_WAKE_L)	PEX_CTL	VDDIO_PEX_CTL
SOC_THERM_OC[3:0]_N	GMI, SYS	VDDIO_GMI, VDDIO_SYS
CLDVFSx	AUDIO, GMI, SYS	VDDIO_AUDIO, VDDIO_GMI, VDDIO_SYS
USB_VBUS_EN[2:0]	PEX_CTL, HV	VDDIO_PEX_CTL, VDDIO_HV
DP_HPD	HV	VDDIO_HV
VGP[5:3]	CAM	VDDIO_CAM
VIMCLK_x, VIMCLK2_x	CAM	VDDIO_CAM
TRACEx	GMI	VDDIO_GMI
SYS_CLK_REQ	SYS	VDDIO_SYS
SATA_DEV_SLP, SATA_LED_ACTIVE, SATA_DA	AUDIO, PEX_CTL	VDDIO_AUDIO, VDDIO_PEX_CTL

5.2 Unused Special Function Interfaces

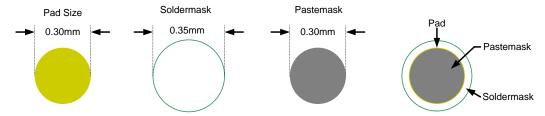
See the Unused Special Function Pins section in the Checklist at the end of this document.




6.0 PCB Pad Layout Recommendations

Pad Size Recommendations

Recommended pad, etc. sizes for two outer rows of pads (not including 1 pad in each corner See note & associated diagram)


- PAD: 0.25mm wide & 0.35mm tall oval - SOLDERMASK: 0.30mm wide & 0.40mm tall oval - PASTEMASK: 0.25mm wide & 0.35mm tall oval

Recommended Pad, etc. Sizes for All Other Pads

PAD: 0.30mm round
 SOLDERMASK: 0.35mm round
 PASTEMASK: 0.30mm rount

6.1 PCB Stack-up

Figure 42. Design Stack-up

Desired overall thickness with Soldermask # of Layers
Special Material requirements 1.564 MM
6 None

Layer	Material	Thickness (MM)	Line Width (MM)	DIFF Line Spacing (MM)	DIFF Line Centers (MM)	SE Impedance (Ohms)	DIFF Impedance (Ohms)
1 - TOP	Signal 1/2 oz		0.100			50	
			0.101	0.160	0.261	50	90
			0.099	0.350	0.449	50	98
			0.158			40	
			0.131	0.170	0.301	44	80
	Dielectric	0.068					
2 - L2	Plane 1 oz						
	Dielectric	0.076					
3 - L3	Signal 1 oz		0.100			50	
			0.101	0.175	0.276	50	90
			0.095	0.350	0.445	50	98
			0.155			40	
			0.128	0.194	0.322	44	80
	Dielectric	1.016					
4 - L4	Signal 1 oz		0.100			50	
			0.101	0.175	0.276	50	90
			0.095	0.350	0.445	50	98
			0.155			40	
			0.128	0.194	0.322	44	80
	Dielectric	0.076					
5 - L5		0.076					
5 - L5	Plane 1 oz Dielectric	0.068					
6 - BOTTOM	Signal 1/2 oz	0.000	0.100			50	
0 - BOTTOW	Gigital 1/2 02		0.101	0.160	0.261	50	90
			0.099	0.350	0.449	50	98
			0.000	0.000	0.770	50	30
			0.158			40	
			0.131	0.170	0.301	44	80
					0.00.		

Note:

- Impedance tolerances are +/- 15% unless otherwise specified.
- Not all line widths listed may be present on a particular layer.
- Overall board thickness is +/- 10%.
- Individual layer thickness is +/- 10%.
- Dielectric means PrePreg, Core, or Core/PrePreg.
- If unspecified, then preferred copper fill is 1/2 oz copper for signal layers and 1 oz copper for planes.
- See FAB Drawing for additional information.

6.2 Breakout Examples

Several of the main, critical power rails are highlighted as follows:

- VDD_CPU (Red)

- VDD_GPU (Tellow)
 VDD_CORE (Orange)
 VDDIO_DDR/DRAM IO Rail (Violet)
- GND (Green)

Figure 43. Top Layer Breakout

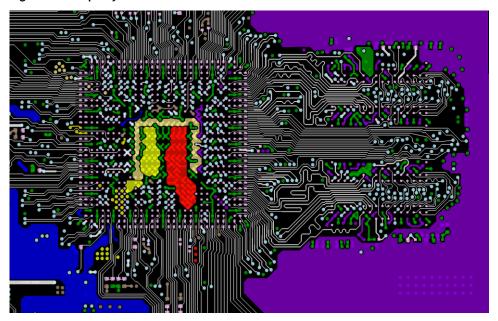


Figure 44. Layer 2 Breakout

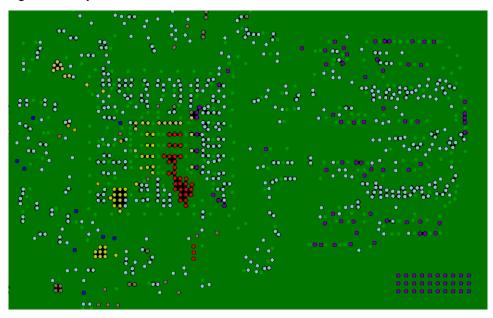


Figure 45. Layer 3 Breakout

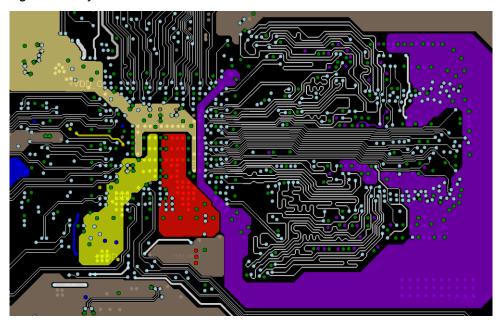


Figure 46. Layer 4 Breakout



Figure 47. Layer 5 Breakout

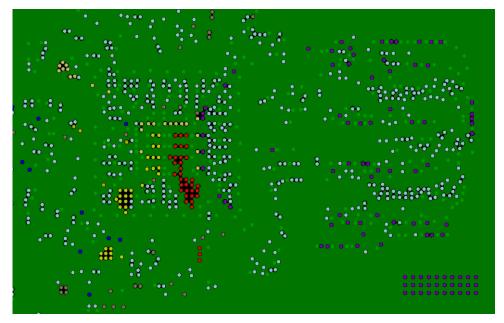
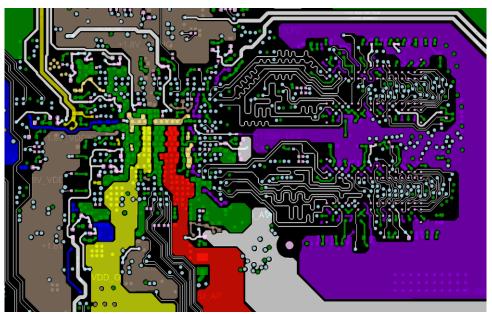



Figure 48. Bottom Layer Breakout

7.0 Tegra PLL Power Design Guidelines

The following sections provide a detailed guideline for the sensitive PLL power rails. The sensitive PLL power rails were determined by empirical lab measurement data. The PLL CLK output jitter was recorded before and after stress test and the increase in jitter was used to determine its sensitivity to noise. The spectrum of the CLK jitter was analyzed in relationship to the suspected I/O rail noise to determine that the PLL noise was caused by coupling from an I/O rail and not the self-generated noise of the PLL itself.

