

Note: Apparent hyperlinks in this document are a legacy of the HTML
version and may not operate as expected in the PDF version.

NVIDIA Tegra Linux Driver Package

Overview

Welcome to NVIDIA Tegra Linux Driver Package Developers’” Guide. Engineers can
use this document to learn about working with NVIDIA® Tegra® Linux Driver
Package, sometimes referred to as Linux for Tegra (L4T).

Important: This documentation is preliminary and subject to change. Please
see your NVIDIA representative for additional information and to request
documentation updates.

Read the following sections to get started using Tegra Linux Driver Package.

» Package Manifest—describes the top level directories and files installed when
expanding the release TAR file.

» Cetting Started —provides requirements and set up information to help you
get started using the package.

* U-Boot Guide —describes the U-Boot implementation for L4T.

¢ Building Crosstool-ng Toolchain and glibc —provides instructions to build
the Crosstool-ng supplied cross toolchain suite version 4.5.3 and the glibc
suite with an Ubuntu host machine

» Software Features—describes the software features supported by the release.

* Licenses—provides license information for Tegra and 3"-party software.

* Appendix—provides an example .config file for the Crosstool-ng toolchain.
* FAQs—provides answers to frequently asked questions.
* Glossary —provides definitions of key terms.

NVIDIA Tegra Linux Driver Package

Package Manifest

The NVIDIA® Tegra® Linux Driver Package is provided in the following tar file:

<pl at f or n»_Tegr a- Li nux-

<rel ease_nunp. <ver si on_nunt_<rel ease_type>.tbhz2

where

<release_num> is the branch number of the release, such as R16.
<version num> is the version number of the build, such as 1.0 for the first

build.

<release_type>is ar mel (for softfp ABI) or ar mhf (for hard-float ABI).

The following table lists the top level directories and files that are created when
you expand the tar file.

Filename

Description

./rootfs

Directory used as a staging directory for the root
filesystem

./rootfs/README.txt

This file explains the need to copy the sample
file system here.

./kernel

Directory containing the kernel images and
kernel modules

./bootloader

Directory containing the boot loader and related
components.

./bootloader/<platform>

Directory containing platform-specific files

./bootloader/<platform>/BCT

Directory containing the platform-specific BCT
files

./bootloader/<platform>/cfg

Directory containing the appropriate cfg files.

./nv_tegra

Directory containing the NVIDIA drivers and
sample applications.

./nv_tegra/nv_sample_apps

Directory containing the NVIDIA sample
applications.

./source_sync.sh

A script that downloads kernel and uboot source

./apply_binaries.sh

A script to apply nv_t egr a components.

./flash.sh

A script that flashes the boot loader and kernel
from the package.

./zlmage_to_uimg.sh

A script that creates the v i nux. ui ng with

NVIDIA Tegra Linux Driver Package

Package Manifest

| | mkimage for use as the kernel image for u-boot |

Note: The <pl at f or > in/ boot | oader/ <pl at f or n® specifies the
development system. For Tegra 3 series, the code-name is “cardhu”, for
Tegra 2 series, the code-name is “ventana”.

Documentation
Tegra Linux Driver Package (L4T) also includes the following documentation:

* Tegra_Linux_Driver_Package_Release_Notes_<ver>.pdf
* Tegra_Linux_Driver_Package_Documents_<ver>.tar

Where <ver> is the version of the release, such as R15. Both the “armel” and
“armhf” software versions are documented.

Section Overview

This section provides information about the contents of the L4T tar file and
includes the following topics:

e Kernel
e Boot Loader
e NV Tegra

e Nvestapps TBZ2

» Config TBZ2
 NVIDIA Drivers TBZ2

Kernel
This section describes the major components included in the . / ker nel
directory.
Filename Description

./zlmage A kernel binary image.

./LICENSE A license file for “GNU GENERAL PUBLIC
LICENSE”.

./kernel_supplements.tbz2 Loadable kernel modules specific to the
included kernel zImage built with the
defconfig enabled for the device.

./kernel/vmlinux.uimg A u-boot kernel binary image.

NVIDIA Tegra Linux Driver Package

Boot Loader

Package Manifest

This section describes the files provided in the . / boot | oader directory.

Filename Description
./mkbootimg A tool used for img creation.
./nvflash The NVIDIA flashing tool.

./LICENSE.mkbootimg_and_mkubootscript

A license file for the mkbootimg and
mkbootscript tools.

LICENSE.u-boot_and_mkimage

A license file for u-boot and the mkimage
tool.

./mkimage

A u-boot tool for vmlinux.uimg creation.

./mkubootscript

A tool for flashing u-boot

./<platform>

<platform> specifies the development
system, cardhu for Tegra3, or ventana for
Tegra 2 devices.

./<platform>/fastboot.bin

The Fastboot-versioned boot loader
binary file.

./<platform>/<platform>_emmc.hush

The local storage device u-boot hush file.

./<platform>/<platform>_net.hush

The network u-boot hush file.

./<platform>/u-boot.bin

The u-boot binary image.

ventana_A03_12MHz_EDB8132B1PB6DF_30
O0Mhz_1GB_emmc_THGBM1G6D4EBAI4.bct

./<platform>/BCT Platform-specific BCT directory.
./<platform>/BCT/ BCT for Cardhu.
cardhu_12Mhz_H5TC2G83BFR_333Mhz_1G

B_emmc_SDIN5C2-16G_x8.bct

./<platform>/BCT/ BCT for Cardhu.
E1186_Hynix_1GB_H5TC2G83BFR-

PBA_375MHz_110622_sdmmc4_x8.bct

./<platform>/BCT/ BCT for Ventana.

./<platform>/cfg

Platform-specific CFG directory.

./<platform>/cfg/gnu_linux_fastboot_em
mc_full.cfg

Platform-specific CFG file.

./<platform>/cfg/gnu_linux_fastboot_em
mc.cfg

Platform-specific CFG file.

NV Tegra

This section describes the major components included in the . / nv_t egr a

directory.

Filename

Description

NVIDIA Tegra Linux Driver Package

Package Manifest

./config.tbz2

Configuration files specific to the sample
filesystem.

./LICENSE

Tegra software license.

./nvidia_drivers.tbz2

NVIDIA driver components

./nv_sample_apps/LICENSE.gst-openmax

License file for libgstomx.so and
libgstnvxvimagesink.so included in
nvgstapps.tbz2.

./nv_sample_apps/nvgstapps.tbz2

The nvgstplayer and nvgstcapture
multimedia test applications.

.txt

./nv_sample_apps/nvgstcapture_README

Instructions on how to run the
nvgstcapture application.

txt

./nv_sample_apps/nvgstplayer_README.

Instructions on how to run the nvgstplayer
application.

Nvgstapps TBZ2

This section describes the files included in the following file:

./I'nv_tegral/ nv_sanpl e_apps/ nvgst apps. tbz2

Filename

Description

.Jusr

./usr/bin

./usr/bin/nvgstcapture

The multimedia capture camera
application

./usr/bin/nvgstplayer

The multimedia video player application.

./usr/lib

./usr/lib/gstreamer-0.10

./usr/lib/gstreamer-
0.10/libgstnvxvimagesink.so

Video sink.

./usr/lib/gstreamer-0.10/libgstomx.so

OpenMax driver.

Config TBZ2

This section describes the files included in the following file:

./Inv_tegral/config.tbz2

Filename

Description

./etc

./etc/init

./etc/init/nv.conf

An NVIDIA-specific initialization script.

NVIDIA Tegra Linux Driver Package

Package Manifest

./etc/init/ttyS0.conf An initialization script for getty on ttySO0.

./etc/udev

./etc/udev/rules.d

./etc/udev/rules.d/99-tegra- Sets permissions for Tegra devices.
devices.rules

.Jetc/X11

./etc/X11/xorg.conf The xorg configuration file.

NVIDIA Drivers TBZ2

This section describes the files included in the following file:

.Inv_tegra/nvidia drivers.tbz2

Filename Description

.Jetc

./etc/wpa_supplicant.conf A sample WPA supplicant

./etc/nv_tegra_release The tegra driver versioning file.

./lib/firmware/

./lib/firmware/nvavp_os_*.bin NVIDIA AVP Kernel firmware.

Restricted codec: NVIDIA video decoders.

./lib/firmware/nvavp_vid_ucode_alt.bin

Restricted codec: AAC decoder. Not included in the NVIDIA

./lib/firmware/nvmm_aacdec.axf driver release; available through a
separate software license agreement.

Restricted codec: ADTS decoder running on AVP. Not

./lib/firmware/nvmm_adtsdec.axf included in the NVIDIA driver release;

available through a separate software
license agreement.

Restricted codec: H.264 video decoder. Not included in the
./lib/firmware/nvmm_h264dec.axf NVIDIA driver release; available through a
separate software license agreement.
Restricted codec: H.264 video decoder driver. Not included
./lib/firmware/nvmm_h264dec2x.axf in the NVIDIA driver release; available
through a separate software license
agreement.
Restricted codec: JPEG image decoder. Not included in the
./lib/firmware/nvmm_jpegdec.axf NVIDIA driver release; available through a
separate software license agreement.
Restricted codec: JPEG Encoder. Not included in the NVIDIA
./lib/firmware/nvmm_jpegenc.axf driver release; available through a
separate software license agreement.
Restricted codec: Multimedia Manager Kernel driver. Not
./lib/firmware/nvmm_manager.axf included in the NVIDIA driver release;

available through a separate software

NVIDIA Tegra Linux Driver Package

Package Manifest

license agreement.

Restricted codec:
./lib/firmware/nvmm_mp3dec.axf

MP3 decoder. Not included in the NVIDIA
driver release; available through a
separate software license agreement.

Restricted codec:
./lib/firmware/nvmm_mpeg4dec.axf

MPEG-4 video decoder. Not included in the
NVIDIA driver release; available through a
separate software license agreement.

Restricted codec:
./lib/firmware/nvmm_service.axf

NVIDIA multimedia services firmware. Not
included in the NVIDIA driver release;
available through a separate software
license agreement.

