

Jetson TK1 Development Kit Specification

Abstract

This document contains recommendations and guidelines for engineers to follow to create modules for the expansion connectors on the Jetson TK1 Development Kit as well as understand the capabilities of the other dedicated interface connectors and associated power solutions.

November 2014

DA-07507-001 Version 01

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND ON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo and Tegra are trademarks or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2014 NVIDIA Corporation. All rights reserved.

Table of Contents

1.0 Introduction	3
1.1 Abbreviations and Definitions	3
1.2 Jetson TK1 – High Level Definition Summary	4
1.3 Feature List	
1.4 Jetson Block Diagram	5
2.0 Jetson Custom Expansion Interface Connections	7
2.1 Display/Touch Expansion Header	7
2.1.1 Display Guidelines	
2.1.2 Touch Guidelines	
2.1.3 I2C Design Guidelines	
2.2 General Expansion Header	15
2.2.1 Camera/CSI Guidelines	
2.2.2 HSIC Guidelines	
2.2.3 I2C Guidelines	
2.3 Front Panel Header Slot	
3.0 Jetson Standard Expansion Connectors	
	24
3.0 Jetson Standard Expansion Connectors	24
3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot	
3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines	
3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot	24 24 27 28 29
 3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines 3.1.2 USB 2.0 Design Guidelines 3.1.3 I2C Design Guidelines 	24 24 27 28 29 29
 3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines 3.1.2 USB 2.0 Design Guidelines 3.1.3 I2C Design Guidelines. 3.2 USB Ports 	24 24 27 28 29 29 29 30
 3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines 3.1.2 USB 2.0 Design Guidelines 3.1.3 I2C Design Guidelines 3.2 USB Ports 3.3 Gigabit LAN 	24 24 27 28 29 29 29 30 30
 3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines 3.1.2 USB 2.0 Design Guidelines 3.1.3 I2C Design Guidelines 3.2 USB Ports 3.3 Gigabit LAN 3.4 SATA 3.5 SD Card 3.6 HDMI 	24 24 27 28 29 29 29 30 30 31 31
 3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines 3.1.2 USB 2.0 Design Guidelines 3.1.3 I2C Design Guidelines 3.2 USB Ports 3.3 Gigabit LAN 3.4 SATA 3.5 SD Card 	24 24 27 28 29 29 29 30 30 31 31
 3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines 3.1.2 USB 2.0 Design Guidelines 3.1.3 I2C Design Guidelines 3.2 USB Ports 3.3 Gigabit LAN 3.4 SATA 3.5 SD Card 3.6 HDMI 	24 24 27 28 29 29 29 30 30 30 31 31 31 32
 3.0 Jetson Standard Expansion Connectors 3.1 Mini-PCle Expansion Slot 3.1.1 PCle Design Guidelines 3.1.2 USB 2.0 Design Guidelines 3.1.3 I2C Design Guidelines 3.2 USB Ports 3.3 Gigabit LAN 3.4 SATA 3.5 SD Card 3.6 HDMI 3.7 Serial Port 	24 24 27 28 29 29 29 30 30 30 31 31 31 31 32 33

1.0 Introduction

1.1 Abbreviations and Definitions

The following table lists abbreviations that may be used throughout this document and their definitions.

Abbreviation	Definition
BT	Bluetooth
CEC	Consumer Electronic Control
DDR3L	Double Data Rate DRAM, Third-generation
eMMC	Embedded MMC
GPS	Global Positioning System
HDMI	High Definition Multimedia Interface
HSIC	High Speed Inter Chip Interface
12C	Inter IC
125	Inter IC Sound Interface
LCD	Liquid Crystal Display
LDO	Low Dropout (voltage regulator)
LVDS	Low Voltage Differential Signaling Interface
PCIe	Peripheral Component Interconnect Express interface
PCM	Pulse Code Modulation
РНҮ	Physical Interface (i.e. USB PHY)
PMC	Power Management Controller
PMU	Power Management Unit
RF	Radio Frequency
SATA	Serial "AT" Attachment interface
SDIO	Secure Digital I/O Interface
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver-Transmitter
USB	Universal Serial Bus
WiFi (WLAN)	Wireless Local Area Network

Table 1. Abbreviations and Definitions

1.2 Jetson TK1 - High Level Definition Summary

Jetson is a low cost Tegra K1 developer kit intended to enable OEM's to evaluate the Tegra K1 architecture and then create a customized design that matches their exact requirements. Jetson provides basic boot options with expansion connectors to enable unused ports to be interfaced with customized hardware.

1.3 Feature List

Applications Processor

- Tegra K1 processor, CD575M
- 23x23mm ,0.7mm pitch

DRAM

- DDR3L-1866, 2GB
- Hynix H5TC4G63AFR-RDA
- 4 x 4Gb x16 memory (64 bit width)

Flash (Boot/Storage)

- SPI Flash: Winbond W25Q32DW, 32Mbit
- eMMC: Sandisk SDIN8DE4-16G-Q
- 16GB, 4.51
- Full Size SD Card
- SATA Connector

HDMI

HDMI Type A

USB

- 1x USB 3.0 Type A
- 1x USB 2.0 Micro AB

Audio

- Codec: Realtek ALC5639
- 3.5mm Microphone Jack
- 3.5mm Headset Jack

LAN

- Realtek RTL8111GS Gigabit MAC/PHY
- PCIe (x1 lane), RJ45 Connector

UI & Indicators

Power, Reset & Force Recovery Buttons

Sensors

Temp Sensor: TMP451

Debug

- JTAG: Standard 20-pin header
- UART: RS232, D-Sub 9 Connector

Mini-PCIe Connector

- PCIe x1 Lane
- USB 2.0
- I2C (3.3V)
- WLAN Control/LEDs

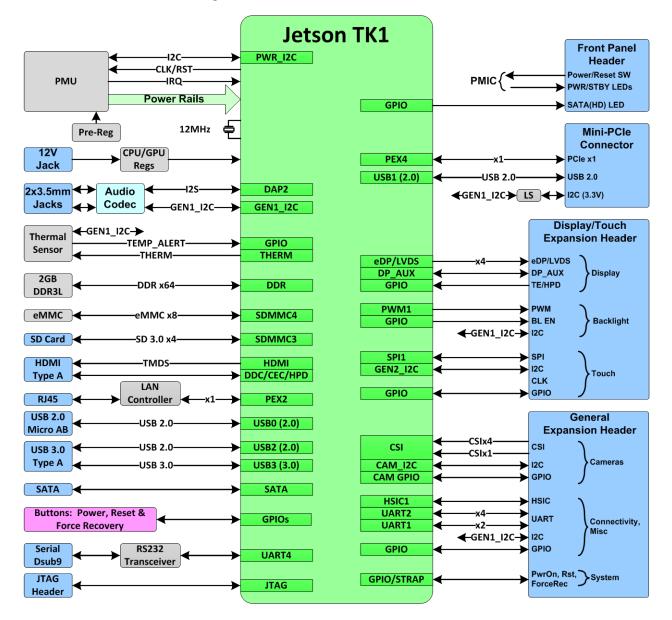
Display/Touch Expansion Header

- LVDS/eDP x4 Lanes
- Hot Plug Detect
- Backlight Enable/PWM
- Touch Controller Support
 - SPI, I2C
 - Clock, Shutdown, Reset

General Expansion Header

- Camera Support
 - CSI: 1 x4 + 1 x1
 - CLK, I2C & Control
 - Dedicated Power Rails
- HSIC
- UART
- GPIOs

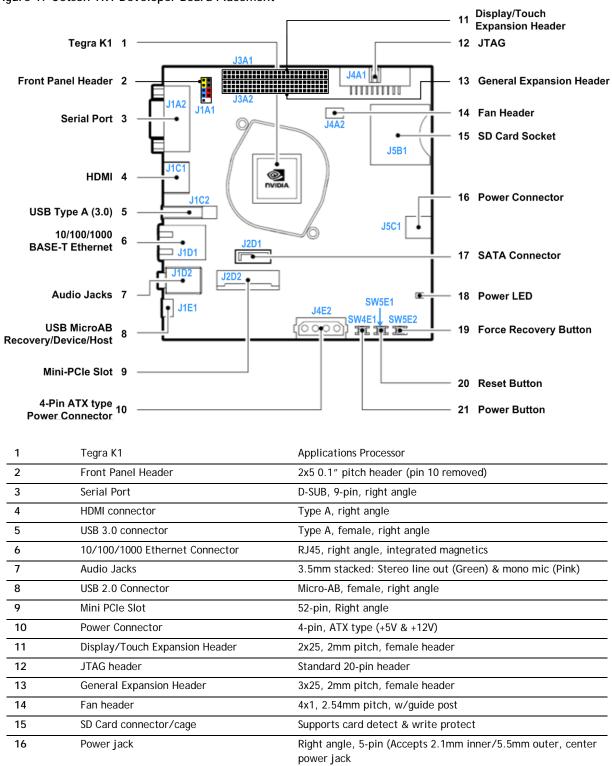
Power


- PMU: AMS AS3722, BCTT-09
- CPU Supply: AS3728 Power Stages (x3)
- GPU Supply: AS3728 Power Stages (x2)
- CORE Supply: AS3728 Power Stage
- Pre-Regulators: TI TPS51220
- 12V DC Jack