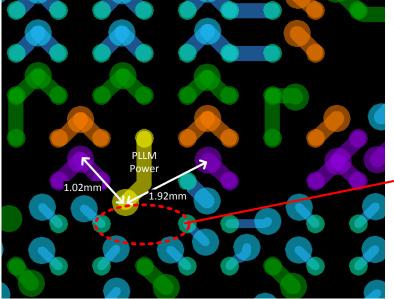
7.1 PLL Power Routing Design Guide

The following section covers the power routing guidelines and provide a detailed tradeoff for best routing practices to minimize the coupling

7.1.1 PLLM PLL Power Routing Coupling Minimization Routing

PLL	PLL Power Rail	PLL Power PIN	Aggressor Rail
PLLM	+1.05V_RUN_AVDD	K16	+1.35V_LP0_VDDIO_DDR_AP

Objective: Increase the distance between the Vias (White arrows) to minimize the coupling

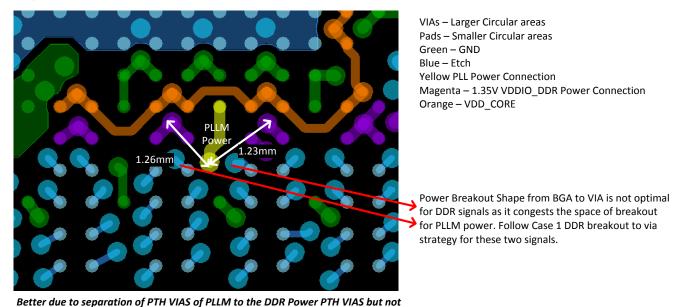

+1.35V BGA to Via Route in a manner to create maximum separation from the PLLM Via

7.1.1.1 Case Study for 3 different BGA to VIA Breakout Strategies

The following provides examples of 3 different layouts that have varying degrees of isolation between the PLLM Power and the 1.35V power

- Case 1 = Worst Coupling Isolation, Case 2= Bad Coupling Isolation, Case 3 = Good Coupling Isolation
- Advised to reference Case 3 Breakout Strategy

Figure 49. Case 1 (Worst) PCB Breakout Strategy


Worst due to proximity of PTH VIAS of PLLM to the DDR Power PTH VIAS but good signal breakout strategy to breakout PLLM Power Connection Further Away

VIAs – Larger Circular areas
Pads – Smaller Circular areas
Green – GND
Blue – Etch
Yellow PLL Power Connection
Magenta – 1.35V VDDIO_DDR Power Connection
Orange – VDD_CORE

Power Breakout Shape from BGA to VIA for two signals open up the area of the PLLM power shape can be routed for more separation between PLLM and DDR Power.

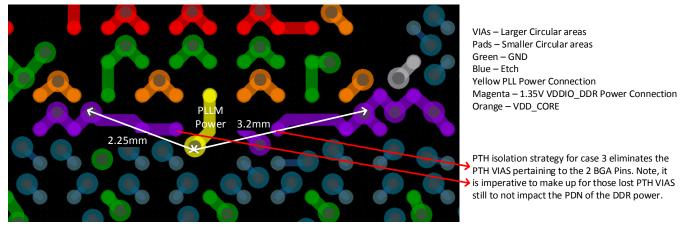


Figure 50. Case 2 (Bad) PCB Breakout Strategy (better due to distance of PTH VIAS of PLLM to the DDR Power PTH VIAS)

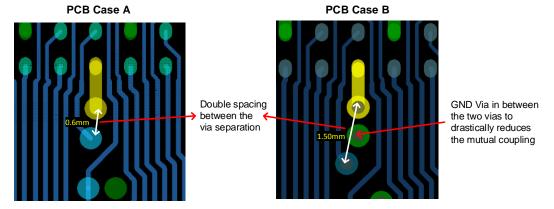
good signal BGA to VIA breakout strategy that limits the space where PLLM power VIA can be placed

Figure 51. Case 3 (Good) PCB Breakout Strategy (good isolation between DDR Power and PLL PTH Vias)

Best isolation due to breakout strategy of not having PTH VIAS for particular BGA. However, the PTH VIAS must still be accounted for

7.1.2 PLLA/P/C2/C3 PLL Power Routing Coupling Minimization Routing

PLL	PLL Power Rail	PLL Power PIN	Aggressor Rail
PLLA, PLLP, PLLC2, PLLC3	+1.05V_DDR_AVDD (Powered same BALL)	B17	+1.05V_DDR_AVDD_HS


Objective: Increase the distance between the Vias (White arrows) to minimize the coupling:

PCB Case B is far superior to PCB Case A

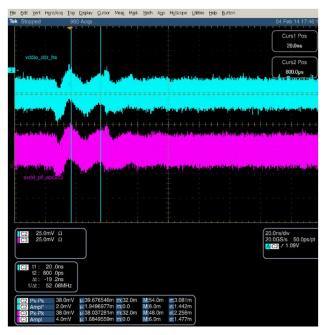
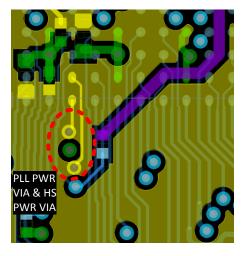

 Easier to do than PLLM since the BGA are at the edge of the BGA and not in the middle where other signal nets must breakout

Figure 52. BALL to Via Breakout Strategy: Keep two power rail Vias as far as possible in the breakout

- The PLL and the HS are driven by the same PMIC on the PCB
- Goal is to keep them isolated on the PCB breakout and only connect them on the BOTTOM layer of the PCB away from BGA area to reduce the coupling interaction
- Keep the distance between the two PTH Vias at least 1.5mm and add a GND Via in between the 2 PTH PWR Vias if possible
- There is no option not to have a Via for the BGA because only 1 BALL is dedicated for each rail
- The VDD_1.05_HS power the trimmers and during DPD (Data Power Down) Mode will generate a transient current and will couple over to the PLL power rail

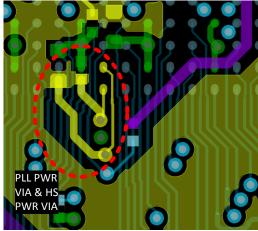
Figure 53. BALL to Via Breakout Strategy: Keep two power rail Vias as far as possible in the breakout

Scope Shot Showing the Self-Generated noise from Power Down Mode Coupling over to the PLL Rail (Note the absolute magnitude is filtered since measured at PCB) Clearly see coupling Noise and the goal is to reduce it.


