

DA_07601-001 | March 13, 2015
Advance Information | Subject to Change

Release R21.3

VIDEO FOR LINUX USER GUIDE

DOCUMENT CHANGE HISTORY

DA_07303-001_01

Version Date Authors Description of Change

v1.0 13 March 2015 alevinson Initial release.

Video for Linux User Guide DA_07303-001_01 | ii

TABLE OF CONTENTS

Video for Linux User Guide ... 1
V4L2/soc_camera overview .. 1
V4L2 on Jetson TK1 ... 2

Test Pattern Generator .. 2
Example Sensor: IMX135 .. 3
IMX135 and AR0261 Dual Capture Demo ... 4

V4L2 Tegra Driver Overview ... 4
Device Tree File ... 9

How to Write and Integrate a Sensor Driver for L4T 9
Sensor Driver Development ... 9
Board File and Device Tree File Updates ... 11
Troubleshooting ... 12

Resources ... 13

Video for Linux User Guide DA_07303-001_01 | iii

VIDEO FOR LINUX USER GUIDE

This document provides information on use of the MIPI Camera Serial Interface (CSI) on
Tegra® K1, using software from the NVIDIA® Tegra® Linux Driver Package (also
referred to as L4T). The MIPI CSI protocol, V4L2 API, Tegra K1 system architecture and
method of attaching a CSI camera to Jetson TK1 are outside the scope of this document.

The V4L2 software implementation bypasses the Tegra ISP, and is suitable for use when
Tegra ISP support is not required, such as with sensors or input devices that provide
data in YUV format.

References to additional resources are provided, but the reader should already be
familiar with Tegra K1, and have access to the Tegra Technical Reference Manual (TRM)
and other documentation available at the Jetson Embedded Platform portal:

http://developer.nvidia.com/embedded-computing

V4L2/SOC_CAMERA OVERVIEW
V4L2 is the second version of Video4Linux or V4L, a video capture and output device
API and driver framework in the Linux kernel. It supports many USB webcams, TV
tuners, and other devices and is closely integrated with the Linux kernel. For a
description of the APIs, see Linux Media Infrastructure APIs.

soc-camera is a set of drivers and a core module, that implement V4L2 functionality
on embedded devices; typically a video-enabled embedded device: SoC with a capture
interface and video data sources. The soc-camera includes host driver such as the
Tegra V4L2 camera driver and client drivers (sensor drivers).

Video for Linux User Guide DA_07303-001_01| 1

http://developer.nvidia.com/embedded-computing
http://linuxtv.org/downloads/v4l-dvb-apis/

Video for Linux User Guide

V4L2 ON JETSON TK1
Jetson TK1 is a powerful embedded development board including the NVIDIA Tegra K1
processor. The Tegra K1 processor has a video input interface (VI) and camera serial
interface (CSI), so it can communicate with the external video input sources such as
camera sensor module or other MIPI CSI compatible devices. VI/CSI of Tegra K1 also
has 2 test pattern generators which can generate some data patterns like color bricks for
testing purpose.

On the software side, Linux for Tegra (L4T) latest release R21.3 provides a Tegra V4L2
camera driver and sample drivers for a camera sensor and a built-in test pattern
generator (TPG). With an open source V4L2 user space tool like Yavta, users can capture
data from the TPG and sensors.

Test Pattern Generator
The test pattern generator is a configurable resource introduced to improve hardware
verification capability for the Tegra CSI. There are two separate test pattern generators
that can be configured to provide for the generation of synthetic image data, which is
delivered to the PPA and PPB input FIFOs. The image data is multiplexed into the CSI
data patch between lane-merging logic and the data FIFOs.

L4T provides a virtual V4L2 soc_camera sensor driver for exposing TPG functionality
(soc_camera_platform driver). It can generate 1280x720 resolution RGBA32 color
bricks data. There is no need to rebuild the kernel and the soc_camera_platform
driver is provided as a loadable module.

