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Introduction 

NVIDIA PerfKit SDK allows graphics developers access to low-level NVIDIA GPU performance 
counters and NVIDIA driver counters. The SDK consists of the NvPmApi library and several tools. 

NVIDIA PerfKit SDK 

 Supports Microsoft Windows and Tegra mobile and embedded operating systems. 

 On Windows PerfKit SDK supports 

 DirectX 9, DirectX 10, and DirectX 11 

 OpenGL 4.x core profile 

 On Tegra mobile and embedded operating systems PerfKit SDK supports 

 OpenGL 4.x core profile 

 OpenGL ES 2.x and 3.x 

 CPU usage and frequency 

 Provides access to raw GPU counters, aggregate GPU counters, and Simplified 
Experiments. 

NVIDIA PerfKit SDK contains the following components: 

 NvPmApi library and include files 

 Sample code 

 NvPmApiQuery application for enumerating counters. 

 Tool or scripts for enabling driver instrumentation. This is platform dependent. 

System Requirements 

For Microsoft Windows 

 NVIDIA Display Driver 

 PerfKit signals are available on all NVIDIA GPUs listed below: 

 GeForce 7XX and 8xx and 9xx Series (Maxwell Family) 

 GeForce 6XX and 7XX Series (Kepler Family) 

 GeForce 4XX and 5XX Series (Fermi Family) 

 The full list of supported NVIDIA GPUs can be found at 
https://developer.nvidia.com/nsight-visual-studio-edition-supported-gpus-full-list. 

For NVIDIA Tegra mobile and embedded operating systems 

 Supported Tegra device. 

 Supported Tegra image. 

 For mobile and embedded operating systems see the file PerfKit_<platform>.txt. 

PerfKit counters may or may not be available on other NVIDIA GPUs. 

 

https://developer.nvidia.com/nsight-visual-studio-edition-supported-gpus-full-list
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PerfKit 
Getting Started 

Installing PerfKit 

PerfKit SDK is delivered as a single zip file. 

1. Follow the instructions below to install PerfKit SDK. PerfKit is distributed as a single zip 
file.  Unzip the PerfKit, preserving the directory structure, to somewhere on your hard 
drive or other storage system. 

2. Enable Driver Instrumentation. 

 On Microsoft Windows start the Driver Instrumentation Tray application (called 
NVInstEnabler.exe) which is contained in the root directory of the PerfKit SDK. 
Right-click the tray icon in your system tray and make sure that the Driver 
Instrumentation menu item is checked.  Since this will add some CPU overhead to 
the Driver, only leave this enabled when you are using PerfKit. 

 On Tegra Mobile OS see the file PerfKit_<platform>.txt for information on how to 
enable driver instrumentation. 

Using NvPmApi 

NvPmApi, NVIDIA Performance Monitor API, is the primary library included in the PerfKit SDK. 
The library consists of a DLL/shared object, and header files. 

NvPmApi implements two modes for collecting counters. In Real-time mode the developer 
inserts calls to enable counters and query the counters a specific times in the application. In 
Experiment mode the developer instruments a frame of work that can be replayed multiple 
times. Counters can be collected for each workload in the frame. 

Both modes use the same steps to setup and initialize NvPmApi. The samples included in the 
Sample directories demonstrate the code listed below. 

Initialize NvPmApi 

NvPmApi library is provided as a DLL on Microsoft Windows and a shared object on Linux based 
operating systems. 

The header file NvPmApi.Manager.h provides an OS abstraction for dynamically loading 
NvPmApi and providing access to the functions. 

At the top of one of the applications C++ files add: 
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// ******************************************************** 
// Set up NVPMAPI 
#define NVPM_INITGUID 
#include "NvPmApi.Manager.h" 
 
// Simple singleton implementation for grabbing the NvPmApi 
static NvPmApiManager S_NVPMManager; 
extern NvPmApiManager *GetNvPmApiManager() {return &S_NVPMManager;} 
 
const NvPmApi *GetNvPmApi() {return S_NVPMManager.Api();} 
 

This code declares an NvPmApiManager singleton. The initialization is not guaranteed to be 
thread safe. The preprocessor macro NVPM_INITGUID should only be defined in one 
compilation unit prior to including NvPmApi.h. Next, add code to load the NvPmApi 
dynamic/shared library and call NVPMInit. 

Applications do not have to use the NvPmApiManager helper class. The headers 
NvPmApi.InterfaceManager.<Platform>.h contain the platform specific implementation to load 
NvPmApi and to get access to the API functions using NVPMGetExportTable. 