PCB Technology

6-layer, Standard Technology

1.4 Jetson Block Diagram



17

18

Figure 1. Jetson TK1 Developer Board Placement

Vertical, Standard

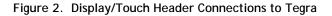
Green

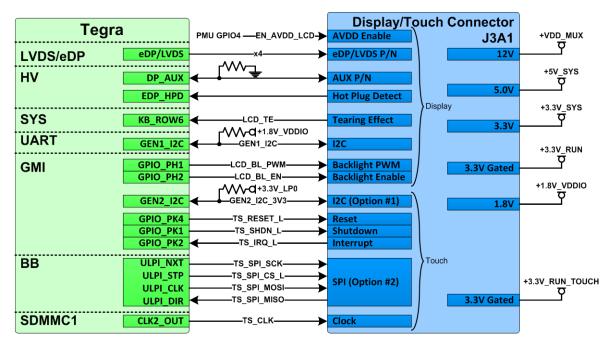
SATA connector

Power LED

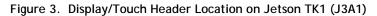
2.0 Jetson Custom Expansion Interface Connections

The Jetson TK1 Developer Kit supports two custom expansion headers:


- Display/Touch Expansion Header, 2mm pitch (2x25 configuration)
- General Expansion Header, 2mm pitch (3x25 configuration)


Notes: Display/Touch & General Expansion Headers form 5x25 pin array. The headers can be used together for a single module, or separately for two modules, but if to be used concurrently, ensure the boards do not physically interfere with each other.

2.1 Display/Touch Expansion Header


The Jetson board includes a 2x25, 2mm pitch female expansion header (reference designator J3A1). This includes interface options for an embedded display and touch controller including:

- LVDS / eDP (4-lane) for embedded displays
- LCD Enable & PWM for embedded backlight control
- GEN1 I2C for LVDS display control
- DP_AUX & HPD for eDP display control & Hot Plug Detect
- SPI & GEN2_I2C (3.3V) options for Touch control
- Touch controller clock, reset & shutdown

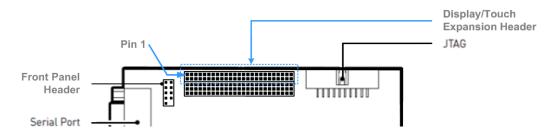


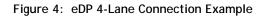
Table 2. Display / Touch Expansion Header Pin Descriptions

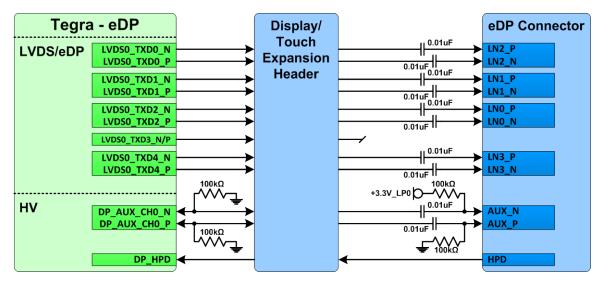
Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
1	+5V_SYS	NA	Main 5V from system	Power		
2	GND	NA	Tied to common GND	Ground		
3	+1.8V_VDDIO	NA	Main 1.8V supply from PMU switcher 5	Power		
4	TS_SPI_SCK	ULPI_NXT	SPI clock for Touchscreen controller (if SPI used)	Input	+1.8V_VDDIO	ST
5	TS_SPI_MOSI	ULPI_CLK	SPI MOSI for Touchscreen controller (if SPI used)	Input	+1.8V_VDDIO	ST
6	TS_SPI_CS_L	ULPI_STP	SPI chip select for Touchscreen controller (if SPI used)	Input	+1.8V_VDDIO	ST
7	TS_SPI_MISO	ULPI_DIR	SPI MISO for Touchscreen controller (if SPI used)	Output	+1.8V_VDDIO	ST
8	GND	NA	Tied to common GND	Ground		
9	GND	NA	Tied to common GND	Ground		
10	+3.3V_RUN_TOUCH	NA	AMS PMIC LDO9	Power		
11	TS_SHDN_L	GPIO_PK1	Shutdown control for Touchscreen controller	Input	+1.8V_VDDIO	CZ
12	TS_CLK	CLK2_OUT	Clock for Touchscreen controller	Input	+1.8V_VDDIO	ST
13	TS_RESET_L	GPIO_PK4	Reset for Touchscreen controller	Input	+1.8V_VDDIO	CZ
14	GND	NA	Tied to common GND	Ground		
15	GND	NA	Tied to common GND	Ground		
16	+3.3V_SYS	NA	Main 3.3V supply	Power		
17	GPIO_PK2	GPIO_PK2	Available GPIO	Output	+1.8V_VDDIO	CZ
18	GEN2_I2C_SCL_3.3V	GEN2_I2C_SCL	3.3V I2C IF (Pulled up to +3.3V_LPO)	Input, Open Drain	+3.3V_LP0	DD
19	+1.8V_VDDIO	NA	Main 1.8V supply from PMU switcher 5	Power		
20	GEN2_I2C_SDA_3.3V	GEN2_I2C_SDA	3.3V I2C IF (Pulled up to +3.3V_LPO)	Bidir, Open Drain	+3.3V_LP0	DD
21	GEN1_I2C_SCL	GEN1_I2C_SCL	1.8V I2C (Pulled to +1.8V_VDDIO)	Input, Open Drain	+1.8V_VDDIO	DD
22	+3.3V_RUN	NA	+3.3V rail that is off in LP0	Power		
23	GEN1_I2C_SDA	GEN1_I2C_SDA	1.8V I2C (Pulled to +1.8V_VDDIO)	Bidir, Open Drain	+1.8V_VDDIO	DD

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
24	EN_AVDD_LCD	NA	Enable for Embedded display from PMU GPIO4	Input		
25	+VDD_MUX	NA	Main 12V from Jack	Power		
26	GND	NA	Tied to common GND	Ground		
27	EN_VDD_BL	DAP3_DOUT	Backlight supply enable	Input	+1.8V_VDDIO	ST
28	DP_AUX_P	DP_AUX_P	eDP AUX control interface (+)	Bidir	+1.05V_RUN_AVDD	LVDS/DP
29	GND	NA	Tied to common GND	Ground		
30	DP_AUX_N	DP_AUX_N	eDP AUX control interface (-)	Bidir	+1.05V_RUN_AVDD	LVDS/DP
31	LVDS_TXD0_P	LVDS_TXD0_P	LVDS Data lane 0 (+) or eDP Data lane 2 (+)	Input	+1.05V_RUN_AVDD	LVDS/DP
32	GND	NA	Tied to common GND	Ground		
33	LVDS_TXDO_N	LVDS_TXDO_N	LVDS Data lane 0 (-) or eDP Data lane 2 (-)	Input	+1.05V_RUN_AVDD	LVDS/DP
34	LVDS_TXD1_P	LVDS_TXD1_P	LVDS Data lane 1 (+) or eDP Data lane 1 (+)	Input	+1.05V_RUN_AVDD	LVDS/DP
35	GND	NA	Tied to common GND	Ground		
36	LVDS_TXD1_N	LVDS_TXD1_N	LVDS Data lane 1 (-) or eDP Data lane 1 (-)	Input	+1.05V_RUN_AVDD	LVDS/DP
37	LVDS_TXD3_P	LVDS_TXD3_P	LVDS Data lane 3 (+) - Not used for eDP	Input	+1.05V_RUN_AVDD	LVDS/DP
38	GND	NA	Tied to common GND	Ground		
39	LVDS_TXD3_N	LVDS_TXD3_N	LVDS Data lane 3 (-) - Not used for eDP	Input	+1.05V_RUN_AVDD	LVDS/DP
40	LVDS_TXD2_P	LVDS_TXD2_P	LVDS Data lane 2 (+) or eDP Data lane 0 (+)	Input	+1.05V_RUN_AVDD	LVDS/DP
41	GND	NA	Tied to common GND	Ground		
42	LVDS_TXD2_N	LVDS_TXD2_N	LVDS Data lane 2 (-) or eDP Data lane 0 (-)	Input	+1.05V_RUN_AVDD	LVDS/DP
43	LVDS_TXD4_N	LVDS_TXD4_N	LVDS Clock lane (+) or eDP Data lane 3 (+)	Input	+1.05V_RUN_AVDD	LVDS/DP
44	GND	NA	Tied to common GND	Ground		
45	LVDS_TXD4_P	LVDS_TXD4_P	LVDS Clock lane (-) or eDP Data lane 3 (-)	Input	+1.05V_RUN_AVDD	LVDS/DP
46	EDP_HPD	DP_HPD	eDP display Hot Plug Detect input	Output	+3.3V_LP0	ST
47	GND	NA	Tied to common GND	Ground		
48	LCD_BL_EN	GPIO_PH2	Backlight enable	Input	+1.8V_VDDIO	CZ
49	LCD_TE	KB_ROW6	Tearing Effect from embedded display (if supported)	Output	+1.8V_VDDIO	ST
50	LCD_BL_PWM	GPIO_PH1	Backlight PWM	Input	+1.8V_VDDIO	CZ