./lib/firmware/nvrm_avp.bin

Applies to: Ventana: AVP kernel firmware.

./lib/firmware/nvrm_avp*.bin

Applies to: Cardhu: AVP kernel firmware.

./lib/modules/

.Jusr

./usr/lib

./usr/lib/libardv_dynamic.so

GLES2 graphics support library

./usr/lib/libcgdrv.so

NVIDIA Tegra OpenGL ES 2.0 shader
compiler.

./usr/lib/libEGL.so

OpenGL ES driver file.

./usr/lib/libGLESv1_CM.so

OpenGL ES driver file.

./usr/lib/libGLESv2.so

OpenGL ES driver file.

./usr/lib/libjpeg.so

Accelerated libjepeg library for Tegra.

./usr/lib/libKD.so

OpenKODE driver.

./usr/lib/libnvapputil.so

Host (x86) shared object for application
utilities.

./usr/lib/libnvavp.so

User-space interface to the AVP for
audio/video acceleration via the nvavp
kernel driver.

./usr/lib/libnvewm.so

Compositing Window Manager library.

./usr/lib/libnvdc.so

DC driver file.

./usr/lib/libnvddk_2d.so

DDK 2D.

./usr/lib/libnvddk_2d_v2.so

DDK 2D.

./usr/lib/libnvddk_disp.so

Display abstraction driver file.

./usr/lib/libnvddk_kbc.so

NVIDIA keyboard controller driver.

./usr/lib/libnvddk_mipihsi.so

High-speed interface for MIPI.

./usr/lib/libnvddk_nand.so

NVIDIA NAND driver.

./usr/lib/libnvddk_se.so

NVIDIA Security Engine driver.

./usr/lib/libnvddk_snor.so

NVIDIA SNOR driver.

./usr/lib/libnvddk_spif.so

NVIDIA SPIF driver.

./usr/lib/libnvddk_usbphy.so

NVIDIA USB phy driver.

./usr/lib/libnvdispatch_helper.so

NvRM daemon dispatch helper.

./usr/lib/libnvglsi.so

GLES2 graphics support library

NVIDIA Tegra Linux Driver Package

Package Manifest

./usr/lib/libnvmedia_audio.so

Interface for audio decoder.

./usr/lib/libnvmm_audio.so

Audio codecs and components.

./usr/lib/libnvmm_camera.so

Multimedia camera driver file.

./usr/lib/libnvmm_contentpipe.so

Content pipe implementation (file source
abstraction).

./usr/lib/libnvmm_image.so

Image codecs.

./usr/lib/libnvmmlite_audio.so

NVIDIA Multimedia audio driver.

./usr/lib/libnvmmlite_image.so

NVIDIA Multimedia image driver.

./usr/lib/libnvmmlite.so

NVIDIA Multimedia driver.

./usr/lib/libnvmmlite_utils.so

NVIDIA Multimedia utilities.

./usr/lib/libnvmmlite_video.so

NVIDIA Multimedia video driver.

./usr/lib/libnvmm_manager.so

Multimedia Manager kernel driver.

./usr/lib/libnvmm_parser.so

Parser.

./usr/lib/libnvmm_service.so

Multimedia Framework kernel services
HAL.

./usr/lib/libnvmm.so

NVIDIA Multimedia Framework.

.Jusr/lib/libnvmm_utils.so

Multimedia Framework utilities.

./usr/lib/libnvmm_video.so

NVIDIA Multimedia Framework.

./usr/lib/libnvmm_writer.so

3GP writer block on CPU.

./usr/lib/libnvodm_disp.so

ODM kit display driver.

./usr/lib/libnvodm_dtvtuner.so

Applies to: Ventana and Cardhu releases:
Tegra development platform ODM
adaptation for digital TV tuner.

./usr/lib/libnvodm_imager.so

Tegra development platform ODM
adaptation for imager.

./usr/lib/libnvodm_misc.so

ODM Kkit.

./usr/lib/libnvodm_query.so

ODM Query interface.

./usr/lib/libnvomxilclient.so

OpenMAX IL client.

./usr/lib/libnvomx.so

OpenMAX IL implementation.

./usr/lib/libnvos.so

NVIDIA OS abstraction library.

/usr/lib/libnvparser.so

Parser used for NVIDIA NvMMlite.

./usr/lib/libnvrm_graphics.so

Resource Manager (NVRM) graphics host,
AVP communication library, and graphics
drivers.

./usr/lib/libnvrm.so

Resource Manager kernel interface.

./usr/lib/libnvsm.so

NVIDIA shader manager library.

./usr/lib/libnvtestio.so

Target (ARM) shared object for test I/0
utilities.

./usr/lib/libnvtestresults.so

Test results shared object.

./usr/lib/libnvtvmr.so

Multimedia Tegra video mixer/renderer.

./usr/lib/libnvwinsys.so

Winsys library.

./usr/lib/libnvwsi.so

NVIDIA windowing system integration for

NVIDIA Tegra Linux Driver Package

Package Manifest

EGL.

./usr/lib/xorg

./usr/lib/xorg/modules

./usr/lib/xorg/modules/drivers

./usr/lib/xorg/modules/drivers/tegra_dr | Tegra X ABI drivers.
v.abi*.so

NVIDIA Tegra Linux Driver Package

Getting Started

This section contains information to help you get started using this release of
NVIDIA® Tegra® Linux Driver Package. It covers the following topics:

Requirements

Boot Options
Setting Up Your Environment

Setting Up Your File System

Configuring NFS Root on the Linux Host
Setting Power Saving Options

Flashing the Boot Loader and Kernel
Synchronizing the Kernel Sources
Building the NVIDIA Kernel
OpenGL/EGL Gears Test Application
GStreamer-based Multimedia Playback
GStreamer-based Camera Capture

Requirements

The following lists the requirements to use this Tegra Linux Driver Package
(L4T) release:

Host PC running Linux. Ubuntu 10.04 is used in examples in this document,
but other distributions should also work.

A kernel image (zImage). L4T does contain a kernel image (zImage), and you
can also download and rebuild from source.

Boot loader. This can be Fastboot or U-Boot. Flashing on Tegra 3 series (code-
named Cardhu) and Tegra 2 series (code-named Ventana) developer boards
requires a boot loader. This boot loader can be either the Fastboot utility or
U-Boot, both of which are included in this release.

A rootfs device which can be an SD card, a USB hard disk, or USB stick
formatted to EXT3. It is also possible to use the target device’s internal
memory, or your Linux Host PC hard-drive through NFS.

(Cardhu) A USB Micro-B plug to USB Std A female cable to plug into the
board’s recovery port.

NVIDIA Tegra Linux Driver Package

Getting Started

* (Ventana) A USB Micro-B plug to Std A female cable to plug into the board’s
recovery port [J10].

Note: The NVIDIA binaries provided for Tegra 2 devices code-named
“Ventana” may be able to support the Tegra 2 devices code-named
“Harmony”.

Boot Options

It is currently possible to boot L4T on the Tegra 2 series Ventana developer
board, as well as Tegra 3 series Cardhu with a root file system from:

e USB stick or USB hard disk
e SD card

* Internal eMMC

* Network file system (NFS)

Setting Up Your Environment

The following subsections contain information to help you get started using this
pre-release of L4T. They cover the following topics:

e Extracting Tegra Linux Driver Package
e Setting Up Your Board

Extracting Tegra Linux Driver Package

Note: The procedures in this document assume you extract the release
package in ~/.

To extract Tegra Linux Driver Package

» Extract the package manually by executing the following command:

$ sudo tar -vxjf <platform>_Tegra-Linux-
<release_num>.<version_num>_<release_type>.tbz2

Where:

* <release_num> is the branch number of the release, such as R16.

e <version_num> is the revision number of the build such as 1.0 for the first
build.
» <release_type>is armel (for softfp ABI) or armhf (for hardfp ABI).

NVIDIA Tegra Linux Driver Package

Getting Started

Setting Up Your Board

L4T requires a Tegra 2 series developer board (Ventana), or a Tegra 3 series
(Cardhu) as well as a host PC running Linux. Please consult your board
documentation for steps on how to setup and configure your board.

Prerequisites

You have a device specified above in the “Boot Options” topic (formatted to
EXT3). (It can also be a memory card with a USB adapter.)

You have a micro-B USB male-to-USB Std A female cable to plug into the
board’s recovery port.

Setting Up Your File System

This section describes the steps for setting up your file system. You must set up
the root file system and copy the file system to your boot device.

About the Root File System

Setting Up the Root File System

Updating Drivers on an Existing Target System
Determining the Success of a Driver Update

Increasing the Internal Memory Partition Size for the Root File System

Installing Additional Packages

About the Root File System

The provided sample root file system was created with Rootstock 0.1.99.4 using
the following command:

$ sudo rootstock --fqdn tegra-ubuntu --login ubuntu --password
ubuntu --imagesize 1G -d precise --seed ubuntu-

minimal,xserver-xorg-core Xinit,xterm,alsa-utils,wi reless-
tools,wpasupplicant,x11-xserver-utils,openssh-clien t,openssh-
server

This creates a file system with the hostname tegra-ubuntu , the username
ubuntu , and the password ubuntu .

Note: The provided sample target file system does not come with pre-
generated ssh host keys. These host keys can be re-generated with the
following command:

$ ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key

View the ssh-keygen man page for other -t options.

NVIDIA Tegra Linux Driver Package

Getting Started

We have also made the following changes:

* Modified: /etc/{init/ssh.conf, X11/Xwrapper.conf,
resolve.conf}

» Deleted: /etc/ssh/ssh_host *

To replicate these changes in your own rootstock file-system, copy or make
similar modifications from those files to your own rootstock file system. Please
also view the files included in

~/Linux_for_Tegra/nv_tegra/config.tbz2 file and make appropriate
adjustments as made in those files for your root filesystem.

The following packages are installed by default:

e ubuntu-minimal
* XServer-xorg-core
e xl1-xserver-utils
e Xxinit

¢ xterm

e alsa-utils

* wireless-tools

* wpasupplicant

* opens-client

* openssh-server

Setting Up the Root File System

The next step in booting the target board is to configure the root file system.
Follow the procedures in this section to set up the rootfs and to copy the file
system to the rootfs device.