 

if(GetNvPmApiManager()->Construct(PATH_TO_NVPMAPI_CORE) != S_OK)  
{ 
    return false; // This is an error condition 
} 
 
NVPMRESULT nvResult; 
if((nvResult = GetNvPmApi()->Init()) != NVPM_OK)  
{ 
    return false; // This is an error condition 
} 

 

This code block above loads NvPmApi libray and initializes the library.  The value 
PATH_TO_NVPMAPI_CORE should be the full file path to the NvPmApi dynamic/shared library. 

On Microsoft Windows the dynamic library name is NvPmApi.Core.dll. The DLLs can be found in 
the PerfKit/bin/<platform-bitness>/ directory. 

On Linux and mobile operating systems the shared object name is libNvPmApi.Core.so. The 
shared object can be found in the PerfKit/lib/[<platform-eabi-bitness>/] directory. 
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Create a Perf Context 

NvPmApi state is maintained per API context. In order to collect counters for an API context 
create an NVPMContext using the API specific creation function. For example, call 

 

NVPMContext hNVPMContext(0); 
 
if((nvResult = GetNvPmApi()->CreateContextFromD3D9Device(pd3dDevice, &hNVPMContext)) 
    != NVPM_OK)  
{ 
    return false; // This is an error condition 
} 

   

The following CreateContextFrom calls exist: 

 CreateContextFromOGLContext 

 CreateContextFromCudaContext 

 CreateContextFromD3D9Device 

 CreateContextFromD3D10Device 

 CreateContextFromD3D11Device 

 CreateContextFromD3D11Device1 

 

NvPmApi is now initialized and ready to collect counters for the NVPMContext. 

Collecting Counters 

NvPmApi supports two modes for collecting counters: 

 Real-time mode 

 Experiment mode 

Real-time mode allows the application to activate counters and sample the counter by calling 
NVPMSample. The counters are sampled during the NVPMSample call. This mode is primarily 
used for real-time data display. NVPMSample is called at the end of each frame. 

Experiment mode is used to collect multi-pass counters for individual draw calls and compute 
dispatches in a frame. In experiment mode the application has to replay the same frame many 
times. 

Real-time Mode 

The typical application that wants to sample GPU and driver counters in real-time mode requires 
just a few source code changes.  To add a counter, simply call: 

GetNvPmApi()->AddCounterByName(hNVPMContext, “gpu_idle”); 

Substitute the counter of interest for “gpu_idle” in this example.  Finally, once per frame, call: 

GetNvPmApi()->Sample(hNVPMContext, NULL, &nCount); 
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to sample the currently active counter(s) and  

GetNvPmApi()->GetCounterValueByName(hNVPMContext, “gpu_idle”, 0, &value, 

    &cycle);  

to retrieve the resulting counter value.  

Any number of driver counters can be enabled concurrently and will be updated at the end of 
every frame.  GPU counters, however, are a more limited resource, and can only sample a 
certain number of counters per frame.  The counter values can always be queried, but they will 
be refreshed in a round robin fashion as they are sampled. 

The counters are queried when NVPMSample is called. If the goal is to collect GPU counters for 
the full frame then the application should force a CPU/GPU synchronization prior to calling 
NVPMSample. 

Experiment Mode 

Experiment mode is used for multi-pass collection at a draw call or compute dispatch 
granularity. This mode requires additional instrumentation at the beginning and end of each 
frame add before and after each draw call and compute dispatch that is profiled. 

Experiment mode allows the collection of raw counters, aggregate counters, and simplified 
experiments. It can take many frames to collect complex aggregate counters and all of the 
simplified experiments. This requires that each frame replay renders the same scene data in the 
same order (as if the game and all animations were paused). 

The primary render loop needs to be instrumented with the following calls: 

 

    GetNvPmApi()->BeginExperiment(hNVPMContext, &nCount); 
    for(i = 0; i < nCount; i++) { 
        GetNvPmApi()->BeginPass(g_hNVPMContext, i); 
 
        // For each draw call or dispatch 
        GetNvPmApi()->BeginObject(n); 
 
        // Draw/Dispatch 
 
        FlushGPU(); 
        GetNVPmApi()->EndObject(n); 
 
        // Repeat BeginObject – EndObject pattern for each draw call 
        // and dispatch. 
 
        GetNvPmApi()->EndPass(i); 
    } 
    GetNvPmApi()->EndExperiment(); 

 

The call to BeginExperiment returns the number of required replays. 