To verify the TPG

 Remove the nvhost_vi module, an incompatible non-V4L2 VI driver used for other
purposes and outside the scope of this document:

$ sudo rmmod nvhost_vi

 Install V4L2 driver modules:

$ sudo modprobe soc_camera_platform
$ sudo modprobe tegra_camera tpg_mode=2

 Use the yavta application to capture data (other V4L2 applications can be used, if
preferred)
$./yavta /dev/video0 -c1 -n1 -s1280x720 -fRGB32 -Ftpg.rgba

 Copy over tpg.rgba to host and use ImageMagick to show the picture:

Video for Linux User Guide DA_07303-001_01 | 2

http://elinux.org/Jetson_TK1
https://developer.nvidia.com/linux-tegra
http://git.ideasonboard.org/yavta.git

Video for Linux User Guide

$ display -size 1280x720 -depth 8 tpg.rgba

Example Sensor: IMX135
L4T provides a sample V4L2 sensor driver for the Sony IMX135 Bayer sensor. This
driver can be used as a reference in creating a custom V4L2 sensor driver. NVIDIA does
not provide a reference camera module at this time, so the following information is
provided for example purposes, assuming you have an IMX135 sensor module
connected to Jetson TK1.

The driver for IMX135 is neither built into kernel nor built as module. Please try
following steps to test IMX135 in L4T on Jetson TK1.

 Hardware setup

● Jetson TK1
● Jetson TK1 adapter board capable of connecting to an IMX135 camera module

 Enable IMX135 kernel driver and disable soc_camera_platform

● CONFIG_SOC_CAMERA_IMX135=m
● Disable CONFIG_SOC_CAMERA_PLATFORM

 Build kernel, flash Jetson TK1 and boot the Linux OS
 Use Yavta to capture a frame

$ sudo modprobe imx135_v4l2
$ sudo modprobe tegra_camera
$./yavta /dev/video0 -c1 -n1 -s1920x1080 -fSRGGB10 -Fimx135.raw

 Use raw2bmp to convert raw data to BMP file

https://gitorious.org/omap4-v4l2-
camera/yavta/source/5417d27b99b2a147e3a062a24f36fd7a71f49b40:raw2bmp
.c

 Capture color bar test patterns from IMX135

$ sudo modprobe imx135_v4l2 test_mode=2
$ sudo modprobe tegra_camera
$./yavta /dev/video0 -c1 -n1 -s1920x1080 -fSRGGB10 -Fimx135.raw
$./raw2bmp imx135.raw imx135.bmp 1920 1080 16 3

Video for Linux User Guide DA_07303-001_01 | 3

https://gitorious.org/omap4-v4l2-camera/yavta/source/5417d27b99b2a147e3a062a24f36fd7a71f49b40:raw2bmp.c
https://gitorious.org/omap4-v4l2-camera/yavta/source/5417d27b99b2a147e3a062a24f36fd7a71f49b40:raw2bmp.c
https://gitorious.org/omap4-v4l2-camera/yavta/source/5417d27b99b2a147e3a062a24f36fd7a71f49b40:raw2bmp.c
https://gitorious.org/omap4-v4l2-camera/yavta/source/5417d27b99b2a147e3a062a24f36fd7a71f49b40:raw2bmp.c

Video for Linux User Guide

IMX135 and AR0261 Dual Capture Demo
Tegra K1 processor has 2 CSI ports: CSI_A and CSI_B and supports capture from these 2
ports simultaneously. On Jetson TK1, IMX135 connects to CSI_A via 4 data lanes (CIL_A
and CIL_B) and AR0261 connects to CSI_B via 1 data lane (CIL_E).

L4T kernel source contains drivers for both of these 2 sensors. Try the following steps in
L4T on Jetson TK1.

 Hardware setup

● Jetson TK1
● Jetson TK1 adapter board capable of connecting to an IMX135 camera module

 Enable IMX135 and AR0261 kernel driver and disable soc_camera_platform.

● CONFIG_SOC_CAMERA_IMX135=m
● CONFIG_SOC_CAMERA_AR0261=m
● Disable CONFIG_SOC_CAMERA_PLATFORM

 Build the kernel, flash Jetson TK1, and boot into Ubuntu.
 Install the camera modules. Then /dev/video0 and /dev/video1 will appear:

$ sudo modprobe tegra_camera

 Use Yavta to capture from /dev/video0 and /dev/video1 at the same time

$./yavta /dev/video0 -c1000 -n4 -s1920x1080 -fSRGGB10 -F/dev/null &
$./yavta /dev/video1 -c1000 -n4 -s1920x1080 -fSRGGB10 -F/dev/null

V4L2 TEGRA DRIVER OVERVIEW
As V4L2 is a kernel video input framework, Tegra V4L2 stack contains several
components. It controls hardware such as the Tegra VI/CSI hardware controller and
external sensors. Additionally, it exports a generic device node named /dev/video<N>
to user space, where <N> is a numeric value. User space application can use V4L2
standard API to control real hardware via /dev/video<N>.