Note: The instructions below use the sample file system that is provided by
NVIDIA as the base. If you would like to use your own, set the
LDK_ROOTFS_DIR environment variable to point to where your rootfs is
located and skip Steps 1 and 2.

To set up the rootfs

1. Download the following file to your home directory:

Tegra-Linux-Sample-Root-Filesystem_<release_type>.t bz2
where <release_type>is armel (for softfp ABI) or armhf (for hardfp ABI).
This file contains the NVIDIA-provided sample root file system.

2. Extract the compressed file as follows:

NVIDIA Tegra Linux Driver Package

Getting Started

* Navigate to the rootfs directory of the extracted NVIDIA driver package
with this command:

$ cd <your_LAT root>/Linux_for_Tegra/rootfs

where <your_L4T_root> is your L4T root directory, which is assumed
to be your home directory (~).

For more information, see Extracting Tegra Linux Driver Package in this

section.

» Extract the sample file system to the rootfs directory with this command:

$ sudo tar zxpf ../../Tegra-Linux-Sample-Root-
Filesystem_<release_type>.thz2

3. Run the apply_binaries.sh script to copy the NVIDIA user space
libraries into the target file system:

$cd..

$ sudo ./apply_binaries.sh

Note: The apply_binaries.sh installs the appropriate default version, for
the provided sample file system, of the Tegra X driver by creating a sym-link
to point to the proper ABI. The script installs the sym-link to the following
location in the rootfs:

Jusrl/lib/xorg/modules/drivers/tegra_drv.so

If you are using a different rootfs, or if you already have configured your
rootfs, you can apply the NVIDIA user space libraries by setting the
LDK_ROOTFS_DIR environment variable to point to your rootfs. Then run
the script, as shown above, to copy the binaries into your target file system.

To install a different ABI:

» Use the apply_binaries.sh script and pass the --xabi <number>
flag by executing:
$ sudo ./apply_binaries.sh --xabi <number>

where <number> is the ABI version to install, either 5, 6, 7, 8, 10, 11, or 12.
The ABI default value for the X driver is “X ABI version 11" and it is the
version that is compatible with the provided sample file system. You can
find the version to use in the sample file system by following the
directions listed below.

To determine the X driver ABI of the X server used in the root file system:

+ Start X once on the Tegra device.

* Examine the resulting file /var/log/Xorg.0.log , which will contain
something like the following:
(1) Module ABI versions:

X.0rg ANSI C Emulation: 0.4
X.Org Video Driver: 8.0

NVIDIA Tegra Linux Driver Package

Getting Started

The X.Org Video Driver line reports the ABI version. The sample Ubuntu
12.04-based root file system uses X driver ABI 11.

If the apply_binaries.sh script installs the binaries correctly, the last
message output from the script is “Success!”.

4. Optionally load any additional packages as shown in the Installing
Additional Packages topic in this guide.

5. Load the target file system that you have generated onto the first partition of
a device (either a USB stick, an SD card, or a USB hard drive) and attach that
device to the target board. Alternatively, you can use the flash.sh script to
flash the root filesystem to the internal eMMC. In this case proceed with the
following steps, and then and follow the internal eMMC instructions.

6. Follow the steps in the Flashing the Boot Loader and Kernel section of this
guide.

7. Power on the target board.

8. Set up access to the board over a serial port by opening a terminal on the host
PC and setting:

e 115200 baud

+ 8-bit
* Parity none
* 1 stopbit

To copy the file system to the external rootfs device

1. Plug your rootfs device into the host PC.

2. If your device is not formatted as Ext3, enter the following command to
format it with an Ext3 file system:
$ sudo mkfs.ext3 /dev/sd<port><device number>
where <port> is the port where your device is mounted and
<device_number> is the device number of the device attached to the port.
You can use the dmesg command to determine the port.

3. If needed, mount your device with the following command:

$ sudo mount /dev/sdX1 <mntpoint>
where <mntpoint> is your rootfs device’s mount point on the host system.

4. Copy the file system. If LDK_ROOTEFS_DIR is set, execute these commands:

$ cd ${LDK_ROOTFS_DIR}
$ sudo tar -cpf - * | (cd <mntpoint> ; sudo tar -x pf-)

If it is not set, copy the rootfs directory that is included in the release by
executing the following commands:

NVIDIA Tegra Linux Driver Package

Getting Started

$ cd <your_LA4T_root>/rootfs

$ sudo tar -cpf - * | (cd <mntpoint> ; sudo tar -x pf-)
Once you have flashed your board, you can then unmount the disk and plug it to
the board. For more information about flashing, see the Flashing the Boot Loader
and Kernel topic in this section. For information about configuring your board
setup, see the hardware documentation for your developer board.

To copy the file system to the external rootfs device

* See the Flashing the Boot Loader and Kernel topic in this section, for flashing
to internal eMMC.

Updating Drivers on an Existing Target System

These instructions are for the situation where there was a previous release or
driver package loaded onto a target board and that target device is booted.

Prerequisite

You must attach an Ethernet cable to the device through either the Ethernet port
(if available) or through a USB Ethernet adaptor. Alternatively, you can connect
through Wi-Fi if the appropriate driver and firmware are enabled and installed.

To update drivers on an existing target system

1. Log into the target device.

2. Download the NVIDIA Tegra Linux driver release and the additional
support packages (for example the codec's package) from the nvidia.com
links with wget . For example, to download the last (not the latest) release do
the following;:
wget
http://developer.nvidia.com/sites/default/files/aka mai/tools/f

iles/l4t/<last_rel_num_rNN>/cardhu_Tegra-Linux-
<last_rel_num_RNN>_<release_type>.tbz2

wget

http://developer.nvidia.com/sites/default/files/aka mai/tools/f
iles/l4t/<last_rel_num_rNN>/cardhu_Tegra-Linux-code cs-
<last_rel_num_RNN>_<release_type>.tbz2

Where:

e <last_rel_num_rNN> is the number of the last release in this format
(rNN), such as r15.

e <last_rel num_RNN> is the number of the last release in this format
(RNN), such as R15.

* <release_type>is armel (for softfp ABI) or armhf (for hardfp ABI).

NVIDIA Tegra Linux Driver Package

Getting Started

Note: The release shown in this example is a previous release and not the
current release.

3. Extract the release. For more information, see Extracting Tegra Linux Driver
Package in this section.
4. Set the LDK_ROOTFS_DIR variable to point to the root /' directory.

$ export LDK_ROOTFS_DIR=/
$ echo ${LDK_ROOTFS_DIR}

5. Go into the Linux_for_Tegra directory.
$ cd Linux_for_Tegra
6. Run the apply_binaries.sh script to install the NVIDIA drivers onto

your target board. For more information, see Setting Up the Root File System
in this section.

7. (Optional) Change your X driver ABI as a variable passed into
apply_binaries. For more information, see Setting Up the Root File System in
this section.

8. For the codecs, or other additional packages, extract the files, being sure to
extract them to your root '/ directory. For more information, see Installing
Additional Packages in this section.

Determining the Success of a Driver Update

You can determine whether a driver update on a target board went successfully.

To determine the success of a driver update

* Execute the following command on a booted target device:

$ cat /etc/nv_tegra_release | grep -v -P '""#.*$' | shalsum -c

Increasing the Internal Memory Partition Size for the Root
File System

The suggested rootfs partition size for Ventana and Cardhu is 1073741824 bytes
and is specified by default in the flash.sh script. This 1 GB reserved in internal
memory for the rootfs partition may be insufficient for installation of additional
packages. Packages such as ubuntu-desktop, gst, and other gnome plug-ins may
require additional space.

The “-S <size-in-bytes> ” argument to flash.sh can be used to change
the partition size.

NVIDIA Tegra Linux Driver Package

Getting Started

To flash for a larger partition

» Execute the following command:

$ sudo ./flash <target_device> -S <size_in_bhytes> < rootdev>
Where:

e <target_device> is either cardhu or ventana.

e <size in_bytes> is the desired size for the partition.

* <rootdev> is the rootfs partition’s internal memory, for example
mmcblkOp1.

Installing Additional Packages

This section explains how to install the additional NVIDIA packages, additional
Ubuntu packages, and Google Chrome.

Installing Additional NVIDIA Packages

Additional NVIDIA packages may be posted alongside the release. To make full
use of the features in the release, these additional packages must be installed.
These may include the following packages:

e restricted_codecs.tbz2 , which is included in the
<target_board>_Tegra-Linux-codecs-
<version>_<release_type>.thz2

* wifi.tbz2 file

Directly after the "apply_binaries" step in Setting Up the Root File System, you
can install the package into the configured rootfs.

To install an NVIDIA package when the rootfs is already installed on the
device

1. Mount the target rootfs device to /mnt :

$ sudo mount <device> /mnt
where <device> is the device such as /dev/sdal

2. Install the package:

$ tar -C /mnt -xjpf <path-to>/$<package_name>
where <package_name> is one of the packages.

For example, if you have the restricted_codecs.tbz?2 file located in:

<home>/restricted_codecs.tbz2

then your line will look like:

NVIDIA Tegra Linux Driver Package

Getting Started

$ tar -C /mnt -xjpf <home>/restricted_codecs.thz2

3. Unmount the device with this command:

$ sudo umount <device>

and attach the device to the target board.

If the rootfs is installed on the device’s internal eMMC, use the scp
command to copy the restricted_codecs.tbz2 package to the target
board, and then extract the restricted_codecs.tbz2 package from the
root directory.

Installing Additional Ubuntu Packages

This section explains how to install additional packages from Ubuntu by using
the provided sample file-system. For example, you may wish to download the
following packages:

» openssh-server for remotely logging in
* ubuntu-desktop for the standard Ubuntu graphical user interface

You can receive notifications from Update Manager when new Ubuntu packages
are available.

Note: L4T is tested with base Ubuntu packages only. No updated packages
have been tested.