The FlushGPU() call ensures that the current draw call has completed.  In Direct3D you can use 
event queries and in OpenGL you can use glFinish(). 
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After calling EndExperiment() the value for each counter for each object can be retrieved by 
calling GetCounterValue(). 

Simplified Experiments 

One of more powerful features provided by PerfKit is the ability to run directed experiments on 
the individual units of the GPU and gather performance characteristics, called Simplified 
Experiments.  For each location in the GPU pipeline, SimExp provides a “Speed of Light” (SOL) 
and a “Bottleneck” value.  The speed of light of a unit can be thought of as a utilization 
measurement.  The “value” returned percentage of time, during the experiment, the unit was 
active, and the “cycle” returned gives the amount of time the experiment took to run.  Similarly, 
when running a Bottleneck experiment, the value represents the percentage of time this unit 
was a bottleneck and the cycles is the experiment duration.   

Finally, there is an additional counter that will run all of the experiments needed to determine 
what unit in the GPU is the bottleneck.  It runs all of the speed of light and bottleneck 
experiments and returns an ordinal value for the unit that is the bottleneck.  You can translate 
that into a string name using  

GetNvPmApi()->GetGPUBottleneckName(hNVPMContext, value, name); 

Since the Simplified Experiments require collecting data from multiple counters in the GPU, the 
counter has to use Experiment Mode to collect the data. 

GetNvPmApi()->AddCounterByName(hNVPMContext, ”GPU Bottleneck”); 

After EndExperiment call 

GetNvPmApi()->GetCounterValueByName(hNVPMContext, “GPU Bottleneck”, 0, &value, 
&cycles); 

to determine which unit is the bottleneck. The return value for GPU_Bottleneck is the 
NVPMCounterID of the bottleneck.  

In order to get the bottleneck name and value call 

NVPMUINT length = 0; 
// Query the name’s actual length 
GetNvPmApi()->GetCounterName(value, NULL, &length); 
 

// Allocate the ‘name’ buffer by the length returned above 

char* name = malloc(sizeof(char) * length); 
GetNvPmApi()->GetCounterName(value, name, &length); 
 
GetNvPmApi()->GetCounterValue(hNVPMContext, value, 0, &value, &cycles); 
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Appendix A. 
Frequently Asked Questions 

 

 

 

 

 

What does this error message mean, “HW necessary for GPU counters is 
unavailable, HW counters are disabled.” 

 Not all GPUs have the features necessary to provide the GPU counter data.  PerfKit 
signals are available on all NVIDIA GPUs listed under System Requirements.  PerfKit 
signals may or may not be available on other GPUs. 

I have discovered a problem that is not listed above.  Who should I call? 

 We want to make sure PerKit is a useful tool for developers analyzing their applications.  
Please let us know if you encounter any problems or think of additional features that 
would be helpful while using PerfKit.  

Contact us at: PerfKit@nvidia.com  

mailto:PerfKit@nvidia.com
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Appendix B. 
Counters Reference 

There are three types of counters available through PerfKit.  Hardware counters provide data 
directly from various points inside the GPU. Software counters, both OpenGL and Direct3D, give 
insight into the state and performance of the driver.  Simplified Experiments are multi-pass 
experiments that give detailed information about the state of the GPU. 

The GPU counters give results accumulated from the previous time the GPU was sampled.  For 
instance, the counter shaded_pixel_count gives the number of pixels sent to the shading units 
since the last sample was taken.  Once you integrate the counters into your own application, 
you can sample on a per frame basis and correlate the data to a given frame. 

All of the software/driver counters represent a per frame accounting.  These counters are 
accumulated and updated in the driver per frame, so even if you sample at a sub-frame rate 
frequency, the software counters will hold the same data (from the previous frame) until the 
end of the current frame. 

Counter data is provided as either raw values or as a percentage.  Raw counters count events 
(triangles, pixels, milliseconds, etc.) since the last call.  Percentage counters are event counts 
based on the clock rate where the event count is divided by the number of cycles.  For example, 
gpu_idle counts the number of clock ticks that the GPU was idle since the last call.  This value is 
automatically divided by the total number of clock ticks to give the percentage of time that the 
GPU was idle. 