Notes: -

In the Type/Dir column, Output is from Module. Input is to Module. Bidir is for Bidirectional signals.
See Section 5.0 for details on the standard Tegra Pad Types (ST, CZ & DD)




2.1.1 Display Guidelines

Jetson supports up to a 4-lane single-link LVDS interface or up to a 4-lane eDP interface. The maximum resolution supported with LVDS is 1920x1200 @ 60fps (24bpp color depth). With eDP, the maximum supported using the full 4 lanes is 3200x2000 @ 60fps. LVDS and eDP are multiplexed on the same pins. See LVDS/eDP Pin Assignment Options table below for pin assignments for each interface.

Tegra Ball	LVDS (3-lane)	LVDS (4 lane)	eDP
LVDS0_TXD0_P/N	LVDS lane 0	LVDS lane 0	eDP lane 2
LVDS0_TXD1_P/N	LVDS lane 1	LVDS lane 1	eDP lane 1
LVDS0_TXD2_P/N	LVDS lane 2	LVDS lane 2	eDP lane 0
LVDS0_TXD3_P/N	N/A	LVDS lane 3	N/A
LVDS0_TXD4_P/N	LVDS clock lane	LVDS clock lane	eDP lane 3

Table 3. eDP/LVDS Pin Assignment Options

Figure 5: LVDS 4-Lane Connection Example

Tegra - LVDS		Display/		LVDS Connector
LVDS/eDP		Touch Expansion Header	→	YON_N YON_P Y1N_N
LVDS0_TXD1_P LVDS0_TXD2_N LVDS0_TXD2_P	→ →			Y1N_P Y2N_N Y2N_P
LVDS0_TXD3_N LVDS0_TXD3_N LVDS0_TXD4_N				Y3N_N Y3N_P CLK_N
LVDS0_TXD4_P SYS KB_ROW6	→ ◆		→ ◆>	CLK_P Tearing Effect
UART GEN1_I2C_SCL GEN1_I2C_SDA			→	12C

eDP Design Guidelines

Table 4. eDP (RBR / HBR) Main Link Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Data Rate (per data lane)	5.4	Gbps	
Min UI	185	ps	
Number of Loads	1	load	
Тороlоду			Point-Point, Differential, Unidirectional
Termination	100	Ω	On die at TX/RX
Reference plane	GND		
Max PCB breakout length	7.63	mm	
Trace Impedance Diff pair / Single Ended	90 / 45-60	Ω	+15%
Max trace length from Tegra TX pin to connector	215 (1480)	mm (ps)	See Note 1. 175ps/inch delay assumed
Max number of signal vias	4		
PCB pair-to-pair spacing	3x	dielectric height	3x of the thinner of above and below
PCB main link to AUX Spacing	3x	dielectric height	3x of the thinner of above and below
Max stub length on the Vias Allowed			Rout below core to minimize stub length
Max Intra-pair (within pair) Skew	1	ps	See Note 1 & 2
Max Inter-pair (pair-pair) Skew	150	ps	See Note 1 & 2
Max GND transition via distance	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical ground stitching via near signal vias.

Parameter	Requirement	Units	Notes			
AC coupling cap	100	nF	Discrete 0402			
If routing to eDP device includes a flex or 2 nd PCB, the max trace & skew calculations must include all the PCBs/flex routing						
Keep critical eDP related traces including differential clock/data traces away from other signal traces or unrelated power traces/areas or power supply components						

- Note: 1. Max Trace Delay & Max Trace Delay Skew matching must include substrate pin delays unless otherwise specified
 - 2. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion
 - 3. Asymmetric Stripline used on main board. Same configuration is recommended for module routing.

Table 5. eDP Auxiliary Channel Signal Routing Requirements

Parameter	Requirement	Units	Notes
Termination, Reference plane, Max breakout, Impedance, Max trace length, Max Vias	Same as Main Link		
PCB pair-to-pair spacing	2x	dielectric height	
Max Intra-pair (within pair) Skew	Same as Main Link		
Max Inter-pair (pair-pair) Skew	No requirement		

Note: Asymmetric Stripline used on main board. Same configuration is recommended for module routing.

Table 6. eDP Interface Package & Jetson TK1 PCB Trace Delays

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)	Available Max Trace Delay for Module (ps)
LVDS0_TXD0_N	50	460	510	1480	970
LVDS0_TXD0_P	51	459	510	1480	970
LVDS0_TXD1_N	44	453	497	1480	983
LVDS0_TXD1_P	45	452	497	1480	983
LVDS0_TXD2_N	30	438	468	1480	1012
LVDS0_TXD2_P	30	437	467	1480	1013
LVDS0_TXD3_N	46	467	513	1480	967
LVDS0_TXD3_P	47	467	514	1480	966
LVDS0_TXD4_N	38	457	495	1480	985
LVDS0_TXD4_P	38	456	494	1480	986
DP_AUX_P	75	379	454	1480	1026
DP_AUX_P	76	379	455	1480	1025

LVDS Design Guidelines

Table 7.	LVDS Signal Routing Requirements
----------	----------------------------------

Parameter	Requirement	Units	Notes		
Max Frequency / Bit Rate	135 / 945	MHz / Mbps			
Number of Loads	1	load			
Topology			Point-Point or Multi-drop, Differential, Unidirectional		
Termination	100	Ω	At the receiver (on die or on board)		
Reference Plane	GND				
Trace Impedance Diff pair / Single Ended	90 / 45-55	Ω	+15%		
Max Trace Length	10 (1700)	In (ps)	See Note 1		
PCB pair-to-pair spacing	3х	dielectric height	3x of the thinner of above and below		
Max Intra-pair (within pair) Skew	5	ps	See Note 1		
Max Inter-pair (pair-pair) Skew	100	ps	See Note 1		
If routing to LVDS device includes a flex or 2 nd PCB, the max trace & skew calculations must include all the PCBs/flex routing					
Keep critical LVDS related traces including differential clock/data traces away from other signal traces or unrelated power traces/areas or power supply components					

Note: 1. Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.
 2. Asymmetric Stripline used on main board. Same configuration is recommended for module routing.

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)	Available Max Trace Delay for Module (ps)
LVDS0_TXD0_N	50	460	510	1700	1190
LVDS0_TXD0_P	51	459	510	1700	1190
LVDS0_TXD1_N	44	453	497	1700	1203
LVDS0_TXD1_P	45	452	497	1700	1203
LVDS0_TXD2_N	30	438	468	1700	1232
LVDS0_TXD2_P	30	437	467	1700	1233
LVDS0_TXD3_N	46	467	513	1700	1187
LVDS0_TXD3_P	47	467	514	1700	1186
LVDS0_TXD4_N	38	457	495	1700	1205
LVDS0_TXD4_P	38	456	494	1700	1206

 Table 8. LVDS Interface Package & Jetson TK1 PCB Trace Delays

2.1.2 Touch Guidelines

Parameter	Requirement	Units	Notes
Max Frequency	50	MHz	
Configuration / Device Organization	4	load	
Max Loading (total of all loads)	15	pF	
Reference plane	GND		
Breakout Region Impedance	Minimum width & spacing		
Max PCB breakout delay	75	ps	
Trace Impedance	50 - 60	Ω	+15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing Microstrip / Stripline	4x / 3x	dielectric	
Max Trace Delay	890 (~5)	ps (in)	See Note 2
Max Trace Delay Skew between MOSI (DOUT), MISO (DIN) & CS to SCK	50	ps	

Note: 1. Up to 4 signal vias can share a single GND return via

2. Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)	Available Max Trace Delay for Module (ps)
TS_SPI_SCK	71	521	591	890	299
TS_SPI_MOSI	80	490	570	890	320
TS_SPI_MISO	56	519	575	890	315
TS_SPI_CS_L	76	475	550	890	340

Table 10. Touch SPI Interface Package & Jetson TK1 PCB Trace Delays

2.1.3 I2C Design Guidelines

Parameter		Requirement	Units	Notes
Max Frequency	Standard / Fast Mode	100 / 400	kHz	See Note 1
Max Loading	Standard / Fast Mode	400	pF	Total of all loads
Reference plane		GND or PWR		
Trace Impedance		50 - 60	Ω	+15%
Trace Spacing		1x	dielectric	
Max Trace Delay	Standard Mode Fast Mode, Fast Mode Plus	3400 (~20) 1700 (~10)	ps (in)	Include Package & PCB routing delays

Table 11. I2C Interface Signal Routing Requirements for Standard & Fast Modes

Note: 1. For I2C interfaces that are pulled up to 1.8V, disable the OD (Open Drain) option for these pads. For I2C interfaces that are pulled up to 2.8V or higher, enable the OD (Open Drain) option.