7.1.2.1 Power Merging Strategy for PLLAPC2C3 Power and 1.05V_DDR_AVDD_HS

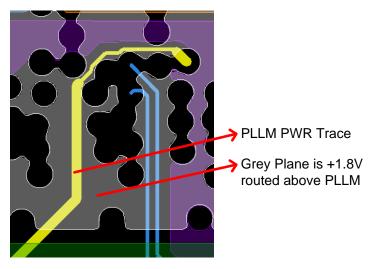
Following section will provide a strategy to merge the two power supplies while still providing adequate isolation to coupling. The merging will happen at the bottom layer of the PCB and the high frequency noise will be filtered by then.

- The PLL and the HS are driven by the same PMIC on the PCB so eventually there will have to a shorting connection between the two powers.
- Instead of shorting the vias directly to a plane, a better isolation strategy can be achieved by routing each power rail through a power trace filtered by a 1uF and 0.1uF capacitor when merging the two rails (refer figure 10)


Figure 54 Provides a bad case and a good case in how to merge the power rails on the bottom layer

Bad Case Merging Rails (still strong coupling)

Bad Case Merging has the PTH power VIAS shorted by a plane while the good case will have some trace to capacitors on a plane to provide more isolation.


GOOD Case Merging Rails (good isolation)

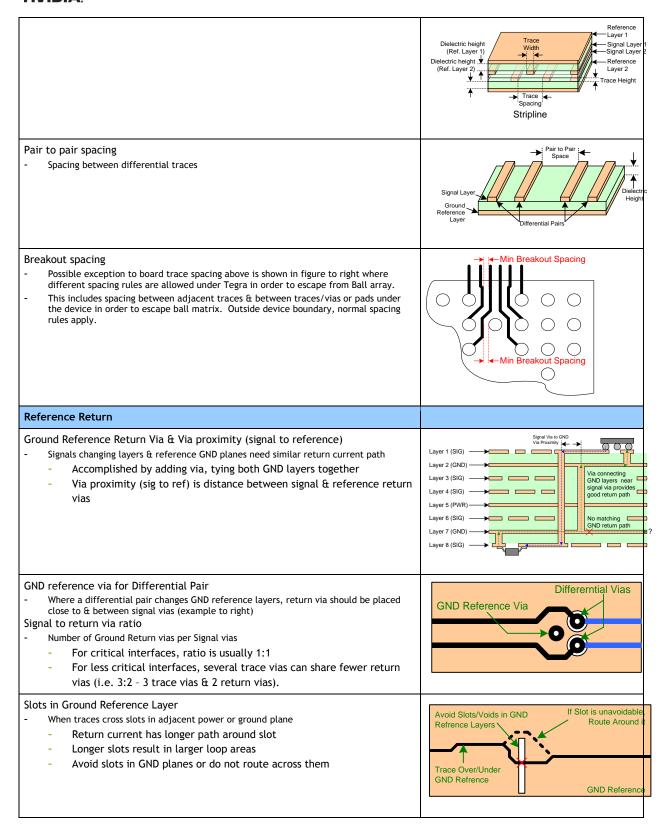
7.2 Other Design Considerations

Avoid Routing PLL power traces below or above noisy planes

Figure 14. PLLM Power Trace Layer 4 and +1.8V Power Plane Layer 5 (Bad Routing)

7.3 PLL Design Guide Specific Checkout List

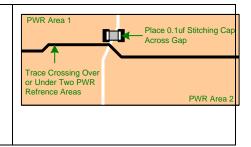
See the "Additional PLL Power Noise Coupling Reduction Guidelines" portion of the "Clocks" section which provides tables containing the minimum via distances that need to be met and other related details to be considered.


8.0 Design Guideline Glossary

The Design Guidelines include various terms. The descriptions and diagrams in the table below are intended to show what these terms mean and how they should be applied to a design.

Table 118 Layout Guideline Tutorial

Trace Delays Max Breakout Delay $\circ \circ \mathsf{A} \circ \circ \circ \circ$ Routing on Component layer: Maximum Trace Delay from inner ball to point beyond 000ball array where normal trace spacing/impedance can be met (A to B) Routing passes to layer other than Component layer: Trace delay from ball to via + via delay. Beyond this, normal trace spacing/impedance must be met (C to D) \bigcirc 0000 Max Total Trace Delay Package Route Package route (A to B) + Trace from ball to Device pin (B to C) **PCB** Route This max length/delay must include routing on the PCB where Tegra resides, and any other Flex or secondary PCB. Delay is from Tegra to the final connector/device. Cables, such as for HDMI or USB are not included. 000,000000 O À 000 00 0 Device 00000 00000 00 Tegra Die Intra/Inter Pair Skews Intra Pair Skew (within pair) - Package + PCB Difference in delay between two traces in differential pair Tegra Die Includes package (die to pins) & PCB routing (pin to destination) In example, this is A-B-C verses D-E-F or G-H-I verses J-K-L Shorter routes may require indirect path to equalize delays Inter Pair Skew (pair to pair) - Package + PCB Difference between two (or possibly more) differential pairs Includes package (die to pins) & PCB routing (pin to destination) In example - Average of A-B-C & D-E-F verses average of G-H-I & J-K-L Here, both G-H-I & J-K-L required indirect path to match other pair Impedance/Spacing Microstrip vs Stripline Height Microstrip: Traces next to single ref. plane. Stripline: Traces between two ref planes Width Trace Impedance Dielectric Impedance of trace determined by width & height of trace, distance from ref. plane & Height .¥.. Signal dielectric constant of PCB material Layer Reference For differential traces, space between pair of traces is also a factor Trace 🔫 Board trace spacing / Spacing to other nets Spacing¹ Minimum distance between two traces. Usually specified in terms of dielectric height Microstrip which is distance from trace layer to reference layer.



Routing over Split Power Layer Reference Layers

- When traces cross different power areas on power plane
 - Return current must find longer path usually a distant bypass cap
 - If possible, route traces w/solid plane (GND or PWR) or keep routes across single area
- If traces must cross two or more power areas, use stitching capacitors
 - Placing one cap across two PWR areas near where traces cross area boundaries provides high-frequency path for return current
 - Cap value typically 0.1uF & should ideally be within 0.1" of crossing

9.0 Design Checklists

The checklists below is intended to help ensure that the correct connections have been made in a design. The check items describe connections for the various interfaces and the "Same/Diff/NA" column is intended to be used to indicate whether the design matches the each item description, is different, or is not applicable to the design.