In contrast, sampling the GPU counters with the NvPmApi always returns raw numbers for the 
value and cycle counts.  Counting experiments (shaded_pixel_count, setup_primitive_count, 
etc.) return the same number for value and cycles, representing the number of items 
encountered during the experiment (pixels, primitives, etc.).  Other experiments, like gpu_idle, 
rop_busy, etc. return the number of clock cycles the GPU was signaling that state as the value, 
and the number of cycles the experiment ran in cycles.  You can query the attribute 
NVPMA_COUNTER_DISPLAY_HINT to programmatically determine if a counter should be 
displayed as a raw value (like triangle_count for instance), or as a percentage (like gpu_idle).  To 
display a percentage, simply divide the value by the cycle count to calculate the appropriate 
percentage. 

The Simplified Experiments report the results in a hybrid fashion.  The event is the integer 
percentage of the counter (XXX SOL, XXX Bottleneck) representing percentage utilization and 
percent of the time the unit was a bottleneck, respectively.  The cycle count is the number of 
cycles that the experiment was run. NVIDIA GPUs have multiple clock domains. Counters 
collected in different clock domains may have significantly different cycle count values.  Finally, 
the result of GPU Bottleneck is an integer in the event count that is the unit that is determined 
to be the system bottleneck.   

Table 1 shows a description of the available software and hardware counters.  A # next a 
counter denotes a raw counter and % denotes a percentage counter.   
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List Counters 

The command line tool NvPmApiQuery.exe in the PerfKit\bin\[win7_x86\] directory can be used 
to enumerate the counters by API (D3D9/10/11, OpenGL) and by chip (GF100, GK104, GK110, 
…). NvPmApiQuery requires NvPmApi.Core.dll/libNvPmApi.Core.so to be in the library search 
path. 

The sections below will provide some additional information on the software and hardware 
counters. NvPmApiQuery.exe should be used to get the full list of counters. 

Direct3D Counters 

Table 1. Direct3D Counters 

Direct3D Counter Description Official Name 

D3D time from Present to Present, all inclusive (#) in msec D3D frame time 

D3D time spent in driver code (#) in msec D3D driver time 

D3D time spent in driver code, waiting on anything (#) in msec D3D driver time waiting 

D3D time spent in driver code, directly stalled waiting by the GPU (#) 
in msec 

D3D driver waits for GPU 

D3D time spent in driver code, waiting for the OS/kernel (#) in msec D3D driver waits for kernel 

D3D time spent in driver code, waiting for a resource lock (stalls due to 
waiting for resource to be lockable) (#) in msec 

D3D driver waits for lock 

D3D time spent in driver code, waiting for a render operation (stalls 
due to waiting for command buffer space) (#) in msec 

D3D driver waits for render 

D3D time spent in driver code, waiting for a present (stalls typically 
due to waiting for vsync) (#) in msec 

D3D driver waits for present 

D3D total gpu memory allocated, all inclusive (#) in bytes D3D memory allocated 

D3D total gpu memory allocated for render targets (#)in bytes D3D memory allocated (RT) 

D3D total gpu memory allocated for various buffers (vertex, index, 
shaders, constants, etc.) (#) in bytes 

D3D memory allocated (buffers) 

D3D total gpu memory allocated for textures (#) in bytes D3D memory allocated (textures) 

D3D total number of draw calls/batches (#) D3D batch count 

D3D total number of vertices sent to the GPU (#) D3D vertex count 

D3D total number of primitives sent to the GPU (#) D3D primitive count 

D3D total number of vertices sent to the GPU, including instances (#) D3D instanced vertex count 

D3D total number of primitives sent to the GPU, including instances 
(#) 

D3D instanced primitive count 

D3D total bytes transfered among SLI peers per frame (#) D3D SLI P2P Bytes Transfered 
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OpenGL Counters 

Table 2. OpenGL Counters 

OpenGL Counter Description Official Name 

OGL time from Swap to Swap, all inclusive (#) in msec OGL frame time 

OGL time spent in driver code, waiting on anything (#) in msec OGL driver time waiting 

OGL time spent in driver code, directly stalled waiting by the GPU (#) 
in msec OGL driver waits for GPU 

OGL time spent in driver code, waiting for the OS/kernel (#) in msec OGL driver waits for kernel 

OGL time spent in driver code, waiting for a resource lock (stalls due to 
waiting for resource to be lockable) (#) in msec OGL driver waits for lock 

OGL time spent in driver code, waiting for a render operation (stalls 
due to waiting for command buffer space) (#) in msec  OGL driver waits for render 

OGL time spent in driver code, waiting for a swap (stalls typically due 
to waiting for vsync) (#) in msec OGL driver waits for swap 