This section will focus on Tegra K1-related drivers and code in L4T kernel source

Tegra V4L2 Camera Driver
Tegra V4L2 camera driver is a part of soc_camera and acts as a host driver. It directly
controls Tegra K1 VI/CSI hardware. Normally users don’t need to modify this driver,
but developers should become familiar with it; it may require customization for some
use cases.

Video for Linux User Guide DA_07303-001_01 | 4

Video for Linux User Guide

 Source code

drivers/media/platform/soc_camera/Kconfig
drivers/media/platform/soc_camera/Makefile
drivers/media/platform/soc_camera/tegra_camera/*
include/media/tegra_v4l2_camera.h

 Kernel config

CONFIG_VIDEO_TEGRA=m

The module name is tegra_camera.ko and it won’t be loaded by default after
booting into L4T. There is another driver named nvhost_vi.ko installed by default
and mutually-exclusive with tegra_camera.ko, so users must remove the
nvhost_vi.ko before loading tegra_camera.ko.

 Input data format

Tegra K1 VI/CSI hardware supports 3 major input data format: YUV, RGB and Bayer
RAW. However in this driver only the following have been implemented at the time
this document was written (please review the driver for current details):

● RGB888
● RAW8
● RAW10

 Note: YUV formats are also supported by hardware but software support is
not present in the driver. Please refer to the Tegra TRM for details on
supported input formats.

Study the source code then add new input data formats not listed here.

● All the formats are listed in structs tegra_camera_yuv_formats,
tegra_camera_rgb_formats and tegra_camera_bayer_formats of
drivers/media/platform/soc_camera/tegra_camera/common.c

● Add the format into function tegra_camera_get_formats() of
drivers/media/platform/soc_camera/tegra_camera/common.c

● Add the format support into function vi2_capture_setup_csi_0() and
vi2_capture_setup_csi_1() of
drivers/media/platform/soc_camera/tegra_camera/vi2.c

Tegra V4L2 Sensor Driver
V4L2 sensor driver normally is an I2C device driver and in L4T it is also a V4L2
soc_camera client driver. It has several I2C register tables for different resolutions like
1920x1080, 1280x720 etc. When a user space application opens /dev/video<N>, the
sensor driver will power on the sensor hardware and program it with the register table
via I2C.

Video for Linux User Guide DA_07303-001_01 | 5

Video for Linux User Guide

 Real sensor code

drivers/media/i2c/soc_camera/imx135_v4l2.c
include/media/imx135.h
drivers/media/i2c/soc_camera/ar0261_v4l2.c
include/media/ar0261.h
drivers/media/i2c/soc_camera/Kconfig
drivers/media/i2c/soc_camera/Makefile

 Test Pattern Generator virtual sensor driver source code

drivers/media/platform/soc_camera/soc_camera_platform.c

The soc_camera_platform driver does perform any real hardware operations
like power control and I2C transactions. It is just a virtual driver to enable use of the
TPG for testing.

 Kernel configs

CONFIG_SOC_CAMERA_AR0261
CONFIG_SOC_CAMERA_IMX135
CONFIG_SOC_CAMERA_PLATFORM

 Power controls

Each sensor has its own power on/off sequence, clock settings and other hardware
specific operations. L4T sensor driver put these power controls in the sensor driver
itself. For more flexible driver design, these power controls need go to board files
since each hardware board might have different power controls. Then sensor driver
itself can be more generic. Normally power controls include:

● GPIO for sensor reset, power on or power down
● Regulators for sensor power supply
● Clocks for sensor running like mclk or sensor local clock.

Board File
Before fully moving to device tree binding, a board file is the only way to describe
platform-specific configurations within the Linux kernel. In L4T R21.3 release most
hardware devices use device tree binding but V4L2 soc_camera still uses a board file
approach.