Table 119. Clocking Checklist

Description	Same/Diff/NA
XTAL_IN/ XTAL_OUT connect to terminals of external 12MHz crystal	
XTAL_IN & XTAL_OUT have 12pF Load caps to GND	
AVDD_OSC connects to 1.8V	
CLK_32K_IN connected to PMU 32kHz output clock	

Table 120. Power Checklist

Description	Same/Diff/NA
Control	
PWR_I2C_SCL/SDA connect to PMU with 1Kohm pull-up resistors to +1.8V_VDDIO	
PWR_INT_N connects to Interrupt pin on PMU.	
CORE_PWR_REQ connects to CORE_PWRREQ of PMU	
CPU_PWR_REQ connects to CPU_PWRREQ of PMU	
VDD_CPU_SENSE connects to FB_SD0_P pin of PMU	
GND_CPU_SENSE connects to FB_SD0_N pin of PMU	
VDD_CORE_SENSE connects to FB_SD1_P pin of PMU	
GND_CORE_SENSE connects to FB_SD1_N pin of PMU	
VDD_GPU_SENSE connects to FB_SD6_P pin of PMU	
GND_GPU_SENSE connects to FB_SD6_N pin of PMU	
Power Tree (Matches Jetson TK1 board)	
TPS51220 3.3V SW used for +3.3V_SYS	
TPS51220 5.0V SW used for +5V_SYS	
SD0 (+AS3728 Power Stage) used for +VDD_CPU	
SD1 (+AS3728 Power Stage) used for +VDD_CORE	
SD6 (+AS3728 Power Stage) used for +VDD_GPU	
PMU LX_SD[3:2] used for +1.35V_LP0	
PMU LX_SD4 used for +1.05V_RUN	
PMU LX_SD5 used for +1.8V_VDDIO	
PMU LD00 used for +1.05V_RUN_AVDD	
PMU LDO1 used for +1.8V_RUN_CAM	
PMU LDO2 used for +1.2V_GEN_AVDD	

Description	Same/Diff/NA
PMU LDO3 used for +1.05V_LP0_VDD_RTC	
PMU LDO4 used for +2.8V_RUN_CAM	
PMU LDO5 used for +1.2V_RUN_CAM_FRONT	
PMU LDO6 used for +VDDIO_SDMMC3	
PMU LDO7 used for +1.05V_RUN_CAM_REAR	
PMU LDO9 used for +3.3V_RUN_TOUCH	
PMU LDO10 used for +2.8V_RUN_CAM_AF	
PMU LDO11 used for +1.8V_RUN_VPP_FUSE	
Supply Connections	
Pre-PMU PMU Switcher connections match reference design	
PMU + Power Stage (CPU/CORE/GPU) connections match reference design	
PMU DC/DCs connections match reference design	
PMU LDOs connections match reference design	
PMU Power Control/GPIOs connections match reference design	
External Supply connections match reference design	
Critical Power Components	
VDD_CPU inductors & output caps matches or exceeds specs of device in 2.2 CPU, GPU, CORE & DDR Supply Considerations.	
VDD_GPU inductors & output caps matches or exceeds specs of device in 2.2 CPU, GPU, CORE & DDR Supply Considerations.	
VDD_CORE Inductor & output caps matches or exceeds specs of device in 2.2 CPU, GPU, CORE & DDR Supply Considerations.	
Peripheral Power	
Any additional peripheral devices have dedicated supply or load switch to allow it to be shut off when not used	
Power/Voltage Monitoring	
SOC Therm connections match reference design	
Power monitor implemented if 5V or Single-cell design. Device/connections matche Reference Design (shown in section 2.9)	
Voltage monitor implemented if 5V or Single-cell design. Device/connections matches Reference Design (shown in section 2.9.2)	

Table 121. Power Decoupling/Filtering Checklist

Description	0.1uF (0201)	1uF (0201)	2.2uF (0201- 0402)	4.7uF (0201- 0402)	Same/Diff/NA
Decoupling for VDD_CORE is	3	0	0	7	
Decoupling for VDD_CPU is	4	0	0	8	
Decoupling for VDD_GPU is	3	0	0	6	

Description	0.1uF (0201)	1uF (0201)	2.2uF (0201- 0402)	4.7uF (0201- 0402)	Same/Diff/NA
Decoupling for VDD_RTC is	1	0	0	0	
Decoupling for AVDD_OSC is	0	0	0	1	
AVDD_OSC has power filter (Ferrite Bead - 30Ω @100MHz)					
Decoupling for VDDIO_DDR_MCLK/VDDIO_DDR together is	2	0	0	5	
Decoupling for VDDIO_DDR_HS & AVDD_PLL_APC2C3) is	1	0	1	0	
Decoupling for AVDD_PLL_M is	1	0	1	0	
Decoupling for AVDD_PLL_CG & AVDD_PLL_X together is	1	0	1	0	
Decoupling for AVDD_PLL_C4 is	1	0	1	0	
Decoupling for AVDD_PLL_UD2DPD is	1	0	1	0	
Decoupling for AVDD_PLL_EREFE is	1	0	1	0	
Decoupling for VDDIO_HV & AVDD_HDMI together is	1	0	0	1	
Decoupling for AVDD_HDMI_PLL is	1	0	1	0	
Decoupling for AVDD_CSI_DSI is	1	0	0	1	
Decoupling for AVDD_USB is	1	0	0	1	
Decoupling for AVDD_PLL_UTMIP is	1	0	0	1	
AVDD_PLL_UTMIP has filter (Ferrite Bead - 30Ω@100MHz)					
Decoupling for HVDD_PEX_PLL_E & HVDD_PEX together is	1	0	0	1	
Decoupling for AVDDIO_PEX, DVDDIO_PEX & AVDD_PEX_PLL together is	1	1	0	1	
AVDD_PEX_PLL has filter (Ferrite Bead - 30Ω@100MHz)					
Decoupling for VDDIO_SATA & AVDD_SATA_PLL together is	1	1	0	1	
Decoupling for AVDD_SATA_PLL has filter (Ferrite Bead - 30Ω@100MHz)					
Decoupling for HVDD_SATA & VDDIO_PEX_CTL together is	1	0	0	1	
Decoupling for VDDIO_PEX_CTL is	1	0	0	1	
Decoupling for AVDD_LVDSO_IO is	1	0	1	0	
Decoupling for AVDD_LVDSO_PLL is	1	0	0	1	
AVDD_LVDS_PLL has filter (Ferrite Bead - 30Ω@100MHz)					
Decoupling for VDDIO_HSIC is	1	0	0	1	
Decoupling for VDDIO_SYS i	1	0	0	1	
Decoupling for VDDIO_SYS2 is	1	0	0	1	
Decoupling for VDDIO_BB is	1	0	0	1	
Decoupling for VDDIO_UART & VDDIO_GMI together is	1	0	0	1	
Decoupling for VDDIO_SDMMC1 is	1	0	0	1	
Decoupling for VDDIO_SDMMC3 is	1	0	0	1	
Decoupling for VDDIO_SDMMC4 is	1	0	0	1	
Decoupling for VDDIO_AUDIO is	1	0	0	1	
		i			