To receive notifications

1. Locate and edit the following file:

/etc/apt/sources.list

2. Add the following line:

deb http://ports.ubuntu.com/ubuntu-ports <distribut ion>-
updates main universe

Where <distribution> is the name of the Ubuntu distribution your rootfs
is based on. For example, for a rootfs based on the Natty Narwhal
distribution of Ubuntu, add the line:

deb http://ports.ubuntu.com/ubuntu-ports natty-upda tes main
universe

Prerequisite

You have attached an Ethernet cable to the device through either the Ethernet
port (if available) or through the USB Ethernet adaptor, or connect through Wi-Fi
if the appropriate driver and firmware are enabled and installed.

NVIDIA Tegra Linux Driver Package

http://ports.ubuntu.com/ubuntu-ports
http://ports.ubuntu.com/ubuntu-ports

Getting Started

To install more packages

1. Boot the target device.

2. Turn on networking by executing:
$ sudo dhclient

Note: You may need to specify ethO/ethl and other parameters to assign an
IP address to the appropriate interface.

3. Install packages using apt-get . For example, to install wget execute this
command:

$ sudo apt-get install wget

Installing Google Chrome

You can install Google Chrome from the command line, without using a
browser.

Note: These installation procedures are untested.

To install Google Chrome from the command line

1. Download and install a Linux-repository public key from Google:

$ wget -q -O - https://dI-
ssl.google.com/linux/linux_signing_key.pub | sudo a pt-key add

2. Add the key to the repository:

$ sudo add-apt-repository 'deb
http://dl.google.com/linux/chrome/deb/ stable main'

3. Update the repository and install the browser:
$ sudo apt-get update

4. Install the Google Chrome Stable version with:
$ sudo apt-get install google-chrome-stable
Or install the beta version (latest version) with:
$ sudo apt-get install google-chrome-beta

For instructions on installing Google Chrome, see:

http://www.ubuntuupdates.org/ppa/google _chrome

NVIDIA Tegra Linux Driver Package

http://www.ubuntuupdates.org/ppa/google_chrome

Getting Started

Configuring NFS Root on the Linux Host

To boot the target device from NFS, you must provide an NFS root mount point
on your Linux host machine. The procedure in this section describes the basic
steps to do so.

Prerequisites

* You must have Ethernet connection to install packages on the host.
* You must have an Ethernet connection on the target, as well.

To configure NFS root on the Linux host

1. Install the nfs components on your host machine:
$ sudo apt-get install nfs-common nfs-kernel-server

2. The NFS server needs to know which directories you want to 'export' for
clients. This information is specified in the /etc/exports file.
* Modity /etc/exports to look somewhat like this:

$ /nfsroot
*(rw,nohide,insecure,no_subtree_check,async,no_root _squash)

* After adding the entry, restart using the following command:

$ sudo /etc/init.d/nfs-kernel-server restart

3. Create an/nfsroot directory on your Linux host machine:

$ sudo mkdir /nfsroot

4. Copy the file system to the nfsroot directory:

$ cd ./rootfs
$ sudo tar -cpf - * | (cd /nfsroot ; sudo tar -xpf -)

5. Export the root point:
$ sudo exportfs -a
Alternatively, you can export or un-export all directories by using the -a and
-u flags. The following command un-exports all directories:
$ sudo exportfs -au
6. (Optional) If the Ubuntu firewall blocks NFS root access, it must be disabled

depending upon your configuration. You can do so with the following
command:

$ sudo ufw disable

7. If there are issues performing the NFS boot, to separately verify everything
on the ‘host’ machine is configured properly, you can perform the following

NVIDIA Tegra Linux Driver Package

Getting Started

step on a booted target board through USB/SD/internal eMMC. It should be
possible to mount the host NFS root point on the target device:

$ mkdir rootfs
$ sudo mount -v -o nfsvers=3 <IP-ADDR>:/nfsroot roo tfs

Where <IP-ADDR> is the IP address of the Linux Host machine as taken from
the “ifconfig” command. This proves that the host configuration is correct.

Note: You must install the nfs-common package using the following
command prior to executing the mount command on the target machine:
$ sudo apt-get install nfs-common
To boot the target with the NFS root point, see the Flashing the Boot Loader and

Kernel topic in this section and be sure to include the -N option for the nfs root
point.

Setting Power Saving Options

This section explains how to enable the hotplug driver and the Tegra CPU
power-gated state (LP2) for power savings on the target board.

Enabling the Auto-Hotplug Driver

The auto-hotplug driver implements the policy for when to bring cores
online/offline. The auto-hotplug driver also implements the policy for when to
switch clusters, i.e. when to switch from companion CPU to main CPU or vice
versa. Cluster switching is transparent to the OS. The switch happens when
software enters a power-gated state on one CPU core and hardware resumes the
execution on a different physical CPU core.

To enable the auto-hotplug driver

* Enter the following command:

$ echo 1 > /sys/module/cpu_tegra3/parameters/auto_h otplug

Enabling the Tegra CPU Power-Gated State (LP2)

With the LP2 power state, the CPU core is power-gated if supported by the
hardware. If all CPU cores on the VDD_CPU power rail are in LP2, Tegra
hardware signals the PMIC to turn off the regulator.

To enable the LP2 power state

* Enter the following command:

NVIDIA Tegra Linux Driver Package

Getting Started

$ echo Y > /sys/module/cpuidle/parameters/Ip2_in_id le

Flashing the Boot Loader and Kernel

This section describes the steps that must be taken to boot the target board by
flashing the kernel and boot loader (code-name Ventana or Cardhu platforms)
and provides usage information for the flash.sh helper script.

Flash Procedure

The first step is to flash the board with the boot loader and kernel, and,
optionally, flash the rootfs to internal eMMC.

Prerequisites
The following directories must be present:

* /bootloader—boot loader plus flashing tools (NvFlash, CFG, BCTs, etc.)
* /kernel—a kernel zImage plus scripts to sync/build the kernel

* /rootfs—the root file system that you download

* /nv_tegra—NVIDIA® Tegra® user space binaries

You must also have the USB cable connected to the recovery port prior to
running the commands listed below. For more information, see the Requirements
topic in this section.

To flash the boot loader and kernel

1. Put the target board into reset/recovery mode. Do so by first powering on the
board and then holding the recovery button, and then pressing the reset
button as described in the Quick Start guide for the board.

2. Run the flash.sh script that is in the top level directory of this release. The
script must be supplied with the target board code name (cardhu or
ventana) for the root file system:

$ sudo ./flash.sh <target_board> <rootdev>

» If the root file system will be on a USB disk, execute the script as follows:

$ sudo ./flash.sh <target_board> sdal

» If the root file system will be on an SD card, execute the script as follows:

$ sudo ./flash.sh <target_board> mmcblk1lpl

» If the root file system will be on the internal eMMC, execute the script as
follows:

NVIDIA Tegra Linux Driver Package

Getting Started

$ sudo ./flash.sh <target_board> mmcblkOp1

Where <target_board>

target device.

isventana or cardhu , depending upon your

The above examples are for fastboot. For U-Boot, add the following

argument:

-L <PATH_TO_U-BOOT_BIN_FILE>

For example:

$ sudo ./flash.sh —L bootloader/<target_board>/u-bo ot.bin
<target board> <rootdev>

The boot loader and kernel will load.

For more information on U-Boot see the U-Boot Guide chapter of this

document.

Flash Script Usage

You can find the most up-to-date usage information by running flash.sh —h

(using the flash.sh

is as follows.

Usage

script included in the release). The basic usage information

sudo ./flash.sh [options] <target_board> <rootdev>

Where you specify the required parameters and one or more of the options

shown in the following table.

Parameters

Description

<target_board>

Is one of ventana or cardhu.

<rootdev>

Is one of following:

For

Ventana

mmcblkOp1 | Specifies internal eMMC.

mmcblk1p1 | Specifies external SDCARD.

sda1 Specifies external USB device (such as, USB memory
stick or HDD).

eth0 Specifies nfsroot via external USB Ethernet interface.

For Cardhu

mmcblkOp1 | Specifies internal eMMC.

mmcblk1p1 | Specifies external SDCARD.

sda1 Specifies external USB device (such as, USB memory

stick or HDD).

NVIDIA Tegra Linux Driver Package

Getting Started

eth0 Specifies nfsroot via external USB Ethernet interface.
Options Description
-h Specifies to print this usage information.

-b <bctfile>

Specifies the NvFlash Boot Configuration Table (BCT) file.

-c <cfgfile>

Specifies the NvFlash configuration file.

-f <flashapp>

Path to flash application: nvflash or tegra-rcm.

-k <partition
id>

Specifies the kernel partition ID to be updated (minimum = 5).

-n <nfs args>

Specifies the static NFS network assignments:
<Client IP>:<Server IP>:<Gateway IP>:<Netmask>

-0 <odmdata>

Specifies the ODM data value:
0x30098011 (ventana)
0x80080105 (Cardhu A01)
0x40080105 (Cardhu A02)

-r

Skip building and reuse existing system.ing

-s
<ubootscript>

HUSH bootscript file for U-Boot.

-F <flasher>

Flash server such as fastboot.bin.

-L
<bootloader>

Specifies the boot loader, such as fastboot.bin.

-C <cmdline>

Specifies the kernel command line. Warning: Each option in this
kernel command-line gets higher precedence over the same option
from fastboot. In case of NFS booting, this script adds NFS booting
related arguments, if the -i option is omitted.

Specifies the kernel command line as-provided by the user and
passes it to fastboot.

-D <boot Specifies eMMC or NAND.

Device>

-K <kernel> Specifies the kernel image, such as zlmage.

-I <initrd> Specifies initrd file. Null initrd is the default.

-R <rootfs dir>

Specifies the sample rootfs directory.

-N <nfsroot>

Specifies the nfsroot, for example:
<my IP addr>:/my/exported/nfs/rootfs

-S <size>

Specifies the rootfs size in bytes. This is valid only for internal
rootdev.

Synchronizing the Kernel Sources

You can manually rebuild the kernel used for this package. Internet access is
required to do so.

NVIDIA Tegra Linux Driver Package

Getting Started

Prerequisites

* You have installed Git. This can be done on Ubuntu 10.04 by running the
following command:

$ sudo apt-get install git-core

* Your system has the default Git port 9418 open for outbound connections.