OGL total gpu memory allocated, all inclusive (#) in bytes OGL memory allocated 

OGL total gpu memory allocated for textures (#) in bytes  OGL memory allocated (textures) 

OGL total gpu memory allocated for various vertex and index buffers 
(i.e. VBOs) (#) in bytes  OGL memory allocated (vertex) 

OGL total number of draw calls/batches OGL batch count 

OGL total number of vertices sent to the GPU OGL vertex count 

OGL total number of primitives sent to the GPU OGL primitive count 
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GPU Counter Definitions 

Some experiments are collected per SM and are appended by “_vsmN”, with stands for “virtual 
SM”.  The SMs are treated as discreet units in spite of possible topology groupings as it makes 
addressing them easier for the user.   

Memory counters have “_fbN” appended to them in order to collect the data from a given 
frame buffer unit.  Finally, there are other counters that specify which L2 slice (“sliceX”) or 
texture unit (texX) to sample from, which are sub units of the frame buffer and TPC respectively. 

 To determine the exact count of these units you can enumerate the counters and determine 
the bounds. 

NvPmApiQuery 

NvPmApiQuery ships in the ${PerfKit}\bin\win7_x86 directory. This tool can be used to 
enumerate the counters for each chip and context. 

NvPmApiQuery [command...] 

  --gl                   Create an OpenGl context and enumerate all counters 

  --d3d{9,10,11}         Create a D3D context on each device and enumerate all 

                         counters 

  --cuda [device]        Create a CUDA context on [device] or if not specified 

                         on all devices and enumerate all counters 

  --chip chip            Create a virtual context for the chip defined by chip 

                         type and enumerate all counters 

  --list-devices or -l   List all devices on the machine 

  --names or -n          Output only the counter names, not the attributes 

  --output or -o         The output file of the results. If not specified, 

                         output will be directed to stdout 

  --counter-list file    Output number of passes required to profile counters 

                         in the given file; Specifying the API is required 

  --help or -h or -?     Show this help 

Context Queries 

Executing NvPmApiQuery with the options --gl, --d3d{9,10,11},or  --cuda [device]] will print the 
list of counters for a GL, D3D, or CUDA context on a physical device. All counters will be full 
instanced. Driver counters will be included in the list if they are supported. 
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Chip Queries 

Executing NvPmApiQuery with the option –chip [device] will print only the first instance of a 
counter as the library does not know the number of instances of each unit. 

Available chips include 

 Fermi 

 gf100 

 gf104 

 gf106 

 gf108 

 gf110 

 gf114 

 gf116 

 gf117 

 gf119 

 Kepler 

 gk104 

 gk106 

 gk107 

 gk110 

 gk110b 

 gk208 

 gk210 

 Maxwell 

 gm107 

 gm108 

 gm204 

 Tegra 

 gk20a (Tegra K1 – t124 and t132)
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Query Attributes 

Table 3. NvPmApiQuery Output 

NAME ID TYPE HINT PERF_DOMAIN API_DOMAIN UNIT SUB-UNIT DATATYPE DESCRIPTION 

gpu_idle 2936 gpu ratio KEPLER_GPU_SYS0 BOTH GPU Activity UINT64 Cycles the graphics engine … 

sm_inst_executed 3292 aggregate raw KEPLER_CPU COMPUTE SM Instructions UINT64 Instructions executed, not … 

  

Table 4. NvPmApiQuery Output Information 

COLUMN DESCRIPTION 

NAME The programmatic name of the counter. This is the name passed to AddCounterByName. 

ID The ID of the counter. Counter IDs are not constant across chips, contexts, or releases. Use GetCounterIDByContext to get the ID for 
counter by name or use EnumCountersByContext[UserData] to create a list of name to ID. The ID is used by GetCounterAttribute, Sample, 
SampleEx, etc. 

TYPE This is of type NVPMCOUNTERTYPE  = {GPU, OGL, D3D, SIMEXP, USER, or AGGREGATE} 

HINT This is of type NVPMCOUNTERDISPLAY = {RATIO, RAW} 

PERF_DOMAIN This defines the PM unit responsible for collecting the counter. If the using is KEPLER_CPU then the counter is either an aggregate counter or 
a simplified experiment and likely requires collection of raw counters from multiple PM units. 

API_DOMAIN Is GRAPHICS, COMPUTE, or BOTH. 

UNIT Display string representing the unit. 

SUB_UNIT Display string representing the sub-unit. 