Description	0.1uF (0201)	1uF (0201)	2.2uF (0201- 0402)	4.7uF (0201- 0402)	Same/Diff/NA
Decoupling for VDDIO_CAM is	1	0	0	1	
Decoupling for VPP_FUSE is	1	0	0	0	

Table 122. DRAM Checklist

Description	Same/Diff/NA
Pin re-mapping matches configuration table in section 3.3.1 exactly.	
DDR_DQ[63:0] nets connect to same DQ pins of all DRAMs corresponding to the appropriate byte lane (groupings).	
DDR_DM[7:0] nets connect to same DM pins of all DRAMs corresponding to the appropriate byte lane (groupings).	
DDR_DQS[7:0]P/N nets connect to same DQS/DQS# pins of all DRAMs matching the appropriate byte lane (groupings).	
DDRO_CLKP/N connect to CK/CK# pins of all DRAMs used in the lower 32-bits	
DDR1_CLKP/N connect to CK/CK# pins of all DRAMs used in the upper 32-bits	
DDR0_CS[1:0]_N, DDR0_CKE[1:0] & DDR0_ODT[1:0] nets connect to matching CS/CKE/ODT pins of all DRAM used in the lower 32-bits	
DDR1_CS[1:0]_N, DDR1_CKE[1:0] & DDR1_ODT[1:0] nets connect to CS/CKE/ODT pins of all DRAM used in the upper 32-bits	
VDDIO_DDR_HS connects to 1.05V supply	
$ZQ[1:0]$ on DRAM device connect to 240 Ω , 1% pull-downs to GND	
Decoupling on VDD for each DRAM device is 3 0.1uF & 1 4.7uF capacitors	
Decoupling on VDDQ for each DRAM device is 3 0.1uF & 1 4.7uF capacitors	
90Ω (2, 45.3Ω , 1%) between CLK_P & N pins + 0.01uF cap center-tapped to GND. Connected at end of main trunk.	
2.2pf capacitor between CLKP & CLKN close to Tegra pins	
DDR_A[15:6,2:0] nets connect to A[15:6,2:0] pins of all DRAMs.	
DDRO_A[5:3] nets connect to A[5:3] pins of all DRAM used in the lower 32-bits	
DDR1_A[5:3] nets connect to A[5:3] pins of all DRAMs used in the upper 32-bits	
DDR_BA[2:0] nets connect to same BA pins of all DRAMs.	
DDR_CAS_N, DDR_RAS_N, DDR_WE_N nets connect to CAS_N, RAS_N & WE_N pins respectively of all DRAMs.	
DDR_COMP_PU pulled up with 34 Ω , 1% to 1.35V & DDR_COMP_PD pulled down with 34 Ω , 1% to GND	
VDDIO_DDR, VDDIO_DDR_MCLK & DRAM VDD/VDDQ connect to 1.35V supply	
VSS, VSSQ on DRAM devices connect to GND	
Decoupling on VDD for each DRAM device is 3 0.1uF & 1 4.7uF capacitors	
Decoupling on VDDQ for each DRAM device is 3 0.1uF & 1 4.7uF capacitors	

Table 123. USB/PCIe/SATA/HSIC Checklist

Description	Same/Diff/NA
USB 2.0	
USBO available to be used as device for USB recovery at a minimum	
GPIO_PI1 can be pulled to GND before SYS_RESET_N rises to enter recovery mode	
USBO_VBUS connected to output of 5V VBUS supply through load switch enabled by AVDD_USB supply.	
USB[2:0]_DP/N connect to USB connector, Mini-Card Socket, Hub, etc. (See Pins_EMI_ESD section for related checks).	
USB ID from conn. is pulled to 5V VBUS supply (100K Ω) & connects to PMU PWM_CLK2 pin through FETs (matches reference design).	
USB_REXT connect through $1k\Omega$, 1% resistor to GND	
AVDD_USB connects to 3.3V Supply	
If USB Wake (using USB mechanism) required, AVDD_USB is powered in Deep Sleep & not connected to other rails that must be off.	
AVDD_PLL_UTMIP connects to 1.8V Supply	
USB 3.0	
USB3_RX0_P/N & PEX_USB3_RX1_P/N connect to USB 3.0 connectors, etc.	
USB3_TX0_P/N & PEX_USB3_TX1_P/N connects to USB 3.0 connector, etc. through 0.1uF series capacitors.	
PEX_TERMP connect through 2.49k Ω , 1% resistors to GND	
AVDDIO_PEX, DVDDIO_PEX & AVDD_PEX_PLL (required for USB3 & PEX) connect to 1.05V supply	
HVDD_PEX connects to 3.3V supply	
If USB 3.0 Wake (using USB mech.) is required, HVDD_PEX is powered in Deep Sleep & not connected to other rails that must be off.	
If USB 3.0 Connector used, it must be USB-IF certified	
PCIe	
Single lane PCIe interfaces are be located at Lane 2 (PEX_TX/TX2N/P - Cont #1) &/or Lane 4 (PEX_TX/TX4N/P - Cont #0)	
Dual Lane PCIe interface are be located at Lanes [4:3] (PEX_TX/TX[4:3]N/P - Cont #0)	
Quad Lane PCIe interface are be located at Lanes [4:1] (PEX_TX/TX[4:1]N/P - Cont #0)	
PCIe controller #0 is associated with PEX_CLK1P/N, PEX_L0_CLKREQ_N & PEX_L0_RST_N	
PCIe controller #1 is associated with PEX_CLK2P/N, PEX_L1_CLKREQ_N & PEX_L1_RST_N	
PCIe TX lanes (PEX_USB3_TX0P/N, PEX_TX[4:2]P/N) connect to TX_P pins of PCIe device/connector through 0.1uF caps	
Connector case: PCIe RX lanes (PEX_USB3_RX0P/N, PEX_RX[4:2]P/N) connect to RX_P pins of PCIe connector	
Direct Device case: PCIe RX lanes (PEX_USB3_RX0P/N, PEX_RX[4:2]P/N) connect to RX_P pins of PCIe device through 0.1uF caps	
PEX_L[1:0]_CLKREQ_N connects to CLKREQ pins on device/connector(s)	
PEX_L[1:0]_RST_N connect to PERST pins on device/connector(s)	
PEX_WAKE_N connects to WAKE pins on device or connector w/100KΩ pullup to +3.3V_LP0 supply	