- 2. Max Trace Delay must include Tegra K1 package pin delays, Jetson TK1 PCB trace delays & Module trace delays.
- 3. Due to the Jetson TK1 trace routing on GEN1_I2C, the interface is limited to Standard Mode if used on a module.

Table 12. GEN2 I2C Interface Package & Jetson TK1 PCB Trace Delays

Signal	Package Delay (ps)			-		Available Delay for (p	Module
				Standard Mode	Fast Mode	Standard Mode	Fast Mode
GEN2_I2C_SCL_3.3V	74	354	428	3400	1700	2972	1272
GEN2_I2C_SDA_3.3V	87	337	424	3400	1700	2976	1276

2.2 General Expansion Header

Jetson includes a 3x25, 2mm pitch female expansion header (reference designator J3A2), providing a number of interfaces to connect to Cameras and other peripherals including:

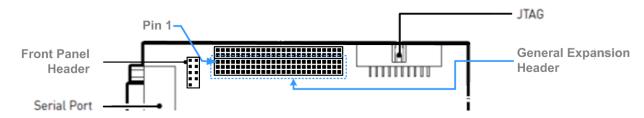

- CSI x4 lane IF for Camera 1 & x1 lane IF for Camera 2
- CAM_I2C, Clock & Control GPIOs for both Cameras
- HSIC
- GEN1_I2C
- UART2
- GPIO_PU[6:0]
- Power-on, Reset & Force Recovery signals: Used for flashing initial SW image (or reflashing if corrupt)
- UART1 & PWR_I2C: Used for Nvidia debug. Should not be used on module designs

Figure 6: General Expansion Header Connections

Те	gra		General	Expansion Header	
CSI	CSI	── CSI x4 (Camera 1)→ ── CSI x1 (Camera 2)→		Camera 1 CSI Camera 2 CSI 2.8V Cam	+2.8V_RUN_CAM
CAM	CAM_I2C GPIO PBB3		I2C Reset	Common Camera 1.8V Cam	+1.8V_RUN_CAM
	GPIO_PBB4		Flash	Control	+2.8V_RUN_CAM_AF $\overline{\mathbf{\nabla}}$
	GPIO_PBB5 GPIO_PBB7 GPIO_PCC1	CAM1_MCLK CAM1_PWDN CAM1_AF_PWDN CAM1_AF_PWDN CAM1_GPIO	AF Powerdown GPIO	Camera 2.8V Cam 1 Clock & Control 1.05V Cam	+1.05V_RUN_CAM_REAR
	GPIO_PBB0 GPIO_PBB6 GPIO_PCC2	CAM2_MCLK CAM2_PWDN CAM2_GPIO	MCLK Powerdown GPIO	Camera 2 Clock & Control	+1.2V_RUN_CAM_FRONT
HSIC	HSIC1	<−STROBE/DATA→	HSIC	General Use	+1.2V GEN AVDD
UART	GEN1_I2C		12C	General Use	
	GPIO_PU[6:0] UART2	· · · · · · · · · · · · · · · · · · ·	GPIOs UART	General Use General Use 5.0V	+5V_SYS
SDMMC1	CLK3_OUT	← →	Clock	General Use	
SYS	PWR_I2C	← →	12C	Nvidia Use only	+1.8V_VDDIO Q
	KB_ROW9 KB_ROW10	← 2-wire →	UART	Nvidia Use only	
	KB_COL0 GPIO_PI1	Gate ONKEY	Power-on Force Recovery	For FLASHing Image	
			System Reset]	
	To Power, For & R	eset Buttons			

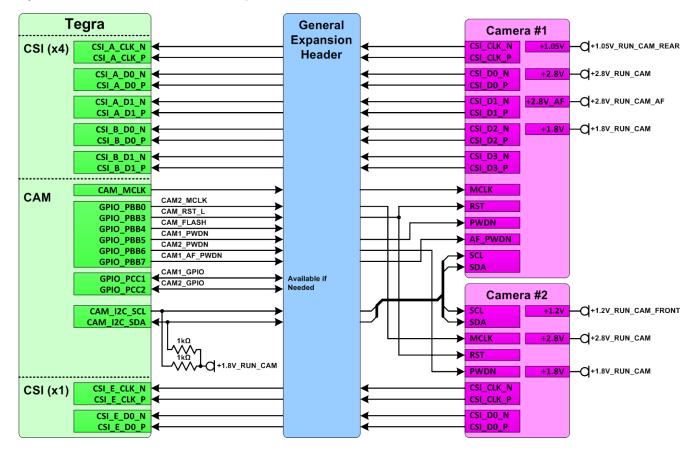
Figure 7. General Expansion Header Location on Jetson TK1 (J3A2)

Table 13. General Expansion Header Pin Descriptions

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
1	+5V_SYS	N/A	Main 5V from system	Power		
2	CAM2_PWDN	GPIO_PBB6	Power Down for Camera 2	Input	+1.8V_RUN_CAM	ST
3	+1.05V_RUN_CAM_REAR	N/A	AMS PMIC LDO7 for Camera 1	Power		
4	CAM2_MCLK	GPIO_PBB0	Master Reference Clock for Camera 2	Input	+1.8V_RUN_CAM	ST
5	CAM_RST_L	GPIO_PBB3	Reset for Camera(s)	Input	+1.8V_RUN_CAM	ST
6	+2.8V_RUN_CAM	N/A	AMS PMIC LDO4 for Camera(s)	Power		
7	CAM2_GPIO	GPIO_PCC2	GPIO for Camera 2	Bidir	+1.8V_RUN_CAM	ST

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
8	CAM_I2C_SDA	CAM_I2C_SDA	I2C Data for Camera(s)	Bidir, Open Drain	+1.8V_RUN_CAM	DD
9	GND	N/A	Tied to common GND	Ground		
10	GND	N/A	Tied to common GND	Ground		
11	CAM_I2C_SCL	CAM_I2C_SCL	I2C Clock for Camera(s)	Input, Open Drain	+1.8V_RUN_CAM	DD
12	CSI_A_CLK_P	CSI_A_CLK_P	CSI Clock (+) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
13	CSI_E_CLK_N	CSI_E_CLK_N	CSI Clock (-) for Camera 2	Output	+1.2V_GEN_AVDD	CSI
14	GND	N/A	Tied to common GND	Ground		
15	CSI_A_CLK_N	CSI_A_CLK_N	CSI Clock (-) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
16	CSI_E_CLK_P	CSI_E_CLK_P	CSI Clock (+) for Camera 2	Output	+1.2V_GEN_AVDD	CSI
17	CSI_E_DO_N	CSI_E_DO_N	CSI Data Lane 0 (-) for Camera 2	Output	+1.2V_GEN_AVDD	CSI
18	GND	N/A	Tied to common GND	Ground		
19	GND	N/A	Tied to common GND	Ground		
20	CSI_E_D0_P	CSI_E_D0_P	CSI Data Lane 0 (+) for Camera 2	Output	+1.2V_GEN_AVDD	CSI
21	CSI_A_D1_N	CSI_A_D1_N	CSI Data Lane 1 (-) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
22	+1.2V_RUN_CAM_FRON T	N/A	AMS PMIC LDO5 for Camera 2	Power		
23	GND	N/A	Tied to common GND	Ground		
24	CSI_A_D1_P	CSI_A_D1_P	CSI Data Lane 1 (+) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
25	+2.8V_RUN_CAM_AF	N/A	AMS PMIC LDO10 for Camera 1	Power		
26	+1.8V_VDDIO	N/A	AMS Switcher 5	Power		
27	GND	N/A	Tied to common GND	Ground		
28	+1.2V_GEN_AVDD	N/A	AMS PMIC LDO2, used to sync HSIC rails	Power		
29	+1.8V_RUN_CAM	N/A	AMS PMIC LDO1	Power		
30	CSI_A_DO_N	CSI_A_DO_N	CSI Data Lane 0 (-) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
31	HSIC1_STROBE	HSIC1_STROBE	HSIC Strobe	Bidir	+1.2V_GEN_AVDD	HSIC
32	GND	N/A	Tied to common GND	Ground		
33	CSI_A_DO_P	CSI_A_DO_P	CSI Data Lane 0 (+) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
34	GND	N/A	Tied to common GND	Ground		
35	HSIC1_DATA	HSIC1_DATA	HSIC Data	Bidir	+1.2V_GEN_AVDD	HSIC
36	GND	N/A	Tied to common GND	Ground		
37	+1.8V_VDDIO	N/A	AMS Switcher 5	Power		
38	GND	N/A	Tied to common GND	Ground		
39	CSI_B_D1_N	CSI_B_D1_N	CSI Data Lane 3 (-) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
40	GPIO_PU0	GPIO_PU0	GPIO PUO: Available for general use	Bidir	+1.8V_VDDIO	ST