 Source code

arch/arm/mach-tegra/board-ardbeg-sensors.c

 TPG board configs

Video for Linux User Guide DA_07303-001_01 | 6

Video for Linux User Guide

soc_camera_platform_info defines data format and resolution which should be
matched with our TPG hardware.

static struct soc_camera_platform_info ardbeg_soc_camera_info = {
 .format_name = "RGB4",
 .format_depth = 32,
 .format = {
 .code = V4L2_MBUS_FMT_RGBA8888_4X8_LE,
 .colorspace = V4L2_COLORSPACE_SRGB,
 .field = V4L2_FIELD_NONE,
 .width = 1280,
 .height = 720,
 },
 .set_capture = ardbeg_soc_camera_set_capture,
};

tegra_camera_platform_data is the most important data struct to describe the
sensor connection. .port indicates which CSI port the sensor connects to:

TEGRA_CAMERA_PORT_CSI_A means the sensor uses CIL_A and CIL_B.

TEGRA_CAMERA_PORT_CSI_B means the sensor uses CIL_C and CIL_D.

TEGRA_CAMERA_PORT_CSI_C means the sensor uses CIL_E.

Tegra K1 internally just has 2 CSI channels (CSI_A and CSI_B). CSI_C is just a
software alias to tell the driver that the sensor is using CIL_E.

TEGRA_CAMERA_PORT_CSI_A and TEGRA_CAMERA_PORT_CSI_B can support
1, 2 and 4 data lane sensors. TEGRA_CAMERA_PORT_CSI_C can only support 1
lane sensor.

static struct tegra_camera_platform_data ardbeg_camera_platform_data
= {
 .flip_v = 0,
 .flip_h = 0,
 .port = TEGRA_CAMERA_PORT_CSI_A,
 .lanes = 4,
 .continuous_clk = 0,
};

 IMX135 board file configs

Real sensors don’t require that sensor resolution or data format information be put
into the board file like TPG soc_camera_platform driver, because that
information is in the sensor driver itself.

● IMX135 connects to port CSI_A via 4 data lanes:

static struct tegra_camera_platform_data
ardbeg_imx135_camera_platform_data = {

Video for Linux User Guide DA_07303-001_01 | 7

Video for Linux User Guide

 .flip_v = 0,
 .flip_h = 0,
 .port = TEGRA_CAMERA_PORT_CSI_A,
 .lanes = 4,
 .continuous_clk = 0,
};

● IMX135 use I2C 2 bus and it’s I2C address is 0x10:

static struct i2c_board_info ardbeg_imx135_camera_i2c_device = {
 I2C_BOARD_INFO("imx135_v4l2", 0x10),
 .platform_data = &ardbeg_imx135_data,
};

static struct soc_camera_link imx135_iclink = {
 .bus_id = 0, /* This must match the .id of
tegra_vi01_device */
 .board_info = &ardbeg_imx135_camera_i2c_device,
 .module_name = "imx135_v4l2",
 .i2c_adapter_id = 2,
 .power = ardbeg_imx135_power,
 .priv = &ardbeg_imx135_camera_platform_data,
};

 Register IMX135 soc_camera platform device:

platform_device_register(&ardbeg_imx135_soc_camera_device);

 AR0261 board file configs:

● AR0261 connects to port CSI_C via 1 data lane.

static struct tegra_camera_platform_data
ardbeg_ar0261_camera_platform_data = {
 .flip_v = 0,
 .flip_h = 0,
 .port = TEGRA_CAMERA_PORT_CSI_C,
 .lanes = 1,
 .continuous_clk = 0,
};

● AR0261 use I2C 2 bus and it’s I2C address is 0x36:

static struct i2c_board_info ardbeg_ar0261_camera_i2c_device = {
 I2C_BOARD_INFO("ar0261_v4l2", 0x36),
 .platform_data = &ardbeg_ar0261_data,
};
static struct soc_camera_link ar0261_iclink = {

Video for Linux User Guide DA_07303-001_01 | 8

Video for Linux User Guide

 .bus_id = 1, /* This must match the .id of
tegra_vi01_device */
 .board_info = &ardbeg_ar0261_camera_i2c_device,
 .module_name = "ar0261_v4l2",
 .i2c_adapter_id = 2,
 .power = ardbeg_ar0261_power,
 .priv = &ardbeg_ar0261_camera_platform_data,
};

● Register AR0261 soc_camera platform device:

platform_device_register(&ardbeg_ar0261_soc_camera_device);

Device Tree File
Device tree still provides regulator information required by the V4L2 sensor driver. Both
the IMX135 and AR0261 sensor drivers use 3 regulators: vana, vdig and vif. They are
defined in: arch/arm/boot/dts/tegra124-platforms/tegra124-jetson_tk1-
pmic-pm375-0000-c00-00.dtsi.