Description	Same/Diff/NA
PEX_TERMP connects to GND through 2.49KΩ, 1% termination resistor to GND	
PEX_REFCLKP/N are Unused & connected to GND	
PEX_TSTCLKP/N are unused & left NC	
DVDDIO_PEX, AVDDIO_PEX & AVDD_PEX_PLL connect to +1.05V_RUN supply	
HVDD_PEX & HVDD_PEX_PLL_E & VDDIO_PEX_CTL Connect to +3.3V_LP0 supply	
SATA	
SATA_LO_TXP/N connect to TX_P pins of SATA device/connector through 0.1uF caps	
Connector case: SATA_LO_RXP/N pins connect to RX_P pins of SATA connector	
Direct Device case: SATA_L0_RXP/N pins connect to RX_P/N pins of SATA device through 0.1uF caps	
SATA_TERMP connects to GND through 2.49K Ω , 1% termination resistor to GND	
SATA_TSTCLKP/N are unused & left NC	
VDDIO_SATA & AVDD_SATA_PLL connect to +1.05V_RUN supply	
HVDD_SATA connects to +3.3V_LP0 supply	
HSIC	
HSIC[2:1]_STROBEs connect to STROBE pin on HSIC device(s).	
HSIC[2:1]_DATA connect to DATA pin on HSIC device(s).	
Series resistor pads placed near Tegra on STROBE/DATA (highly recommended for early designs in case signal tuning required)	
HSIC_REXT connects through 1.0k Ω , 1% resistor to GND	
VDDIO_HSIC connects to 1.2V supply	

Table 124. SDMMC Checklist

Description	Same/Diff/NA
eMMC (SDMMC4)	
SDMMC4_CLK connects to CLK pin of eMMC device (See Pins_EMI_ESD section for related checks).	
SDMMC4_CMD connects to CMD pin of eMMC device. External 4.7KΩ pull-up resistor to the 1.8V rail used for VDDIO_SDMMC4.	
SDMMC4_DAT[7:0] connect to DAT pins of eMMC device. No external pull-ups required.	
SDMMC4_COMP_PU connect to 49.9 Ω , 1% to 1.8V (same supply as VDDIO_SDMMC4)	
SDMMC4_COMP_PD connects to 49.9 Ω , 1% to GND	
PMU Reset output connected to eMMC Reset.	
SDMMC1	
SDMMC1_CLK connects to CLK pin of device	
SDMMC1_CMD connects to CMD pin of device. No external pull-ups required.	
SDMMC1_DAT[3:0] connect to DAT pins of device. No external pull-ups required	
SDMMC1_COMP_PU connect to 33.2Ω, 1% to same supply as VDDIO_SDMMC1.	
SDMMC1_COMP_PD connects to 33.2Ω, 1% to GND	

Description	Same/Diff/NA
SDMMC2	
SDMMC2_CLK connect to CLK pin of device (See Pins_EMI_ESD section for related checks).	
SDMMC2_CMD connect to CMD pin of device. External Pull-ups as required by peripheral.	
SDMMC2_DAT[7:0] connect to DAT pins of device. External Pull-ups as required by peripheral.	
SDMMC2_COMP_PU connect to 33.2Ω, 1% to 1.8V (same supply as VDDIO_GMI).	
SDMMC2_COMP_PD connects to 33.2Ω, 1% to GND	
SDMMC3	
SDMMC3_CLK connects to CLK pin of socket (See Pins_EMI_ESD section for related checks).	
SDMMC3_CMD connecst to CMD pin of socket. No external pull-ups required.	
SDMMC3_DAT[3:0] connect to DAT pins of socket. No external pull-ups required	
SDMMC3_COMP_PU connect to 33.2Ω, 1% to same supply as VDDIO_SDMMC3	
SDMMC3_COMP_PD connects to 33.2Ω, 1% to GND	
SDMMC3 Loopback Clock Out/In is routed as a loop (out from SDMMC3_CLK_LB_OUT & back to SDMMC_CLK_LB_IN)	
SD Card Detect: Connect SDMMC3_CD to CD pin on socket	
SD Card Write Protect (Full-size SD socket): Connect to KB_COL4	
Adequate bypass caps provided on SD Card VDD rail (matches reference design)	

Table 125. Display Checklis

Description	Same/Diff/NA
DSI	
DSI_A_CLK_N/P Clock connects to CLKn & CLKp pins of DSI receiver	
DSI_A_D[3:0]_N/P Data Lanes connects to up to 4 sets of Dn & Dp pins of DSI receiver	
DSI_B_CLK_N/P Clock connects to CLKn & CLKp pins of upper half of 8-lane primary DSI receiver or to 2nd receiver (See Note)	
DSI_B_D[3:0]_N/P Data Lanes connect to upper half of 8-lane primary receiver, or up to 4 lanes of 2nd receiver (See Note)	
CSI_DSI_RDN connects to 49.9 Ω , 1% resistor to GND	
CSI_DSI_RUP connects to 453Ω, 1% resistor to AVDD_DSI_CSI (1.2V)	
AVDD_CSI_DSI connects to 1.2V supply	
KB_ROW6 used for TE (Tearing Effect) signal from display if supported	
eDP	
LVDS_TXD0_N/P connect to Lane 2 of eDP panel/connector through 0.1uF AC capacitors	
LVDS_TXD1_N/P connect to Lane 1 of eDP panel/connector through 0.1uF AC capacitors	
LVDS_TXD2_N/P connect to Lane 0 of eDP panel/connector through 0.1uF AC capacitors	
LVDS_TXD4_N/P connect to Lane 3 of eDP panel/connector through 0.1uF AC capacitors	
DP_AUX_CH0_N/P connect to Aux Lane of eDP panel/connector through 0.1uF AC capacitors	

Description	Same/Diff/NA
100KΩ pull-downs on both DP_AUX_CH0_N/P lines near Tegra.	
100KΩ pull-down on DP_AUX_CH0_P & 100KΩ pull-up on DP_AUX_CH0_N near Connector/Device	
DP_HPD on VDDIO_HV block connects to HPD pin of eDP panel/connector	
LVDS0_RSET connects to 1.0KΩ, 1% resistor to GND	
AVDD_LVDS0_IO connects to 1.05V supply	
AVDD_LVDS0_PLL connects to 3.3V supply	
LVDS	
LVDS0_TXD[2:0]_N/P connect to Lanes [2:0] of LVDS panel/connector	
LVDSO_TXD3_N/P connect to Lane 3 of LVDS panel/connector (if required for 4-lane panel)	
LVDSO_TXD4_N/P connect to Clock Lane of LVDS panel/connector	
KB_ROW6 used for TE (Tearing Effect) signal from display if supported	
LVDS0_RSET connects to 1.0KΩ, 1% resistor to GND	
AVDD_LVDS0_IO connects to 1.05V supply	
AVDD_LVDS0_PLL connects to 1.8V supply	
HDMI	
HDMI_TXCN/P connect to CP-/CP+ pins on HDMI Connector (See Note)	
HDMI_TXD[2:0]N/P connect to D[2:0]-/ D[2:0]+ pins on HDMI Connector	
HDMI_RSET connects to 1k Ω , 1% resistor to GND	
HDMI_INT connects to HP_DET pin on HDMI Connector through 1K Ω series resistor.	
AVDD_HDMI connects to 3.3V supply with Backdrive circuit	
Ensure supply for AVDD_HDMI can handle up to 100mA (short term spike when display disconnected while Tegra device powered)	
AVDD_HDMI_PLL connects to 1.05V supply	
VDDIO_HV connects to 1.8, 2.8-3.3V supply (2.8-3.3V used if DDC connected to HDMI connector)	
If VDDIO_HV connects to 1.8, the only SFIO function supported is DDC (I2C)	
DDC_SCL/SDA connect to corresponding pins of HDMI Connector through 33Ω series resistors. 1.8K pull-ups to VDD_HDMI 5V supply	
HDMI_CEC connects to CEC on connector through gating circuitry	