To rebuild the kernel

1. Get the kernel source by running the source_sync.sh script:
$./source_sync.sh -k
Which will prompt you to enter a ‘tag’ name, which is provided in the release

notes. Alternatively, you can provide the ‘tag’ name when calling the script.
For example:

$./source_sync.sh —k <TAG_NAME>
—Or—
You can also manually sync the sources, as follows:

$ cd <myworkspace>

$ git clone git://nv-tegra.nvidia.com/linux-2.6.git
kernel_sources

$ cd kernel_sources

$ git checkout <TAG_NAME>

where <TAG_NAME3s the "tag’ name that is available in the release notes.

You can sync to any Linux tag you would like, but the tag provided in the
release notes will sync the sources to the same source point of time the
release binary was built from. To see a list of the available release tags, use:

$ git tag —I ‘tegra-14t*

Building the NVIDIA Kernel

Follow the steps in this procedure to build the NVIDIA kernel.

Prerequisites

* You have downloaded the kernel source code.

To build the Tegra Kernel

1. Export the following environment variables:

$ export CROSS_COMPILE=<crosshin>
$ export TEGRA_KERNEL_OUT=<outdir>

NVIDIA Tegra Linux Driver Package

Getting Started

$ export ARCH=arm
where:

e <crosshin> is the prefix applied to form the path to the tool chain for
cross compilation, e.g., gcc . For a CodeSourcery tool chain, it will look
something like:

<csinstall>/arm-2009q1-203-arm-none-linux-gnueabi/b infarm-
none-linux-gnueabi-

* <outdir> is the desired destination for the compiled kernel.

2. Execute the following commands to create the .config

$ cd <myworkspace>/kernel
$ mkdir STEGRA_KERNEL_OUT

* For Tegra 3, Cardhu, use:
$ make O=$TEGRA_KERNEL_OUT tegra3_defconfig

e For Tegra 2 Ventana use:
$ make O=$TEGRA_KERNEL_OUT tegra_defconfig

Where <myworkspace> is the parent of the Git root.

3. Execute the following commands to build the kernel:
$ make O=$TEGRA_KERNEL_OUT zImage

4. Execute the following commands to build the kernel modules (and optionally
install them)

$ make modules DESTDIR=<your_destination>
$ make modules_install INSTALL_MOD_PATH=<your_desti nation>

5. Copy the kernel zImage over the one present in the ‘kernel” directory of the
release.

6. Archive the kernel modules created in step 4 using the tar command and
the filename that is used for the kernel modules tar file in the same kernel
directory of the release. When both of those tar files are present, you can
follow the instructions provided in this document to flash and load your
newly built kernel.

OpenGL/EGL Gears Test Application

If you would like to run a sample OpenGL/EGL test application, you can run the
open-source Gears application.

NVIDIA Tegra Linux Driver Package

Getting Started

To install and run Gears test application

1. Boot the target system with Ethernet connection and install the mesa-
utils-extra package.

$ sudo apt-get install mesa-utils-extra

2. Manually create the sym-links in the target root file-system for
lusr/lib/libEGL.so.1 and /usr/lib/libGLESv2.s0.2
$ mv /usr/lib/libEGL.so /usr/lib/libEGL.so.1

$ mv /usr/lib/libGLESv2.s0 /ust/lib/libGLESv2.s0.2
$ In -s /usr/lib/libEGL.so.1 /usr/lib/libEGL.so

$ In -s Jusr/lib/libGLESv2.s0.2 /usr/lib/lilbGLESV2. S0
3. At this point you should be able to run the application with the following
steps:
$ export DISPLAY=:0
$ X&

$ /usr/bin/es2gears

GStreamer-based Multimedia Playback (NvGstPlayer)

You can use the GStreamer open source multimedia framework and the
NvGstPlayer utility for testing multimedia local playback and HTTP/RTSP
streaming playback use cases. The NvGstPlayer can be used as a reference
implementation.

This section tells you how to install and use this application. This section
includes the following sub-topics.

e Installing GStreamer
e Using NvGstPlayer

For more information about the NvGstPlayer application, refer to the readme file
included with the release.

Installing GStreamer

You install GStreamer from the Internet directly on the target. There is a wrapper
library called gst-openmax that is an interface between GStreamer and
OpenMAX, which enables accelerated NVIDIA plug-ins in the GStreamer
framework

For more information about GStreamer, see the following website:

http://gstreamer.freedesktop.org

NvGstPlayer is a multimedia player test application.

NVIDIA Tegra Linux Driver Package

http://gstreamer.freedesktop.org/

Getting Started

Complete prerequisite steps 1 through 4 from the file
nvgstcapture_ README.txt before running the NvGstPlayer and
NvGstCapture applications.

Instructions for installing GStreamer are also included in that text file.

Using NvGstPlayer

NvGstPlayer is a command line media file player. It will play audio/video files
encapsulated in MP4, 3GP, AVI, ASF, WMA, MKV, M2TS, WEBM, and MOV.
NvGstPlayer supports local file playback and playback over RSTP, HTTP, and
UDP. For information about NvGstPlayer runtime commands, default settings,
and important notes see the nvgstplayer_ README.txt file included in the
release.

Note: To use the NvGstPlayer application, you must install the restricted codecs
available (licensed seperately) on the release website. For more information, see
Installing Additional NVIDIA Packages in this guide.

Gstreamer-based Camera Capture (NvGstCapture)

The NvGstCapture application supports GStreamer version 0.10.32 by default.
NvGstCapture can capture audio and video data using microphone and camera
and encapsulate encoded A/V data in the container file.

To use the NvGstCapture application you must install the restricted codecs
package available (licensed separately) on the release website. For more
information, see Installing Additional NVIDIA Packages in this guide.

For NvGstCapture installation and usage information, see the
nvgstcapture_README.txt file included with the release.

NVIDIA Tegra Linux Driver Package

U-Boot Guide

This document describes the U-Boot implementation for NVIDIA® Tegra® Linux
Driver Package. It covers the following topics:

Requirements
Using Device Tree Compiler

Downloading and Building U-Boot

Adding a Compiled Kernel to the Root File System
Flashing U-Boot

RootES Tested by Device

Example Hush Boot Scripts

Debugging U-Boot Environment

Requirements

This topic provides software requirements and prerequisites, including Linux
tools that are required for Tegra Linux Driver Package (L4T).

Linux-based Host System.

Functionality of the u-boot build and flashing utilities was validated using an
Ubuntu 10.04 host system; however, later versions or alternative Linux
distributions may work with host-specific modifications.

Tegra Linux Driver Package (L4T).

Download the latest L4T package from the Tegra Developer Zone and follow
the installation instructions in the user documentation. You can find L4T on
the Tegra Developer Zone:

http://developer.nvidia.com/linux-tegra

Flex and Bison.

The U-Boot makefiles require flex and bison to parse various configuration
files. If flex and bison are not already installed on your host machine, you can
install them on an Ubuntu host machine with the following command:

NVIDIA Tegra Linux Driver Package

http://developer.nvidia.com/linux-tegra

Getting Started

$ sudo apt-get install flex bison

Device Tree Compiler (dtc).

Ensure that the full path to the dtc binary is available to the U-Boot make
system by either passing the path as a variable or by making the dtc directory
available in the local command path of the host machine. Most of the dtc
packages available from standard Linux distribution package management
systems (like apt) are not yet updated with a version of dtc with the features
required by the U-Boot makefile. Therefore, an example of building dtc from
source is included in this section. For the procedure, see the Using Device
Tree Compiler topic in this section.

U-Boot Kernel Image Tool (mkimage).

The U-Boot image tool is what generates the vmlinux.uimg from the kernel
zlmage. The L4T release includes a prebuilt mkimage in
<your_L4T_root>/Linux for Tegra/bootloader. If mkimage is not installed, it
can be obtained by building the top-level U-Boot make target. For more
information on building U-Boot, see Downloading and Building U-Boot in
this section. The mkimage tool can then be found in the U-Boot source
directory at:

Jtools/mkimage

ARM tool chain for cross compilation.
For more information, see the Toolchain section in this guide.

U-Boot source.

For more information, see the Downloading and Building U-Boot topic in this
section.

Kernel source.

For information, see the following sections in the Getting Started chapter:

e Setting Up Your Environment

¢ Synchronizing the Kernel Sources
¢ Building the NVIDIA Kernel

Also, see the Adding a Compiled Kernel to the Root File System topic in this
section.

NVIDIA Tegra Linux Driver Package

Getting Started

Using Device Tree Compiler

This topic provides an example of building the Device Tree Compiler (dtc) from
source to include the features required by the U-Boot makefile.

To build dtc from source

1.

If you do not want to pass in dtc as a parameter to the U-Boot environment,
ensure a local command path (such as ./usr/local/bin or another
choice) is at the beginning of the shell command path.

$ export PATH=<local_command_path>:${PATH}

Note: If you execute:
$ make install
The dtc makefile installs the binary into the first entry of shell PATH variable,

so it is important that the local command path is at the beginning of the shell
PATH variable.

Create a directory to contain the dtc source code and change directories into
it:

$ mkdir -p <dtc_src_dir>
$ cd <dtc_src_dir>

Download dtc source code by executing the following git clone
command:

$ git clone http://git.jdl.com/software/dtc.git

Note: At time of publication, the tested commit ID for dtc is:
abe6c60e3a97a6b3a033cd052bb3740fd53chf4c

Build and optionally install dtc by executing:

$ cd <dtc_src_dir>/dtc
$ make

Or, alternatively, if you want it installed on your local host file system
execute:

$ make install

Note: if you specified just make be sure to pass in the following to the U-Boot
make system:

DTC=${PATH_TO_DTC_TOOL_BINARY}

Where PATH_TO_DTC_TOOL_BINARY is the location of the dtc binary,
such as:

<dtc_src_dir>/dtc/dtc

NVIDIA Tegra Linux Driver Package

Getting Started

Downloading and Building U-Boot

This topic provides the steps to follow when downloading and building U-Boot
to use as a boot loader for the Tegra device.