IMX135 needs 2 extra regulators that are also defined in the same file.

HOW TO WRITE AND INTEGRATE A SENSOR DRIVER
FOR L4T
Developers can write their own sensor driver for their specific device. Sensor drivers
usually have very similar structures but different I2C register tables. Modification of the
board file and the device tree file is required for different boards.

Sensor Driver Development
The IMX135 and AR0261 sensor drivers are a good start point for writing a new sensor
driver. The following steps are recommended for developing a new driver:

 Import new I2C register tables

Sensor vendors will provide I2C register settings as tables, which should be added to
sensor driver. The following struct is a good example:

static struct imx135_reg *mode_table[] = {
 [IMX135_MODE_4208X3120] = mode_4208x3120,
 [IMX135_MODE_1920X1080] = mode_1920x1080,
 [IMX135_MODE_1280X720] = mode_1280x720,
 [IMX135_MODE_2616X1472] = mode_2616x1472,
 [IMX135_MODE_3896X2192] = mode_3896x2192,
 [IMX135_MODE_2104X1560] = mode_2104x1560,

Video for Linux User Guide DA_07303-001_01 | 9

Video for Linux User Guide

};

 Power controls

Different boards have different sensor power controls. It is better put those power
controls into a board file. But it is simpler to implement them in a sensor driver.
Please take a look at imx135_power_on() and imx135_power_off().

 soc_camera and I2C interface

The sensor driver implements soc_camera ops functions as well as I2C device
probing/removing functions. Normally these are quite similar across different sensor
drivers -- just reuse them in your driver and use imx135_v4l2.c as an example.

 KConfig and Makefile

Add a SOC_CAMERA_IMX135 entry into the Kconfig and Makefile files.

 Kernel module parameters

Building a sensor driver as a module is beneficial for validating different module
parameters. In the IMX135 sensor driver, a parameter for test_mode is passed
when loading the module. Because IMX135 has a color bar test pattern generator
inside, using this parameter can ask IMX135 to send out color bar data for testing
and bypass those lens or focuser settings.

 Header file include/media/sensor.h

This header contains some information for non-V4L2 NVIDIA camera stacks. The
following structs can be reused if necessary:

struct imx135_power_rail {
 struct regulator *dvdd;
 struct regulator *avdd;
 struct regulator *iovdd;
 struct regulator *ext_reg1;
 struct regulator *ext_reg2;
};

struct imx135_platform_data {
 struct imx135_flash_control flash_cap;
 const char *mclk_name; /* NULL for default default_mclk */
 unsigned int cam1_gpio;
 unsigned int reset_gpio;
 unsigned int af_gpio;
 bool ext_reg;
 int (*power_on)(struct imx135_power_rail *pw);
 int (*power_off)(struct imx135_power_rail *pw);
};

Video for Linux User Guide DA_07303-001_01 | 10

Video for Linux User Guide

Board File and Device Tree File Updates
A new project or new hardware board might have a new board file such as board-
ardbeg*.c for Jetson TK1. If so, the new board file should include those settings for
sensor drivers. Follow this template in the board file and replace “SENSOR” with your
sensor name:

#if IS_ENABLED(CONFIG_SOC_CAMERA_SENSOR)
static int ardbeg_sensor_power(struct device *dev, int enable)
{
 return 0;
}
// NOTE: power controls can go here instead of sensor driver itself.