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
41	BR_UART1_TXD	KB_ROW9	For PM342 style Laguna FFD header	Input	+1.8V_VDDIO	
42	CSI_B_D1_P	CSI_B_D1_P	CSI Data Lane 3 (+) for Camera 1	Output	+1.2V_GEN_AVDD	
43	GPIO_PU1	GPIO_PU1	GPIO PU1: Available for general use	Bidir	+1.8V_VDDIO	ST
44	BR_UART1_RXD	KB_ROW10	For PM342 style Laguna FFD header	Output	+1.8V_VDDIO	
45	GND	N/A	Tied to common GND	Ground		
46	GPIO_PU2	GPIO_PU2	GPIO PU2: Available for general use	Bidir	+1.8V_VDDIO	ST
47	GND	N/A	Tied to common GND	Ground		
48	CSI_B_D0_P	CSI_B_D0_P	CSI Data Lane 2 (+) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
49	GPIO_PU3	GPIO_PU3	GPIO PU3: Available for general use	Bidir	+1.8V_VDDIO	ST
50	PWR_I2C_SCL	PWR_I2C_SCL	Power I2C Clock: For Nvidia use only	Input, Open Drain	+1.8V_VDDIO	DD
51	CSI_B_DO_N	CSI_B_DO_N	CSI Data Lane 2 (-) for Camera 1	Output	+1.2V_GEN_AVDD	CSI
52	GPIO_PU4	GPIO_PU4	GPIO PU4: Available for general use	Bidir	+1.8V_VDDIO	ST
53	PWR_I2C_SDA	PWR_I2C_SDA	Power I2C Data: For Nvidia use only	Bidir, Open Drain	+1.8V_VDDIO	DD
54	GND	N/A	Tied to common GND	Ground		
55	GPIO_PU5	GPIO_PU5	GPIO PU5: Available for general use	Bidir	+1.8V_VDDIO	ST
56	GEN1_I2C_SCL	GEN1_I2C_SCL	GEN1 I2C Clock: 1.8V I2C IF available for general use	Input, Open Drain	+1.8V_VDDIO	DD
57	CAM1_GPIO	GPIO_PCC1	GPIO for Camera 1	Bidir	+1.8V_RUN_CAM	ST
58	GPIO_PU6	GPIO_PU6	GPIO PU6: Available for general use	Bidir	+1.8V_VDDIO	ST
59	GEN1_I2C_SDA	GEN1_I2C_SDA	GEN1 I2C Data: 1.8V I2C IF available for general use	Bidir, Open Drain	+1.8V_VDDIO	DD
60	CAM1_AF_PWDN	GPIO_PBB7	Autofocus Powerdown for Camera 1	Input	+1.8V_RUN_CAM	ST
61	ONKEY_L	KB_COL0 (indirect)	Power On (to PMU ONKEY & gated version to Tegra)	Bidir	+2.5V_AON_RTC	
62	GND	N/A	Tied to common GND	Ground		
63	CAM_FLASH	GPIO_PBB4	Flash enable to control camera flash driver	Input	+1.8V_RUN_CAM	ST
64	PMU_RESET_IN_L	N/A	System Reset signal	Bidir	+2.5V_AON_RTC	
65	UART2_RXD	UART2_RXD	UART 2 Receive	Output	+1.8V_VDDIO	ST
66	CAM1_PWDN	GPIO_PBB5	Powerdown for Camera 1	Input	+1.8V_RUN_CAM	ST
67	FORCE_RECOVERY_L	GPIO_PI1 (indirect)	Force Recovery: To enter Forced Recovery mode	Bidir	+2.5V_AON_RTC	
68	UART2_TXD	UART2_TXD	UART 2 Transmit	Input	+1.8V_VDDIO	ST
69	CAM1_MCLK	CAM_MCLK	Master Reference Clock for Camera 1	Input	+1.8V_RUN_CAM	ST
70	CLK3_OUT	CLK3_OUT	Clock 3 Output: Available clock source from Tegra K1	Input	+1.8V_RUN_CAM	ST
71	UART2_CTS_L	UART2_CTS_L	UART 2 Clear to Send	Output	+1.8V_VDDIO	ST



Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
72	NC	N/A	Not used			
73	GND	N/A	Tied to common GND	Ground		
74	UART2_RTS_L	UART2_RTS_L	UART 2 Request to Send	Input	+1.8V_VDDIO	ST
75	NC	N/A	Not used			

Notes: - In the Type/Dir column, Output is from Module. Input is to Module. Bidir is for Bidirectional signals. - See Section 5.0 for details on the standard Tegra Pad Types (ST & DD)

2.2.1 Camera/CSI Guidelines

Figure 8: Dual Camera Connection Example

Table 14	MIDI CCI Interfee	o Cianal Douting	Doquiromonto
	MIPI CSI Interfac	e signal Routing	Requirements

Parameter	Requirement	Units	Notes
Max Frequency/Data Rate (per data lane)	750 / 1500	MHz/Mbps	
Number of Loads / loading per pin	1 / 10	Load / pf	
Reference plane	GND or PWR		See Note 1
Breakout Region Impedance Diff pair / Single Ended	90 / 45-55	Ω	+15%
Max PCB breakout delay	48	ps	
Trace Impedance Diff pair / Single Ended	90 / 45-55	Ω	
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 2
Trace spacing Microstrip / Stripline	2x / 2x	dielectric	
Max Trace Delay	1620	ps	See Note 3
Max Intra-pair Skew	1	ps	See Note 3
Max Trace Delay Skew between DQ & CLK	10	ps	See Note 3

Note: 1. If PWR, 0.01uF decoupling cap required for return current

- 2. Up to 4 signal vias can share a single GND return via
- 3. Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

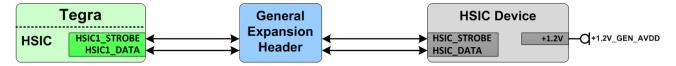

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)	Available Max Trace Delay for Module (ps)
CSI_A_CLK_N	46	567	613	1620	1007
CSI_A_CLK_P	46	567	613	1620	1007
CSI_A_DO_N	81	531	612	1620	1008
CSI_A_D0_P	81	530	611	1620	1009
CSI_A_D1_N	61	560	621	1620	999
CSI_A_D1_P	62	559	621	1620	999
CSI_B_DO_N	78	558	636	1620	984
CSI_B_D0_P	79	556	635	1620	985
CSI_B_D1_N	66	572	638	1620	982
CSI_B_D1_P	67	572	639	1620	981
CSI_E_CLK_N	67	391	458	1620	1162
CSI_E_CLK_P	68	390	458	1620	1162
CSI_E_D0_N	57	398	455	1620	1165
CSI_E_D0_P	58	397	455	1620	1165

Table 15. CSI Interface Package & Jetson TK1 PCB Trace Delays

2.2.2 HSIC Guidelines

Figure 9: HSIC Connection Example

Table 16. HSIC Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Frequency (High Speed) Bit Rate / UI period / Freq.	480 / 2.083 / 240	Mbps / ns / MHz	
Input Buffer Loading	1 - 5	pF	
Reference plane	GND		
Max PCB breakout delay	17	ps	
Trace Impedance	50	Ω	+15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing Microstrip / Stripline	4x / 3x	dielectric	
Trace Delay Min / Max	133 (667)	Mm (ps)	See Note 2
Max Trace Delay Skew between HSIC[2:1]_STROBE & DATA	15	ps	See Note 2

Note: 1. Up to 4 signal vias can share a single GND return via

2. Include Package & PCB routing delays for Max trace delays and max trace delay skew parameters.

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)	Available Max Trace Delay for Module (ps)
HSIC1_STROBE	55	480	535	667	132
HSIC1_DATA	54	478	532	667	135

2.2.3 I2C Guidelines

See I2C Interface Routing Requirements in section 2.1 (Display / Touch Expansion Header).