To download and build U-Boot

1.

Download the L4T U-Boot source code by executing the following
commands:

$ mkdir -p <uboot_src_dir>

$ cd <uboot_src_dir>

$ git clone -n git://nv-tegra.nvidia.com/3rdparty/u -boot.git
Alternatively, you can use the source_sync.sh script that is provided in
the L4T release and skip Step 2 below.

When running source_sync.sh -u , if no parameters are provided, the
script prompts for the <TAG_NAME>which is provided in the release notes.
Also, you can run the script by passing the <TAG_NAME>n as follows:

$ cd <your_L4T_root>/Linux_for_Tegra

$./source_sync.sh —u <TAG_NAME>

This will sync the source to <source_sync.sh_location>/sources/u-
boot_source . The <uboot_src_dir> directory becomes
<your_LA4T_root>/Linux_for_Tegra/sources/u-boot_sour ce. Use
that path below in Step 4.

Check out the git tag name:

$ cd u-boot
$ git checkout -b mybranchname <tag_name>

where <tag_name> is provided in the Release Notes.

Set the build environment:

$ export ARCH=arm

$ export CROSS_COMPILE=<your_toolchain_location>
$ export CONFIG_L4T=1

$ export USE_PRIVATE_LIBGCC=yes

$ export DTC=<dtc_binary_location>

Build U-Boot by executing:

$ cd <uboot_src_dir>/u-boot
$ make distclean

$ make <platform>_config

$ make

Where <platform> is the device, such as code-name cardhu for Tegra 3 or
code-name ventana for Tegra 2.

NVIDIA Tegra Linux Driver Package

Getting Started

5. Copy U-Boot for flashing to the device:

$ cp u-boot.bin
<your_LA4T_root>/Linux_for_Tegra/bootloader/<platfor m>

Note: Before copying U-Boot, it is recommended that you back up the
original u-boot.bin file in this directory.

Adding a Compiled Kernel to the Root File System

This topic describes the steps to create and install the kernel image required by
U-Boot into the sample file system.

Prerequisites

You have compiled the kernel as described in Getting Started in this guide.

To configure a file system for U-Boot

Use the zimage_to_uimg.sh script to create the vmlinux.uimg from
your kernel zImage by executing the following commands:

$ cd <your_LAT root>/Linux_for_Tegra
$./zImage_to_uimg.sh —z <path>/zImage

With default values, zImage _to_uimg.sh writes vmlinux.uimg to the
kernel directory of the extracted L4T release. Run zImage_to_uimg.sh —h
for description of other parameters.

The zimage_to_uimg.sh script runs mkimage with the appropriate
parameters to create the vmlinux.uimg file in the kernel directory. The
apply_binaries script copies the vmlinux.uimg in the kernel directory into
the rootfs directory in the /boot folder. You can then install the rootfs
directory onto your device. For U-Boot to function properly, there must be a
vmlinux.uimg kernel image in the /boot directory of the target filesystem.
For information on installing the rootfs directory onto your device, see
Setting Up the Root File System in the Getting Started chapter.

If you have already installed your rootfs onto a device, you can manually
copy the vmlinux.uimg file created by the zimage_to_uimg.sh script to
the previously installed root file system.

To configure a network file system for U-Boot

Ensure that a tftp daemon is installed on the host PC. This tftp daemon
installation needs to be done once only.

NVIDIA Tegra Linux Driver Package

Getting Started

To install the tftp daemon, execute the following command:

$ sudo apt-get install tftpd

Locate and edit /etc/inetd.conf and ensure the following line is contained in
the file:

tftp dgram udp wait nobody /usr/sbin/tcpd/usr/sbin/ in.tftpd
[tftpboot

Execute the following commands:

$ cd /etc/init.d;
$.Jopenbsd-inetd restart

Note: Any tftp daemon works, but the TFTP access point must be configured
as the /tftpboot directory of the host machine for the U-Boot on the target
system to perform the tftp boot.

For a network RootFS, use the -d option to specify the path to the host
machine’s tftp _access directory. It will look as follows:

$./zlmage_to_uimg.sh -z <path to zImage>/zImage —d [tftpboot
With the vmlinux.uimg file updated in the /tftpboot directory, use the

rootfs built and configured for NFS boot as described in the Getting Started
chapter.

To configure a file system installed in the internal eMMC

1.

Optionally, backup the existing release kernel to avoid overwriting it with a
new kernel copy.

Copy the compiled zImage kernel over the current L4T release kernel by
executing the following command:

$ cp arch/arm/boot/zimage <LAT_path>/Linux_for_Tegr a/kernel
Note: Running zImage_to_uimg.sh is not necessary because flash.sh

converts the zImage to the vmlinux.uimg automatically for internal eMMC
rootfs.

Flashing U-Boot

This section presents the theory of usage for flashing U-Boot followed by the

commands used to flash. It contains the following topic:

eMMC Partition as Script Partition

Fastboot Creation of GPT

Example eMMC Layout with Script Partition
Flash Commands

NVIDIA Tegra Linux Driver Package

Getting Started

eMMC Partition as Script Partition

With the standard NvFlash Utility and the fastboot.bin flash application, U-
Boot shares the same internal eMMC partition layout as fastboot does. The only
difference is that L4T U-Boot does not use the kernel partition in the usual
fashion: U-Boot uses the kernel partition as its boot-script partition.
Additionally, U-Boot expects the kernel file named vmlinux.uimg in the
following directory:

<rootfs>/boot

Fastboot Creation of GPT

Fastboot creates the GPT partition, which contains the secondary GUID Partition
Table (GPT) that must be located in the last 512-byte (B) sector of the boot device.

Note: The boot device is not necessarily the same as the rootfs device.

The logical block addressing (LBA) of the last-512-B sector varies from device to
device. Both U-Boot and the kernel know how to query the hardware to obtain
the LBA of the last 512-B sector.

Example eMMC Layout with Script Partition

This topic provides an example eMMC layout showing the script partition and
configuration (CFG) file contents.

U-Boot shares the same layout as fastboot; the layout is described in the
following released configuration file:

gnu_linux_fastboot_emmc_full.cfg

The kernel partition (name=LNX) gets used as the script partition.

Example CFG Contents

[device]
type=sdmmc
instance=3

[partition]

name=BCT

id=2
type=boot_config_table
allocation_policy=sequential
filesystem_type=basic
size=4194304
file_system_attribute=0
partition_attribute=0

NVIDIA Tegra Linux Driver Package

allocation_attribute=8
percent_reserved=0

[partition]

name=PT

id=3
type=partition_table
allocation_policy=sequential
filesystem_type=basic
size=2097152
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0

[partition]

name=EBT

id=4

type=bootloader
allocation_policy=sequential
filesystem_type=basic
size=2097152
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0
filename=fastboot.bin

[partition]

name=S0OS

id=5

type=data
allocation_policy=sequential
filesystem_type=basic
Size=6291456
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0
#filename=recovery.img

[partition]

name=LNX

id=6

type=data
allocation_policy=sequential
filesystem_type=basic
size=8388608
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0
filename=boot.img

[partition]
name=GP1
id=7

NVIDIA Tegra Linux Driver Package

Getting Started

type=GP1
allocation_policy=sequential
filesystem_type=Dbasic
size=2097152
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0

[partition]

name=APP

id=8

type=data
allocation_policy=sequential
filesystem_type=basic
size=1073741824
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0
filename=system.img

[partition]

name=CAC

id=9

type=data
allocation_policy=sequential
filesystem_type=basic
size=4194304
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0

[partition]

name=MSC

id=10

type=data
allocation_policy=sequential
filesystem_type=basic
size=2097152
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0

[partition]

name=USP

id=11

type=data
allocation_policy=sequential
filesystem_type=basic
size=4194304
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0

NVIDIA Tegra Linux Driver Package

Getting Started

Getting Started

[partition]

name=UDA

id=12

type=data
allocation_policy=sequential
filesystem_type=basic
size=OxFFFFFFFFFFFFFFFF
file_system_attribute=0
partition_attribute=0
allocation_attribute=0x808
percent_reserved=0

[partition]

name=GPT

id=13

type=GPT
allocation_policy=sequential
filesystem_type=basic
size=OxFFFFFFFFFFFFFFFF
file_system_attribute=0
partition_attribute=0
allocation_attribute=8
percent_reserved=0

Flash Commands

This topic provides the commands to use to flash U-Boot so that you can boot the
device either from internal eMMC, from an SD Card, or from an IP network.

To flash U-Boot to boot from internal eMMC

* Execute the following command:

$ sudo ./flash.sh —L bootloader/<platform>/u-boot.b in
<platform> mmcblkOp1

Where <platform> is the device, such as cardhu for Tegra 3 or ventana for
Tegra 2.

To flash U-Boot to boot from an SD Card

» Execute the following command:

$ sudo ./flash.sh —L bootloader/<platform>/u-boot.b in
<platform> mmcblk1pl

Where <platform> is the device, such as cardhu for Tegra 3 or ventana for
Tegra 2.

NVIDIA Tegra Linux Driver Package

To flash U-Boot to boot from an IP network

» Execute the following command:

$ sudo ./flash.sh —L bootloader/<platform>/u-boot.b
<IPA>:/<platform> [-n <target IPA>:<host IPA>:<gate

IPA>:<netmask>] <platform> eth0

Getting Started

Where <platform> is the device, such as cardhu for Tegra 3 or ventana

for Tegra 2.

RootFS Tested By Device

This topic provides the results of testing the root file system location by device.
The “Y” citations shown in the following table indicate that proper U-Boot
initialization and hand-off to the kernel occurred, but this does not guarantee a

fully-functional system.

RootFS Location Cardhu Ventana
mmcblkOp1 Y Y
mmcblk1p1 Y Y
sdat Y Y
eth0 Y Y
etht Y Not tested
usb0 Not tested Not tested
mtdblock1 Unsupported Unsupported

Example Hush Boot Scripts

This section provides example boot scripts for eMMC, SD Card, USB, and

Network booting.