struct sensor_platform_data ardbeg_sensor_data;

static struct i2c_board_info ardbeg_sensor_camera_i2c_device = {
 I2C_BOARD_INFO("sensor_v4l2_driver_name", sensor_i2c_address),
 // sensor_v4l2_driver_name should match the sensor driver’s
module name
 .platform_data = &ardbeg_sensor_data,
};

static struct tegra_camera_platform_data
ardbeg_sensor_camera_platform_data = {
 .flip_v = 0,
 .flip_h = 0,
 .port = TEGRA_CAMERA_PORT_CSI_X_for_sensor,
 .lanes = number_of_sensor_data_lanes,
 .continuous_clk = 0,
};

static struct soc_camera_link sensor_iclink = {
 .bus_id = 0, /* This must match the .id of
tegra_vi01_device */
 .board_info = &ardbeg_sensor_camera_i2c_device,
 .module_name = "sensor_v4l2_driver_name",
 .i2c_adapter_id = sensor_i2c_bus_number,
 .power = ardbeg_sensor_power,
 .priv = &ardbeg_sensor_camera_platform_data,
};

static struct platform_device ardbeg_sensor_soc_camera_device = {
 .name = "soc-camera-pdrv",
 .id = 0,
 .dev = {
 .platform_data = &sensor_iclink,
 },
};
#endif

Video for Linux User Guide DA_07303-001_01 | 11

Video for Linux User Guide

 Finally register the platform device in ardbeg_camera_init():

#if IS_ENABLED(CONFIG_SOC_CAMERA_SENSOR)
 platform_device_register(&ardbeg_sensor_soc_camera_device);
#endif

 Device tree update

Find the new device tree file for the new board and update regulator information
appropriate to the hardware configuration of the new board. A good example to
look at is:

arch/arm/boot/dts/tegra124-platforms/tegra124-jetson_tk1-pmic-pm375-
0000-c00-00.dtsi

Troubleshooting
 I2C transaction timeout error

● I2C information is wrong

Check the sensor I2C bus number and the sensor I2C device address in the board
file.

● Sensor power control sequence is wrong

Check sensor MCLK setting.
Check regulator operations.
Check GPIO settings.

 Sync point timeout without error

This means Tegra VI/CSI doesn’t receive any data but no error occurs. Make sure the
sensor is powered on and streaming data correctly before debugging the Tegra
driver.

● Change settle time value to see if there if some error shows up. These registers
must be configured with the right values to get data from the sensor.

TC_VI_REG_WT(cam, TEGRA_CSI_PHY_CILA_CONTROL0, 0x9);
TC_VI_REG_WT(cam, TEGRA_CSI_PHY_CILB_CONTROL0, 0x9);

or

TC_VI_REG_WT(cam, TEGRA_CSI_PHY_CILC_CONTROL0, 0x9);
TC_VI_REG_WT(cam, TEGRA_CSI_PHY_CILD_CONTROL0, 0x9);

Video for Linux User Guide DA_07303-001_01 | 12

Video for Linux User Guide

or

TC_VI_REG_WT(cam, TEGRA_CSI_PHY_CILE_CONTROL0, 0x9);

● Make sure CILA/B or CILC/D or CILE are not in deep power mode (DPD). DPD
mode is normally disabled in sensor power on function. Please use
tegra_io_dpd_disable() of imx135_v4l2.c as an example.

 Sync point timeout with error

Capture the error message and look it up in Tegra K1 TRM for further debugging.

RESOURCES
Good resources for V4L integration are:

 Kernel documentation located in:

Documentation/video4linux/

 Linux TV website:

http://www.linuxtv.org/

 soc-camera slides:

http://elinux.org/images/f/f2/Soc-camera.pdf

 Yavta user space V4L2 tool

http://git.ideasonboard.org/yavta.git

 Jetson Embedded Platform page

http://developer.nvidia.com/embedded-computing

Video for Linux User Guide DA_07303-001_01 | 13

http://www.linuxtv.org/
http://elinux.org/images/f/f2/Soc-camera.pdf
http://git.ideasonboard.org/yavta.git
http://git.ideasonboard.org/yavta.git
http://developer.nvidia.com/embedded-computing

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY
OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE
AND ON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks
NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright
© 2015 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Video for Linux User Guide
	V4L2/soc_camera overview
	V4L2 on Jetson TK1
	Test Pattern Generator
	To verify the TPG

	Example Sensor: IMX135
	IMX135 and AR0261 Dual Capture Demo

	V4L2 Tegra Driver Overview
	Device Tree File

	How to Write and Integrate a Sensor Driver for L4T
	Sensor Driver Development
	Board File and Device Tree File Updates
	Troubleshooting

	Resources