Table 18. GEN1 I2C Interface Package & Jetson TK1 PCB Trace Delays

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)		Available Max Trace Delay for Module (ps)	
				Std Mode	Fast Mode	Std Mode	Fast Mode
GEN1_I2C_SCL	61	1883	1944	3400	1700	1456	NA
GEN1_I2C_SDA	61	1903	1964	3400	1700	1436	NA

2.3 Front Panel Header Slot

The Jetson board has a 2x5 0.1" pitch header (pin 10 removed). The reference designator for the header is J1A1. The Tegra connections and power rails associated with the Front Panel Header are shown in the figure below.

Figure 10. Front Panel Connections

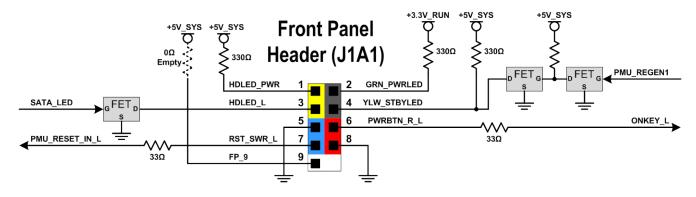


Figure 11. Front Panel Header Location on Jetson TK1 (J3A2)

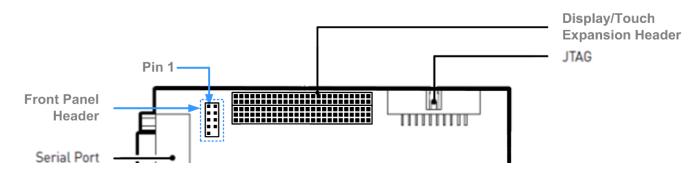


Table 19. Front Panel Header Pin Descriptions

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
1	HDLED_PWR		Hard Disk LED - Pulled to power rail w/330ohm resistor	LED Power	+5V_SYS	
2	GRD_PWRLED		Green Power LED - Pulled to power rail w/330ohm resistor	LED Power	+3.3V_RUN	
3	HDLED_L	DAP1_DOUT (indirect)	Hard Disk (SATA) LED enable	Input	+1.8V_VDDIO	ST
4	YLW_STBYLED		Yellow Standby LED - Pulled to power rail w/330ohm resistor	LED Power	+5V_SYS	
5	GND		Tied to common GND	Ground		
6	PWRBTN_R_L		Power button signal to PMU	Output	+2.5V_AON_RTC	
7	RST_SWR_L		Reset signal to PMU	Output	+2.5V_AON_RTC	

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
8	GND		Tied to common GND	Ground		
9	FP_9		Optionally tied to power rail	Power	+5V_SYS	
10	No Pin (key)					

Notes: - In the Type/Dir column, Output is from Module. Input is to Module. Bidir is for Bidirectional signals.

- See Section 5.0 for details on the standard Tegra Pad Types (ST)

3.0 Jetson Standard Expansion Connectors

The Jetson TK1 Developer Kit provides a number of standard expansion connectors to support additional functionality beyond what is integrated on the main board. This includes:

- Mini-PCIe Expansion Slot
- USB 2.0: Micro AB Connector
- USB 3.0: Type A Connector
- Ethernet: RJ45 Connector
- SATA: Standard SATA Connector + 1x4 HDD Power Connector (ATX type)
- SD Card Connector/Cage: Supports card detect & write protect
- HDMI: Type A Connector

3.1 Mini-PCIe Expansion Slot

Jetson includes a Mini-PCIe Expansion slot at location J2D2. The connections and power rails associated with the connector are shown in the figure below.

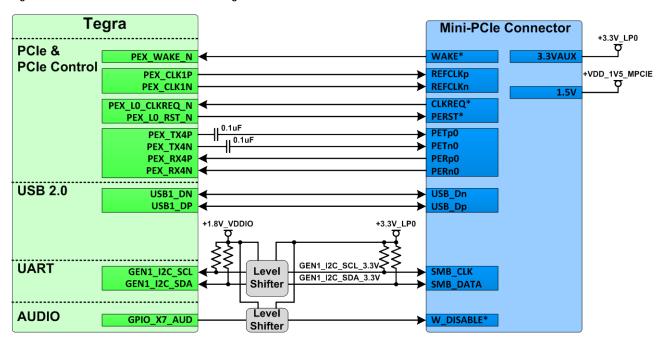


Figure 12. Mini-PCIe Connections to Tegra

Notes: - Device TX AC caps are assumed to be located on the device side of the connector.

Table 20. Mini-PCIe Connector Pin Descriptions

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
1	WAKE*	PEX_WAKE_N	PCIe Wake	Output	+3.3V_LP0	ST
2	3.3VAUX		3.3V Supply - To +3.3V_LP0 (gated +3.3V_SYS supply)	Power		
3	COEX1		Not Used - No Connect			
4	GND		Tied to common GND	Ground		
5	COEX2		Not Used - No Connect			
6	1.5V		1.5V supply - From APL5910 LDO	Power		
7	CLKREQ*	PEX_L0_CLKREQ_N	PCIe Clock Request	Output	+3.3V_LP0	ST
8	UIM_PWR		Not Used - No Connect			
9	GND		Tied to common GND	Ground		
10	UIM_DATA		Not Used - No Connect			
11	REFCLKn	PEX_CLK1_N	PCIe Reference Clock (-)	Input	+3.3V_LP0	PCIe
12	UIM_CLK		Not Used - No Connect			
13	REFCLKp	PEX_CLK1_P	PCIe Reference Clock (+)	Input	+3.3V_LP0	PCIe
14	UIM_RESET		Not Used - No Connect			
15	GND		Tied to common GND	Ground		
16	UIM_VPP		Not Used - No Connect			
17	RESERVED		Not Used - No Connect			
18	GND		Tied to common GND	Ground		
19	RESERVED		Not Used - No Connect			
20	W_DISABLE*	GPIO_X7_AUD (indirect)	WiFi/WLAN disable - To Tegra GPIO through level translator	Input	+1.8V_VDDIO	ST
21	GND		Tied to common GND	Ground		
22	PERST*	PEX_LO_RST_N	PCIe Reset	Input	+3.3V_LP0	ST
23	PERn0	PEX_RX4_N	PCIe Receive (-)	Output	NA (AC Coupled) ²	PCle
24	3.3VAUX		3.3V Supply - To +3.3V_LPO (gated +3.3V_SYS supply)	Power		
25	PERp0	PEX_RX4_P	PCIe Receive (+)	Output	NA (AC Coupled) ²	PCIe
26	GND		Tied to common GND	Ground		
27	GND		Tied to common GND	Ground		
28	1.5V		1.5V supply - From APL5910 LDO	Power		
29	GND		Tied to common GND	Ground		
30	SMB_CLK	GEN1_I2C_SCL (indirect)	SM Bus Clock - To Tegra through 1.8V/3.3V level shifter	Input, Open Drain	+1.8V_VDDIO	DD

Pin #	Signal Name	Tegra K1 Ball	Usage/Description	Type/Dir Default	Associated Voltage Rail	Tegra Pad Type
31	PETn0	PEX_TX4_N	PCIe Transmit (-)	Input	NA (AC Coupled)	PCle
32	SMB_DATA	GEN1_I2C_SDA (indirect)	SM Bus Data - To Tegra through 1.8V/3.3V level shifter	Bidir, Open Drain	+1.8V_VDDIO	DD
33	РЕТрО	PEX_TX4_P	PCIe Transmit (+)	Input	NA (AC Coupled)	PCle
34	GND		Tied to common GND	Ground		
35	GND		Tied to common GND	Ground		
36	USB_Dn	USB1_DN	USB Data (-)	Bidir	+3.3V_LP0	USB
37	GND		Tied to common GND	Ground		
38	USB_Dp	USB1_DP	USB Data (+)	Bidir	+3.3V_LP0	USB
39	3.3VAUX		3.3V Supply - To +3.3V_LPO (gated +3.3V_SYS supply)	Power		
40	GND		Tied to common GND	Ground		
41	3.3VAUX		3.3V Supply - To +3.3V_LP0 (gated +3.3V_SYS supply)	Power		
42	LED_WWAN*		WWAN LED Control. Connected to +3.3V_LPO through LED			
43	GND		Tied to common GND	Ground		
44	LED_WLAN*		See pin 42 above			
45	RESERVED		Not Used - No Connect			
46	LED_WPAN*		See pin 42 above			
47	RESERVED		Not Used - No Connect			
48	1.5V		1.5V supply - From APL5910 LDO	Bidir		
49	RESERVED		Not Used - No Connect			
50	GND		Tied to common GND	Ground		
51	RESERVED		Not Used - No Connect			
52	3.3VAUX		3.3V Supply - Connected to +3.3V_LP0 (gated +3.3V_SYS)	Power		

Notes: 1. In the Type/Dir column, Output is from Module. Input is to Module. Bidir is for Bidirectional signals.

- 2. See Section 5.0 for details on the standard Tegra Pad Types (ST & DD)
- 3. AC coupling on PERp0/PERn0 on PCIe Mini Card.