To minimize the foot print of the binary, U-Boot is designed to be configured by
compile-time switches; however, in the Tegra Linux Driver (L4T) environment, it
is desirable to have flash-time switches available to accommodate various L4T
use cases. Therefore, to support flash-time switching, L4T implements a script
partition concept, and the script partition can be edited and flashed to alter the

U-Boot environment variables and boot parameters.

There are two example Hush shell script files supplied in Tegra Driver for Linux

release: <platform>_emmc.hush

and <platform>_net.hush

.Hushisa

lightweight Bourne shell-like command line interpreter. U-Boot executes the

NVIDIA Tegra Linux Driver Package

Getting Started

Hush script to configure the boot device and build kernel command-line
parameters.

eMMC Hush Script

The eMMC Hush script handles booting with boot order from all local storage
devices, such as internal eMMC, SD Card, and USB devices. This script checks
the USB device first, the SD Card next, and then the internal eMMC memory.
During these checks, if U-Boot finds a valid vmlinux.uimg kernel image file, it
boots off of the device where it found the kernel image.

The Hush script can be edited to set desired U-Boot boot strapping
characteristics. You can find the eMMC Hush script at the following location:

bootloader/<platform>/<platform>_emmc.hush

where <platform> is the device, such as cardhu for Tegra 3 or ventana for
Tegra 2.

Example Script Contents
The following shows the contents of the eMMC Hush script.

Note: These contents are provided as an example; to see the latest values
used in the release, look at the appropriate Hush scripts are included in the
release in at:

bootloader/<platform>/

#

U-boot environment for local storage boot.
#

usbname=sda

pn=1

#

Static env:

#

board=cardhu
mmcname=mmcblk
loadaddr=0x80408000

loadaddr=0x80408000 for T30. For T20, 0x00408000
baudrate=115200
bootdelay=3
bootfile=vmlinux.uimg
console=ttyS0,115200n8
stderr=serial,lcd
stdin=serial,tegra-kbc
stdout=serial,lcd
user=user
videospec=tegrafb
serial#=1

NVIDIA Tegra Linux Driver Package

Getting Started

#

Board Specific variable env:

#

tegra_fbmem: handled by u-boot runtime.
Ip0_vec=0x00002000@0x9C406000

Ip0_vec=0x00002000@0x9C406000 for T30
For T20, Ip0_vec=0x00002000@0x1C406000

#

Multi purpose env containers:

#

platform_extras=vmalloc=128M mem=1024M@2048M
extra_bootargs=usbcore.old_scheme_first=1 core_edp__ mv=1300
panel=Ivds tegraid=30.1.2.0.0 debug_uartport=Isport smp

#

Local Storage Boot Scripts:

#

regen_all=setenv common_bootargs console=${console}
console=tty1 Ip0_vec=${lp0_vec} video=${videospec}

${platform_extras} ${dev_extras} noinitrd; setenv b ootargs
${common_bootargs} ${extra_bootargs} ${bootdev_boot args}
mmc_setup=setenv bootdev_bootargs
root=/dev/${mmcname}${mmcdev}p${pn} rw rootwait gpt ;run
regen_all

mmc_boot=run mmc_setup; mmc rescan ${mmcdev}; ext2| oad mmc
${mmcdev}:${pn} ${loadaddr} /boot/${booffile}; boot m
${loadaddr}

mmcO0_boot=setenv mmcdev 0; run mmc_hoot
mmcl_boot=setenv mmcdev 1; run mmc_boot

usb_setup=setenv bootdev_bootargs root=/dev/${usbna me}${pn} rw
rootwait; run regen_all
usb_boot=usb start; run usb_setup; ext2load usb 0:$ {pn}

${loadaddr} /boot/${bootfile}; bootm ${loadaddr}
bootcmd=run usb_boot; run mmcl_boot; run mmcO_boot

Net Hush Script

The Net Hush script handles booting from the Network File System (NFS). You
can find the Net Hush script at the following location:

bootloader/<platform>/<platform>_net.hush

where <platform> is the device, such as cardhu for Tegra 3 or ventana for
Tegra 2.

Example Script Contents
The following shows the contents of the Net Hush script.

Note: These contents are provided as an example; to see the latest values
used in the release, look at the appropriate Hush scripts are included in the
release in at:

bootloader/<platform>/

NVIDIA Tegra Linux Driver Package

Getting Started

#

U-boot environment for network boot.
#

#

Static env:

#

board=cardhu

mmcname=mmcblk
loadaddr=0x80408000

loadaddr=0x80408000 for T30. For T20, 0x00408000
baudrate=115200

bootdelay=3

bootfile=vmlinux.uimg
console=ttyS0,115200n8
stderr=serial,lcd

stdin=serial,tegra-kbc

stdout=serial,lcd

user=user

videospec=tegrafb

serial#=1

#

All CAP nfs info tokens need to be replaced with proper
values as follow:

IPADDR ----- 172.17.187.71

SERVERIP --- 172.17.186.62

GATEWAYIP -- 172.17.186.62

NETMASK ---- 255.255.252.0

ip=cip:sip:gip:mask::eth0:off

NFSROOT ---- 172.17.187.62:/cardhu_nfsroot
#

ipaddr=IPADDR

serverip=SERVERIP

gatewayip=GATEWAYIP

netmask=NETMASK

tftppath=TFTPPATH

nfsbootargs=root=/dev/nfs NFSARGS nfsroot=NFSROOT
#

Board Specific variable env:

#

tegra_fbmem: handled by u-boot runtime.
Ip0_vec=0x00002000@0x9C406000

Ip0_vec=0x00002000@0x9C406000 for T30
For T20, Ip0_vec=0x00002000@0x1C406000

#

Multi purpose env containers:

#

platform_extras=vmalloc=128M mem=1024M@2048M
extra_bootargs=usbcore.old_scheme_first=1 core_edp__ mv=1300
panel=Ivds tegraid=30.1.2.0.0 debug_uartport=Isport smp

#

Local Storage Boot Scripts:

#

regen_all=setenv common_bootargs console=${console}

console=ttyl Ip0_vec=${Ip0_vec} video=${videospec}

${platform_extras} ${dev_extras} noinitrd; setenv b ootargs
${common_bootargs} ${extra_bootargs} ${bootdev_boot args}

NVIDIA Tegra Linux Driver Package

Getting Started

regen_net_bootargs=setenv bootdev_bootargs rw ${nfs bootargs} ;
run regen_all

nfs_setup=setenv autoload n; run regen_net_bootargs
nfs_boot=run nfs_setup; dhcp; tftpboot ${loadaddr}
${tftppath}; bootm ${loadaddr}

bootcmd=usb start; run nfs_boot

Debugging U-Boot Environment

This section provides some debugging tips for your U-Boot environment. The
examples shown, however, do not represent a comprehensive listing for U-Boot
functionality. For a full listing of supported commands and their usage by
U-Boot, see the U-Boot documentation and source.

For example, one common problem that can occur is when you create your own
kernel and U-Boot has trouble finding it. To verify that U-Boot can read the
device and also see the files in the file system, the commands listed in examples
in this section may be beneficial. If a boot device is not found or the device has
trouble booting with a kernel other than the reference kernel provided in the L4T
release, check the examples in this section for debug assistance.

Interrupting U-Boot
You can interrupt U-Boot during boot.
To interrupt U-Boot

* Press any key during boot.

Getting Help

On the U-Boot terminal screen, you can type help at any time for the list of
supported commands from the U-Boot terminal.

To see the U-Boot Help screen on Tegra 3

e Enter:

Tegra3 # help

The below shows example Help information printed when executing help
on a Tegra 3 device.

? - alias for 'help’

NVIDIA Tegra Linux Driver Package

base - print or set address offset

bdinfo - print Board Info structure

boot - boot default, i.e., run ‘bootcmd'

bootd - boot default, i.e., run 'bootcmd’

bootm - boot application image from memory
bootp - boot image via network using BOOTP/TFTP p
cls - clear screen

cmp - memory compare

coninfo - print console devices and information

cp - memory copy

crc32 - checksum calculation

dcache - enable or disable data cache

dhcp - boot image via network using DHCP/TFTP pr
echo - echo args to console

editenv - edit environment variable

env - environment handling commands

exit - exit script

ext2load- load binary file from a Ext2 filesystem
ext2ls - list files in a directory (default /)

false - do nothing, unsuccessfully

fatinfo - print information about filesystem

fatload - load binary file from a dos filesystem

fatls - list files in a directory (default /)

fdt - flattened device tree utility commands

go - start application at address 'addr'

gpio - GPIO access

help - print command description/usage

i2c - 12C sub-system

icache - enable or disable instruction cache

iminfo - print header information for application
imxtract- extract a part of a multi-image

itest - return true/false on integer compare

loadb - load binary file over serial line (kermit
loads - load S-Record file over serial line

loady - load binary file over serial line (ymodem
loop - infinite loop on address range

md - memory display

mm - memory modify (auto-incrementing address)
mmc - MMC sub system

mmcinfo - display MMC info

mtest - simple RAM read/write test

mw - memory write (fill)

nm - memory modify (constant address)

ping -send ICMP ECHO_REQUEST to network host
printenv- print environment variables

reset - Perform RESET of the CPU

run - run commands in an environment variable
saveenv - save environment variables to persistent
setenv - set environment variables

sf - SPI flash sub-system

showvar - print local hushshell variables

sleep - delay execution for some time

source - run script from memory

sspi - SPI utility command

test - minimal test like /bin/sh

tftpboot- boot image via network using TFTP protoco
time -run a command and report its run time

NVIDIA Tegra Linux Driver Package

Getting Started

rotocol

otocol

image

mode)

mode)

storage

Getting Started

true - do nothing, successfully

usb - USB sub-system

usbboot - boot from USB device

version - print monitor, compiler and linker versio n

Listing a Directory Structure

You can list the directory structure of a particular device. For example, you can
list the directory structure of sdal in U-Boot by typing: usb 0:1 (for USB device
0 partition 1).

To list the directory structure

* Execute the following command:
Tegra3 # ext2Is usb 0:1

Note: This works on EXT3 file systems, as well.