Table 126. Video/Camera (CSI) Input Cecklist

Description	Same/Diff/NA
CSI_A_CLK_P/N Clock connects to CLKn & CLKp pins of primary camera	
CSI_A_D[1:0]_P/N & CSI_B_D[1:0]_P/N pins connect to up to 4 lanes of primary camera	
CSI_E_CLK_P/N Clock connects to CLKn & CLKp pins of secondary camera	
CSI_E_D0_P/N pins connect to up to secondary camera	
CAM_MCLK connects to primary camera.	
Small Test Points added to CSI_xxx lines near Tegra. Connections from test points to signal very short.	

Description	Same/Diff/NA
CAM_MCLK2 (GPIO_PBB0) connects to secondary camera.	
CAM_I2C_SCL/SDA from Tegra connect to Primary & Secondary cameras	
CAM_I2C_SCL/SDA have 1.8kΩ pull-ups (or values based on section 7.1 of the NXP/Philips I2C-bus spec. & user manual (Version 3)	
CSI_DSI_RDN, CSI_DSI_RUP & AVDD_CSI_DSI connections can be found in Display - DSI section	
If Tegra GPIO used for flash control, one of the GPIO_PBBx pins are used	
Appropriate power filtering/decoupling provided for camera supplies	
Privacy LED included in design if required by OS/provider & powers on when camera is operating (not controlled by SW).	

Table 127. Audio Checklist

Description	Same/Diff/NA
Codec/DAP/I2S	
Tegra I2C_SCL & SDA connect to Codec SCL & SDA pins & pull-up resistors to voltage level of Tegra block I2C pins reside.	
DAP1 pins used for Primary Modem I/F if required	
DAP2 pins used for Codec	
DAP3 pins used for 2nd I2S I/F on Primary Modem (if required)	
DAP4 pins used for Bluetooth (if required)	
DAP[4:1]_SCLK connects to SCLK pin of audio device. (see Pins_EMI_ESD section for related checks)	
DAP[4:1]_FS connects to WS (I2S) or FS/SYNC (PCM) pin of audio device.	
DAP[4:1]_DOUT connects to Data Input pin of audio device.	
SPDIF	
SPDIF_IN connects to TOSLINK optical or other 1.8V/3.3V compatible source	
SPDIF_OUT connects to RCA or TOSLINK optical Connector	
If RCA connector, series 100nF capacitor, series 265 Ω resistor, 220 Ω pulldown resistor & 100pF capacitor to GND required in path	

Table 128. I2C/SPI/UART Checklist

Description	Same/Diff/NA
I2C	
I2C devices on same I2C IF do not have address conflicts (ensure comparisons are done 7-bit to 7-bit format or 8-bit to 8-bit format)	
Level shifters used when required. I2C are of type DD which do not require level shifters to support up to 3.3V devices.	
Pull-up resistors are provided on all I2C I/F segments, including on either side of any level shifters.	
Pull-up resistor values based on reference design or section 7.1 of the NXP/Philips I2C-bus specification & user manual (Version 3)	
PWR/GEN1/GEN2/CAM_I2C _SCL/SDA connect to SCL/SDA pins of devices.	

Description	Same/Diff/NA
I2C pull-ups to same rail as block I2C I/F is on, or to rail up to 3.3V, given all devices on bus segment support the higher voltage.	
DDC_SCL/SDA connect to CLK/Data pins of devices. 1.8K pull-ups to +5V_HDMI.	
If I2C6 function used (eDP panel or other), VDDIO_HV is from 2.8-3.3V.	
SPI	
Tegra K1 SPI Clock (SPIx_SCLK) connects to Peripheral CLK pin	
SPI Master Out / Slave In (SPIx_MOSI) connects to Peripheral MOSI pin	
SPI Master In / Slave Out (SPIx_MISO) connect to Peripheral MISO pin	
SPI Chip Selects (SPIx_CSx) connects to Peripheral CS pin	
UART	
UARTx_TXD connects to Peripheral RXD pin of device	
UARTx_RXD connects to Peripheral TXD pin of device	
UARTx_CTS_N connects to Peripheral RTS_N pin of device	
UARTx_RTS_N connects to Peripheral CTS_N pin of device	

Table 129 Miscellaneous

Description	Same/Diff/NA
THERMP (Temp Sensor)	
GEN1_I2C_SCL/SDA connect to SCLK/SDATA on Thermal Sensor	
THERMD_P/ N connect to a thermal sensor (NCT72/TMP451). 1000pf cap between signal pair. 100Ω series resistors	
THERM from Temp. sensor goes to PMU THERM pin with 100k Ω to +2.5V_AON_RTC.	
ALERT from thermal sensor to Tegra GPIO_PI6 pin with $100k\Omega$ to $+1.8V_VDDIO$.	
JTAG	
JTAG_TMS connects to TMS pin of connector.	
JTAG_TCK connects to TCK pin of connector. 100kΩ GND	
JTAG_TDO connects to TDO pin of connector.	
JTAG_TDI connects to TDI pin of connector.	
JTAG_RTCK connects to RTCK pin of connector.	
For normal operation, JTAG_TRST_N is NC or pulled down (recommend external 100K pull-down)	
For Scan test mode, JTAG_TRST_N pulled high (100k Ω to VDDIO_SYS) or connect to JTAG connector TRST_N pin.	
Strapping	
USB Recovery Mode: GPIO_PI1 is pulled down to GND through resistor no larger than $2.2 \mathrm{K}\Omega$ when system powers on	
Normal operation: GPIO_PI1 is pulled up to VDDIO_GMI (Boot from secondary device) with a $10k\Omega$ to $100k\Omega$ resistor	
GPIO_PG[7:4] straps for RAM Code. $100k\Omega$ or stronger pull-ups (to VDDIO_GMI) or pull-downs (to GND). Fewer straps possible if fewer tables required for DRAM/Boot Device.	