3.1.1 PCIe Design Guidelines

Table 21.	PCIe Interface Signal	Routing Requirements
-----------	-----------------------	----------------------

Parameter	Requirement	Units	Notes	
Max Frequency / UI Period	5.0 / 200	Gbps / ps	2.5GHz, half-rate architecture	
Тороlоду	Point-point		Unidirectional, differential	
Configuration / Device Organization	1	Load		
Max Load (per pin)	N/A	pF	See return loss spec in PCIe 2.0 spec	
Termination	50	Ω	To GND Single Ended for P & N	
Reference plane	GND			
Breakout RegionWidth & line spacing / pair spacing	4 / 10	Mils	Maximum pair spacing of 500 mils	
Trace Impedance differential / Single Ended	90 / 45 - 60	Ω	+15%	
Pair to Pair Trace Spacing Stripline / Microstrip	3x / 4x	Dielectric		
Tx to Rx spacing			Recommend Tx & Rx signals routed on separate layers w/GND between for isolation. See note 1	
Spacing to planes/cap. pads Stripline / Microstrip	3x / 4x	Dielectric		
Max Trace Length/Delay	10″ (1700)	in (ps)	For trace with loss <=0.4dB/in @ 2.5GHz. See note 2 & 3	
Max Within Pair Trace Delay Skew	1	ps	See note 3 & 4	
Max Pair to Pair Trace Delay Skew (RX to RX or TX to TX - Within Link)	600	ps	See note 3 & 4	
Trace Width Options	4/5/6	Mils	See note 2	
Max # of Vias TX traces / RX traces	4 / 2			
Routing signals over the antipad	Not allowed			
Serpentine line rule (Min spacing between turns) Stripline / Microstrip	3x / 4x	Dielectric	3x of thinner of above & below	
Max distance for DC Blocking capacitor	0.3	in	connector if one exists, or near receiver	
PTH (Plated Through-hole) Vias	Keep GND via as close as possible			
Ground sliver between BGA pads	Remove ground slivers between BGA pads & feed-through to vias			
Ground plane under DC blocking cap pads	Remove GND plane under DC blocking capacitor pads. If board has ICT pads, remove plane under those as well. Void is size of pad + ring equal to dielectric thickness.			

Note: 1. If routing in the same layer is necessary, route group TX & RX separately wo/mixing RX/TX routes & keep distance between nearest TX/RX trace & RX to other signals 3x RX-RX separation

- 2. Max Trace Delay & Max Trace Delay Skew matching must include Tegra K1 package pin delays, Jetson TK1 PCB trace delays & Module trace delays.
- 3. Do trace length matching before the vias to transition to different layers or any discontinuity to minimize common mode conversion

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)	Available Max Trace Delay for Module (ps)
PEX_TX4_N	39	355	394	1700	1306
PEX_TX4_P	39	354	393	1700	1307
PEX_RX4_N	49	313	362	1700	1338
PEX_RX4_P	48	314	362	1700	1338
PEX_CLK1_N	73	334	407	1700	1293
PEX_CLK1_P	72	335	407	1700	1293

Table 22. PCIe Interface Package & Jetson TK1 PCB Trace Delays

3.1.2 USB 2.0 Design Guidelines

Table 23. USB 2.0 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Frequency (High Speed) Bit Rate/UI period/Frequency	480/2.083/240	Mbps/ns/MHz	
Max Loading High Speed / Full Speed / Low Speed	10 / 150 / 600	pF	
Reference plane	GND		
Breakout Region Impedance	Min width/spacing		
Trace Impedance Diff pair / Single Ended	90 / 50	Ω	+15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Max Trace Delay	1150 (~7)	ps (in)	See Note 2
Max Intra-Pair Skew between USBx_DP & USBx_DN	7.5	ps	See Note 2

Note: 1. Up to 4 signal vias can share a single GND return via.

2. Max Trace Delay & Max Trace Delay Skew matching must include Tegra K1 package pin delays, Jetson TK1 PCB trace delays & Module trace delays.

3. Asymmetric Stripline used on main board. Same configuration is recommended for module routing.

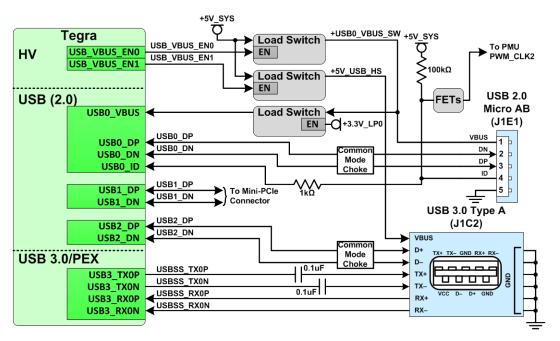
Table 24. USB 2.0 Interface Package & Jetson TK1 PCB Trace Delays

Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trace Delay Allowed (ps)	Available Max Trace Delay for Module (ps)
USB1_DN	74	480	554	1150	596
USB1_DP	74	472	546	1150	604

3.1.3 I2C Design Guidelines

See I2C Interface Routing Requirements in section 2.1 (Display / Touch Expansion Header).

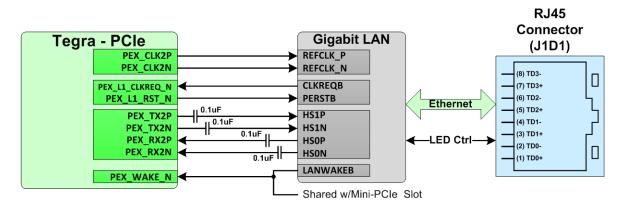
Signal	Package Delay (ps)	Jetson PCB Delay (ps)	Pkg + PCB Delay (ps)	Max Trae Allowe	2	Available I Delay for (p	
				Standard Mode	Fast Mode	Standard Mode	Fast Mode
GEN1_I2C_SCL	61	1883	1944	3400	1700	1456	NA
GEN1_I2C_SDA	61	1903	1964	3400	1700	1436	NA


Table 25. GEN1 I2C Interface Package & Jetson TK1 PCB Trace Delays

3.2 USB Ports

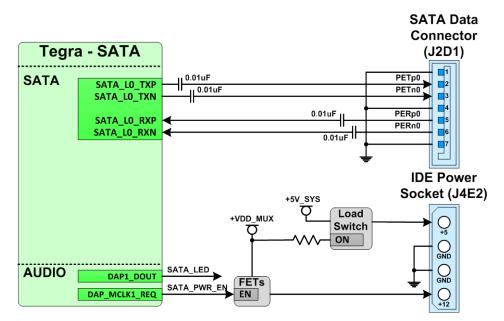
Jetson TK1 supports the following USB ports:

- Micro AB connector supporting Device/Host modes as well as USB Recovery mode (Reference designator J1E1).
- USB 3.0 Type A connector supporting Host mode only (Reference designator J1C2).
- VBUS for both USB connectors is provided by a dedicated TPS2065 Load Switch supporting up to 1A.



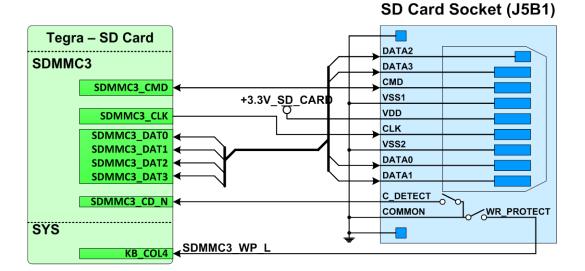
3.3 Gigabit LAN

Jetson uses one of the x1 PCIe lanes to interface to a Realtek RTL8111GS Gigabit LAN controller. A standard RJ45 connector is provided (Reference designator J1D1). Connections are shown below.



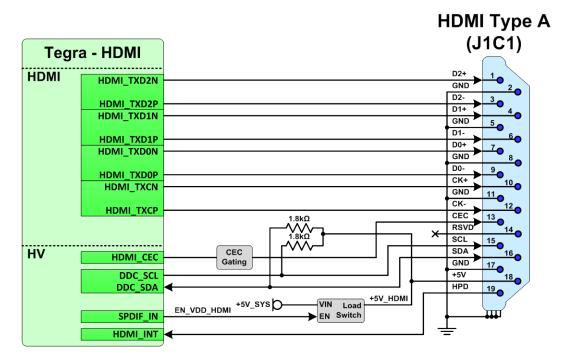
3.4 SATA

Tegra supports a SATA interface. Jetson TK1 routes this to a standard SATA connector (Reference designator J2D1). +5V & +12V is supplied from a standard IDE Power Socket (Reference designator J4E2). +5V is provided by a gated version of the main +5V_SYS supply which supports up to 4A (shared with other devices). 12V is from a gated version of the +12V supply from the DC jack.