Example output follows:

<DIR> 4096 .
<DIR> 4096 ..
<DIR> 4096 bin
<DIR> 4096 boot
<DIR> 4096 dev
<DIR> 4096 etc
<DIR> 4096 home
<DIR> 4096 lib
<DIR> 4096 lost+found
<DIR> 4096 media
<DIR> 4096 mnt
<DIR> 4096 opt
<DIR> 4096 proc
<DIR> 4096 root
<DIR> 4096 sbin
<DIR> 4096 selinux
<DIR> 4096 srv
<DIR> 4096 sys
<DIR> 4096 tmp
<DIR> 4096 usr
<DIR> 4096 var

Listing the Contents of a Directory

You can list the contents of any directory.

To list contents of a directory

* Execute following command:
Tegra3 # ext2ls usb 0:1 $DIRECTORY

NVIDIA Tegra Linux Driver Package

Getting Started

where $DIRECTORYis an expected path on the device.

For example, to list contents of the /boot directory where the
vmlinux.uimg file should be, execute:

Tegra3 # ext2Is usb 0:1 /boot

Printing the U-Boot Environment
You can print the entire U-Boot environment.
To print the U-Boot environment

» Execute the following command:

Tegra3 # printenv

Printing/Setting Environment Variables
You can print and set variables in the environment.
To print a variable in the environment

» Execute the following command:
Tegra3 # printenv $ENV_VARIABLE

where $SENV_VARIABLErefers to an environment variable in U-Boot.

For example, to print the boot device partition number, execute:

Tegra3 # printenv pn
Output can be as follows:
pn=1
To set a variable in the environment

* Execute the following command:
Tegra3 # setenv $SENV_VARIABLE $NEW_VALUE

where $ENV_VARIABLErefers to an environment variable in U-Boot and
$NEW_VALUEs the new value for that variable.

For example, to set the partition number variable, enter the following
command:

NVIDIA Tegra Linux Driver Package

Getting Started

Tegra3 # setenv pn 1

To save the modified environment

* Execute the following command:

Tegra3 # saveenv

The saved modified environment is preserved in case of resets and reboots.

NVIDIA Tegra Linux Driver Package

Building Crosstool-ng Toolchain and glibc

This chapter provides instructions to build the Crosstool-ng supplied cross
toolchain suite version 4.5.3 and the glibc suite with an Ubuntu host machine.
The Crosstool-ng toolchain suite is similar to the toolchain used to produce the
L4T release binaries.

Note: For an example Crosstool-ng configuration file, see the Appendix.
This document covers the following topics:

* Toolchain Information

* Host Setup

¢ Dependent Packages

¢ Building the Toolchain Suite
e Verifying the Build

Toolchain Information

The toolchain consists of the following elements:

* Crosstool-ng reference (http://crosstool-ng.org/)
* Cross Toolchain Version : 4.5.3
* glibc Version : 2.11

Host Setup

Ubuntu host systems must include the following;:

* Ubuntu 10.04 32-bit distribution (Note: 64-bit distribution is not supported
for building the toolchain)

* Fast host CPU like Core 2 Duo (to reduce build time)

* 1GB Free space on HDD

* 2GB SDRAM

NVIDIA Tegra Linux Driver Package

Getting Started

Dependent Packages

On the Ubuntu distribution host machine, ensure the following packages are
installed:

mercurial
bison

flex

gperf
texinfo
m4
libtool
automake

Note: The host system must be connected to the internet before running the
commands below:

You can install the above packages using the following command:

$ sudo apt-get install mercurial bison flex gperf t exinfo m4
libtool automake

Building the Toolchain Suite

To build the toolchain suite, perform the following tasks:

Set the TOP_DIR Environment Variable and Create Directories
Install autoconf-2.68

Configuring crosstool-ng

Invoke the Build

To set the TOP_DIR environment variable and create directories

1.

To set the TOP_DIR variable to ${HOME}/crosstool enter the following
command:

$ export TOP_DIR="${HOME}/crosstool"

In the ${TOP_DIR} directory, create subdirectories:

$ mkdir depends

$ mkdir crosstool-ng
$ cd depends

$ mkdir src

$ mkdir install

$ cd src

$ mkdir autoconf

$ mkdir ct-ng

NVIDIA Tegra Linux Driver Package

Getting Started

To instal autoconf-2.68

1. Change to the autoconf directory and download autoconf-2.68.tar.bz2 by
executing the following commands:

$ cd ${TOP_DIR}/depends/src/autoconf
$ wget http://ftp.gnu.org/gnu/autoconf/autoconf-2.6 8.tar.bz2

2. Extract and configure autoconf-2.68:

$ tar xf autoconf-2.68.tar.bz2

$ cd autoconf-2.68

$./configure --

prefix=${TOP_DIR}/depends/install/autoconf_install/ autoconf-
2.68-install

3. Make and install autoconf-2.68:

$ make
$ make install

To configure crosstool-ng

1. Change to the ct-ng directory:
$ cd ${TOP_DIR}/depends/src/ct-ng

2. Add the autoconf-2.68-install directory to your path:

$ export
PATH=${TOP_DIR}/depends/install/autoconf_install/au toconf-
2.68-install/bin:${PATH}

3. Clone the crosstool-ng repository:

$ hg clone http://crosstool-ng.org/hg/crosstool-ng

4. Configure crosstool-ng:

$ cd crosstool-ng

$./bootstrap

$./configure --prefix=${TOP_DIR}/depends/install/c t-
ng_install/crosstool-ng-hg-install

5. Make and install crosstool-ng:

$ make
$ make install

6. Create the ${TOP_DIR}/crosstool-ng/src directory for locally saving
downloaded packages:

mkdir ${TOP_DIR}/crosstool-ng/src

To invoke the build

1. Change to the /crosstool-ng-hg-install/bin directory:

NVIDIA Tegra Linux Driver Package

Getting Started

$ cd ${TOP_DIR}/depends/install/ct-ng_install/cross tool-ng-hg-
install/bin

2. Copy the following content of .config from the Sample Crosstool-ng
Configuration File appendix to this guide to a file called .config.

Note: .config is a hidden file. After creating it, confirm it exists in the
correct location by running Is -a in the directory.

3. Build ct-ng using 8 parallel paths:

$./ct-ng oldconfig
$./ct-ng build.8

This will build the complete suite and install the binary components in
${TOP_DIR}/crosstool-ng/install

Verifying the Build

After a successful build, the following are the directories and files contained in
the ${TOP_DIR}/crosstool-ng/install directory, as reported by the tree
application (where available).

$ tree -L 2

- arm-cortex_a9-linux-gnueabi
-- bin
-- debug-root
-- include
-- lib -> sysroot/lib
-- ib32 -> lib
-- lib64 -> lib

*-- sysroot
- bin
- arm-cortex_a9-linux-gnueabi-addr2line
arm-cortex_a9-linux-gnueabi-ar
arm-cortex_a9-linux-gnueabi-as
- arm-cortex_a9-linux-gnueabi-c++
-- arm-cortex_a9-linux-gnueabi-cc -> arm-corte X_a9-linux-
nueabi-gcc
|-- arm-cortex_a9-linux-gnueabi-c++filt
-- arm-cortex_a9-linux-gnueabi-cpp
- arm-cortex_a9-linux-gnueabi-ct-ng.config
arm-cortex_a9-linux-gnueabi-g++
arm-cortex_a9-linux-gnueabi-gcc
arm-cortex_a9-linux-gnueabi-gcc-4.5.3
arm-cortex_a9-linux-gnueabi-gccbug
arm-cortex_a9-linux-gnueabi-gcov
arm-cortex_a9-linux-gnueabi-gprof
arm-cortex_a9-linux-gnueabi-ld
arm-cortex_a9-linux-gnueabi-ldd
- arm-cortex_a9-linux-gnueabi-nm

|_
I
I
I
I
I
I
I
|-
||
||
||
||
||
g

NVIDIA Tegra Linux Driver Package

) e o . e e e . e e e e e e e e

|-- arm-cortex_a9-linux-gnueabi-objcopy
|-- arm-cortex_a9-linux-gnueabi-objdump
|-- arm-cortex_a9-linux-gnueabi-populate
|-- arm-cortex_a9-linux-gnueabi-ranlib
|-- arm-cortex_a9-linux-gnueabi-readelf
|-- arm-cortex_a9-linux-gnueabi-size
|-- arm-cortex_a9-linux-gnueabi-strings
“-- arm-cortex_a9-linux-gnueabi-strip

-- build.log.bz2

-- include

-- lib
|- gce
|-- Idscripts
*-- libiberty.a

-- libexec
--gce

-- share
*--gcc-4.5.3

NVIDIA Tegra Linux Driver Package

Getting Started

Software Features

This section describes the software features expected to be supported with this
release of NVIDIA® Tegra® Linux Driver Package, which provides users with a
complete package to bring up Linux on certain Tegra devices.

This release supports NVIDIA® Tegra® 3 series code-name Cardhu and NVIDIA®
Tegra® 2 series code-name Ventana devices.

Note: Always check the Release Notes for constraints related to these features.

Read the following sections to learn more about supported features in this
release.

e Linux
¢ Graphics and Multimedia
e Decoders

e Encoders
e Container Formats
e Streaming Protocols

* Playback
e Camera

» Displays
e Power

e Boot Loaders

NVIDIA Tegra Linux Driver Package

Software Features

Linux
Kernel Notes
Linux Kernel 3.1
Kernel Native Drivers Notes
Audio ALSA
External SD card
usB Keyboard/mouse,
mass storage device (MSD)
Wi-Fi Firmware provided separately
Boot Devices Notes
eMMC
External boot media USB flash devices and hard-drives, SD
Cards

Network file-system (NFS) boot

Additional Notes
Unless otherwise noted, all features pertain to Cardhu and Ventana.

NVIDIA Tegra Linux Driver Package

Graphics and Multimedia

Media APlIs
EGL 1.4 with EGLImage
GStreamer OpenMAX-IL plug-in

Open GL ES path extensions
OpenGL ES 1.1
OpenGL ES 2.0

OpenMAX IL 1.1 decoding
OpenMAX IL 1.1 enc