Description	Same/Diff/NA
GPIO_PG[3:0] Boot Select straps (if straps used for boot select). $100k\Omega$ pull-up to VDDIO_GMI or $100k\Omega$ pull-down to GND.	
For eMMC selection using straps, use setting of 1011 on GPIO_PG[3:0] for eMMC x8 BootModeOFF.	
JTAG Access mode: GPIO_PK7 & GPIO_PJ7 have 100k or stronger resistors to GND even if JTAG not supported.	
GPIO_PI0 is pulled to VDDIO_GMI with a $100k\Omega$ or stronger resistor	
Any Strapping pins used as GPIOs in design will be in correct strap state when SYS_RESET_N goes high. Additionally, GPIO_PIO will be high during/exiting Deep Sleep.	
Pin Selection	
Pinmux completed including GPIO usage (direction, initial state, Ext. PU/PD resistors, Deep Sleep state).	
SFIO usage matches reference platform where possible.	
Each SFIO function assigned to only one pin, even if function selected in Pinmux registers is not used or pin used as GPIO	
GPIO usage matches reference platform where possible.	
EMI/ESD	
Any ESD protection devices used on USB 3.0, DSI, eDP, LVDS, HDMI TMDS, CSI or SDMMC3 (SD Card) are suitable for highest frequency modes supported (has low capacitive load: <1pf recommended).	
Any EMI control devices used on USB 3.0, DSI, eDP, LVDS, HDMI TMDS, CSI or SDMMC3 (SD Card) are suitable for highest frequency modes supported (has low capacitive load: <1pf recommended).	

Table 130. Unused Special Function Interface Pins Checklist

Description		Same/Diff/NA
Ball Name	Termination	
DRAM		
DDR_CS1, DDR_CS_B1, DDR_CKE1, DDR_CKE-B1, DDR_ODT1, DDR_ODT_B1	Leave NC if only single Rank is implemented. ODT1 may not be required even for dual rank devices. If not used, leave NC. Note that in this case, this is the signal function after the DDR pin remapping, not the actual ball name.	
DDR_CAS_N, DDR_RAS_N, DDR_WE_N, DDR_RESET_N, DDR_BA[2:0], DDR_A[15:10]	These functions are not used with LPDDR3 DRAM, but many are remapped to support the 2 nd Address/Command channel. See LPDDR3 DDR pin remapping table.	
USB 2.0		
USB0_DP/N	Required for all designs for Recovery Mode	
USB[2:1]_DP/N	Leave NC if USB1 or USB2 not used	
USB0_ID	Leave NC if not used	
USB0_VBUS	Required for all designs for Recovery Mode	
USB_REXT	Required for all designs for Recovery Mode	
AVDD_USB, AVDD_PLL_UTMIP	Required for all designs for Recovery Mode	
USB 3.0 / PCle		
USB3_TX[1:0]_P/N	Leave NC any unused TX lines	
USB3_RX[1:0]_P/N	Connect to GND any unused RX lines or leave NC if no USB/PCIe	

Description		Same/Diff/NA
Ball Name	Termination	
	interfaces used.	
PEX_TX[4:2]N/P	Leave NC if not used	
PEX_RX[4:2]N/P	Connect to GND any unused RX lines or leave NC if no USB/PCIe interfaces used.	
PEX_CLK[2:1]N/P	Leave NC if not used	
PEX_REFCLKN/P	Connect to GND - not used	
PEX_TESTCLKN/P	Leave NC - not used	
PEX_TERMP	Leave NC if neither USB 3.0 interface used	
DVDDIO_PEX, AVDDIO_PEX, AVDD_PEX_PLL, HVDD_PEX, HVDD_PEX_PLL_E	Connect to GND if USB 3.0 & PCIe interfaces are not used	
SATA		
SATA_LO_TXN/P	Leave NC if not used	
SATA_LO_RXN/P	Connect to GND any unused RX lines or leave NC if SATA interface not used.	
SATA_TESTCLKN/P	Leave NC - not used	
VDDIO_SATA, AVDD_SATA_PLL, HVDD_SATA	Connect to GND if SATA interface not used	
HSIC		
HSIC[2:1]_DATA	Leave NC if HSIC interface not used	
HSIC[2:1]_STROBE	Leave NC if HSIC interface not used	
HSIC_REXT	Leave NC if HSIC interface not used	
VDDIO_HSIC	Leave NC or connect to GND if HSIC interface not used	
DSI & CSI		
DSI_A_CLK_N/P, DSI_A_D[3:0]N/P, DSI_B_D[3:0]N/P	Leave NC any unused DSI A or B Data Lanes, or entire interface if neither DSI A & B used	
CSI_A_CLK_N/P, CSI_A_D[1:0]N/P, CSI_B_D[1:0]N/P	Leave NC any unused CSI A or B Data Lanes, or entire interface if neither CSI A & B used	
CSI_E_CLK_N/P, CSI_E_DON/P	Leave NC CSI E if not used	
CSI_DSI_RDN, CSI_DSI_RUP	Leave NC if neither DSI or CSI is used	
AVDD_CSI_DSI	Leave NC if neither DSI or CSI is used	
eDP/LVDS		
LVDS0_TXD[4:0]_P/N	Leave NC any eDP or LVDS lanes not used	
LVDS0_RSET	Leave NC if eDP/LVDS interface not used	
AVDD_LVDS0_IO, AVDD_LVDS0_PLL	Leave NC or connect to GND if eDP/LVDS interface not used	
DP_AUX_CHO_P/N	Leave NC or connect to GND if eDP or I2C6 interfaces not used	
HDMI		
HDMI_TXCN/P	Leave NC if HDMI interface not used	

Description		Same/Diff/NA
Ball Name	Termination	
HDMI_TXD[2:0]N/P	Leave NC if HDMI interface not used	
HDMI_INT	Leave NC or use as GPIO	
HDMI_RSET	Leave NC if HDMI interface not used	
AVDD_HDMI, AVDD_HDMI_PLL	Leave NC or connect to GND if HDMI interface not used	
SDMMC		
SDMMC4_COMP_PU/PD SDMMC3_COMP_PU/PD SDMMC2_COMP_PU/PD SDMMC1_COMP_PU/PD	Leave NC COMP_PU/PD pins for any SDMMC interface not used for SDMMC functionality.	
SDMMC3_CLK_LB_IN/OUT	Leave NC if SDMMC3 not used for SDMMC functionality	
JTAG		
JTAG_TCK	100K Ω to GND whether JTAG interface used or not.	
JTAG_TDI	Leave NC if JTAG interface not used	
JTAG_TDO	Leave NC if JTAG interface not used	
JTAG_TMS	Leave NC if JTAG interface not used	
JTAG_TRST_N	100K Ω to GND whether JTAG interface used or not	
JTAG_RTCK	Leave NC if JTAG interface not used	
THERM		
THERM_DN/DP	Leave NC if external sensor connected to Tegra not used	
MISC		
VVDD_CPU_PROBE, VVDD_GPU_PROBE, VVDD_CORE_SENSE	Leave NC - Not used	
HDMI_CEC	Leave NC if not used	
OWR	Leave NC - Not supported	