3.5 SD Card

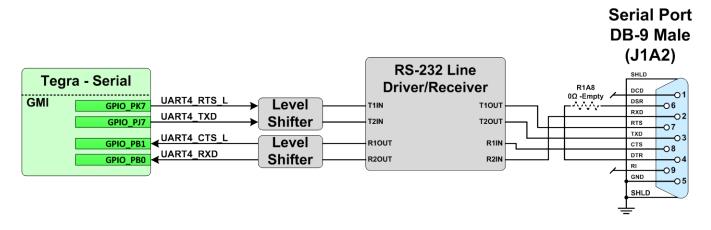
Tegra supports an SD Card interface which is routed to a full size SD socket (Reference designator J5B1) on the Jetson TK1 design. This interface supports up to the full SDR104 mode (UHS-1).


Figure 16. SD Card Connections

3.6 HDMI

A standard HDMI Type A connector (Reference designator J1C1) is supported on Jetson TK1. The +5V supply to the connector comes from an RT9728 Load Switch, supporting up to 1.3A.

Figure 17. HDMI Connections



3.7 Serial Port

A standard DB-9 Male RS-232 Serial Port connector (Reference designator J1A2) is provided on Jetson TK1.

Figure 18. RS-232, DB-9 Serial Port Connections

4.0 Interface Power



Figure 19. Interface Connector Power Diagram

The table below shows the allocation of supplies to the connectors on the Jetson TK1 main board.

Power Rails	Usage	(V)	Power Supply or Gate	Source	Enable	Supported Current (mA)	Notes
+VDD_MUX	Main power from AC adapter	12	na	Power Jack	na	400	1, 2
+5V_SYS	Main 5V supply	5.0	TPS51220 Switcher	+VDD_MUX	PMU EN5V	500	
+3.3V_SYS	Main 3.3V supply	3.3	TPS51220 Switcher	+VDD_MUX	PMU GPIO2	500	
+3.3V_LP0 (Mini-PCle 3.3VAUX)	Gated 3.3V supply. On in Deep Sleep	3.3	SLG5NV-1430V Gate	+3.3V_SYS	REGEN1	1100	
+3.3V_RUN	Gated 3.3V supply. Off in Deep Sleep	3.3	SLG5NV-1430V Gate	+3.3V_SYS	REGEN3	450	
+1.8V_VDDIO	Main 1.8V supply	1.8	PMU Switcher SD5	+5V_SYS	Pwr-on Seq	400	
+1.8V_RUN_CAM	Camera 1.8V supply	1.8	PMU LDO 1	+3.3V_RUN	I2C/PMU	100	
+2.8V_RUN_CAM	High voltage Camera supply	2.8	PMU LDO 4	+3.3V_SYS	I2C/PMU	300	
+1.2V_RUN_CAM_FRONT	Front Camera 1.2V supply	1.2	PMU LDO 5	+1.8V_VDDIO	I2C/PMU	300	
+1.05V_RUN_CAM_REAR	Rear camera 1.05V supply	1.05	PMU LDO 7	+1.8V_VDDIO	I2C/PMU	300	
+3.3V_RUN_TOUCH	High voltage touch supply	3.3	PMU LDO 9	+5V_SYS	I2C/PMU	50	
+2.8V_RUN_CAM_AF	Camera autofocus supply	2.8	PMU LDO 10	+5V_SYS	I2C/PMU	300	

Power Rails	Usage	(V)	Power Supply or Gate	Source	Enable	Supported Current (mA)	Notes
+VDD_1V5_MPCIE	Mini-PCIe 1.5V	1.5	APL5910 LDO		3.3VAUX	375	
+5V_USB_HS	USB 3.0 Type A VBUS supply	5.0	TPS2065 Load Switch	+5V_SYS	Tegra GPIO	900	
+USBO_VBUS_SW	USB 2.0 Micro AB VBUS supply	5.0	TPS2065 Load Switch	+5V_SYS	Tegra GPIO	500	
+5V_HDMI_CON	HDMI connector supply	5.0	RT9728 Load SW	+5V_SYS	Tegra GPIO	150	
+3.3V_SD_CARD	SD Card socket supply	3.3	TPS22908 Load SW	+3.3V_SYS	Tegra GPIO	500	
+5V_SATA	SATA connector supply	5.0	SLG5NV-1430V Gate	+5V_SYS	Tegra GPIO	1000	

Note: 1. Jetson TK1 is characterized to accept an input voltage of 12V +10%. The board may not reliably turn on with < 9.5V. A voltage > 13.2V may damage a SATA HDD using 12V. > 16V, the main board may be damaged. It may be possible to run the system on batteries around the 10-16V region (without HDDs requiring 12V), but NVIDIA has not tested this configuration.

2. Total current available on +VDD_MUX is determined by adapter used. The adapter supplied with the Jetson TK1 Developer Kit is rated at 5A.

3. The values shown in the "Supported Current" column indicate the total power available on the expansion connectors (not per pin).

4. If a given voltage rail cannot provide enough current, a possible solution is for the user to use a regulator from +5V_SYS, +3.3V_SYS or +1.8V_VDDIO to generate the desired rail.

5.0 Tegra Pad Details

Table 27. ST / CZ Pad Type Details

Symbol	Description	Min	Мах	Units
V _{IL}	Input Low Voltage	-0.5	0.25 x VDD	V
V _{IH}	Input High Voltage	0.75 x VDD	0.5 + VDD	V
V _{OL}	Output Low Voltage (I _{oL} = 1mA)		0.15 x VDD	V
V _{OH}	Output High Voltage (I _{OH} = -1mA)	0.85 x VDD		V

Table 28. DD Pad Type Details

Symbol	Description	Min	Мах	Units
V _{IL}	Input Low Voltage	-0.5	0.25 x VDD	V
V _{IH}	Input High Voltage	0.75 x VDD		V
V _{OL}	Output Low Voltage (I _{oL} = 1mA)		0.15 x VDD	V

Note: Do not drive unpowered signals (when associated power rail is off).

6.0 Design Guideline Glossary

The Design Guidelines include various terms. The descriptions in the table below are intended to show what these terms mean and how they should be applied to a design.

Table 29 Layout Guideline Tutorial

Trace Delays
Max Breakout Delay
Routing on Component layer: Maximum Trace Delay from inner ball to point beyond ball array where normal trace spacing/impedance can be met. Routing passes to layer other than Component layer: Trace delay from ball to via + via delay. Beyond this, normal trace spacing/impedance must be met.
Max Total Trace Delay
Package route + Trace from ball to Device pin. This must include routing on the main PCB & any other Flex or secondary PCB. Delay is from Tegra to the final connector/device.
Intra/Inter Pair Skews
Intra Pair Skew (within pair) - Package + PCB
Difference in delay between two traces in differential pair: Shorter routes may require indirect path to equalize delays
Inter Pair Skew (pair to pair) - Package + PCB
Difference between two (or possibly more) differential pairs
Impedance/Spacing
Microstrip vs Stripline
Microstrip: Traces next to single ref. plane. Stripline: Traces between two ref planes Trace Impedance
Impedance of trace determined by width & height of trace, distance from ref. plane & dielectric constant of PCB material. For differential traces, space between pair of traces is also a factor
Board trace spacing / Spacing to other nets
Minimum distance between two traces. Usually specified in terms of dielectric height which is distance from trace to reference layers. Pair to pair spacing
Spacing between differential traces
Breakout spacing
Possible exception to board trace spacing above is shown in figure to right where different spacing rules are allowed under Tegra in order to escape from Ball array.
This includes spacing between adjacent traces & between traces/vias or pads under the device in order to escape ball matrix. Outside device boundary, normal spacing rules apply.

Reference Return

Ground Reference Return Via & Via proximity (signal to reference)

- Signals changing layers & reference GND planes need similar return current path
- Accomplished by adding via, tying both GND layers together

Via proximity (sig to ref) is distance between signal & reference return vias

- GND reference via for Differential Pair
- Where a differential pair changes GND reference layers, return via should be placed close to & between signal vias (example to right)
 Signal to return via ratio
- Number of Ground Return vias per Signal vias. For critical IFs, ratio is usually 1:1. For less critical IFs, several trace vias can share fewer return vias (i.e. 3:2 3 trace vias & 2 return vias).

Slots in Ground Reference Layer

- When traces cross slots in adjacent power or ground plane
- Return current has longer path around slot
- Longer slots result in larger loop areas
- Avoid slots in GND planes or do not route across them
 - Routing over Split Power Layer Reference Layers
- When traces cross different power areas on power plane
 - Return current must find longer path usually a distant bypass cap
 - If possible, route traces w/solid plane (GND or PWR) or keep routes across single area
- If traces must cross two or more power areas, use stitching capacitors
 - Placing one cap across two PWR areas near where traces cross area boundaries provides high-frequency path for return current
 - Cap value typically 0.1uF & should ideally be within 0.1" of crossing