DATATYPE This is of type NVPMCOUNTERVALUETYPE. The user should use this value to determine whether the function NVPMGetCounterValueUint64 or 
NVPM GetCounterValueFloat64 needs to be called to read the value. SampleEx will return the type value in the SampleValueEx.ulFlags field. 

DESRIPTION The description of the counter. 
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Simplified Experiments (SimExp) 

Table 5 lists the Simplified Experiments.   Each unit has 2 experiments that can be run, the 
Bottleneck and the SOL experiment.  For a Bottleneck experiment, the value represents the 
percentage of time that the unit was a bottleneck and the cycles returned is the amount of time, 
in CPU clock cycles, that the experiment was run.  A bottleneck is basically defined as the 
amount of time the given unit prevented units downstream from doing work minus the amount 
of time the unit upstream prevented this unit from doing any work.  You typically want these 
numbers to be low and note that a unit doesn’t have to be a bottleneck 100% of the time (or 
even 50%) to be a candidate for optimization.  Any amount of time that a unit prevents work 
from flowing translates directly to overall draw call time and will contribute to frame time 
depending on the surrounding workloads. 

For the SOL experiment, the value is a percentage measurement of how much work the unit did, 
versus how much could have been done, for the duration of the experiment, and the cycles is 
again the number of cycles the experiment ran.  You typically want this to be as high as possible 
and it give you an idea of how much head room you might have in the GPU.  For instance, if you 
are seeing a high shader bottleneck with a low texture bottleneck and utilization/SOL, you might 
consider taking some calculations and prebaking them into a texture to be sampled instead. 

NOTE: In NVIDIA Nsight™ Visual Studio Edition, the SOL experiment results are displayed as 
“Utilization”. 

Table 5. Simplified Experiments 

SimExp Name Definition 

IA Bottleneck & SOL IA is the unit that handles vertex attribute assembly. 

FB Bottleneck & SOL 
The FB or frame buffer unit handles all requests for reading memory that missed 
any possible L1/L2 caches. 

Primitive Setup Bottleneck & SOL 
Primitive setup happens right before rasterization and handles jobs like edge 
equation calculations. 

Rasterization Bottleneck & SOL 
Rasterization is when the primitives are split up into individual fragments to be 
shaded. 

ROP Bottleneck & SOL 
ROP is the blending unit and handles both color blending and Z/stencil buffer 
handling. 

SHD Bottleneck & SOL 
SHD (or SM) is the unified shader unit and handles processing of all shader types on 
various inputs. 

Stream Out Bottleneck & SOL 
Stream out is the unit responsible for optionally writing data output from the 
geometry shader to memory. 

Tessellator SOL 
Tessellator is the unit between the hull and domain shaders. This SOL does not 
include the shader. 

TEX Bottleneck & SOL 
The TEX unit is responsible for reading samples from the L2 and frame buffer and 
calculating the texel value based on the current filtering mode. 

ZCull Bottleneck & SOL 
ZCull happens before the fragment shader is run and is able to discard fragments 
because they won’t pass the z-test. 
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Appendix C. 
NvPmApi Specification 

All functions return NVPM_OK if no error was encountered.  Functions can also return 
NVPM_ERROR_INTERNAL for internal errors.  If this happens, please send email to 
PerfKit@nvidia.com with details about the API usage.  Please note that all of the 
NVPM_WARNING_* messages have not been implemented yet, and will be supported in a 
future release. 

Enumerating Available Counters 

Counters can be enumerated using the following two functions: 

typedef NVPMRESULT (*NVPMEnumFunc)(NVPMCounterID unCounterID, 

    char *pcCounterName); 

 

NVPMRESULT EnumCountersByContext(NVPMContext hContext, 

    NVPMEnumFunc pEnumFunction); 

or 

typedef int (*NVPMEnumFuncUserData)(NVPMCounterID unCounterID, 

    const char *pcCounterName, void *pUserData); 

 

NVPMRESULT EnumCountersByContextUserData(NVPMContext perfCtx, 

    NVPMEnumFuncUserData pEnumFunction, void *pUserData); 

EnumCountersByContextUserData allows the caller to pass a void* to each callback function.  

The unCounterID and pcCounterName values can be used to query additional counter 
attributes. 

Returning any value other than NVPM_OK from NVPMEnumFunc* callback will terminate the 
enumeration of the counters. 

Error return values: 

NVPM_ERROR_BAD_ENUMERATOR: A bad/NULL pointer was sent for the enumerator function 

NVPM_WARNING_ENDED_EARLY: Enumeration was stopped before the end of the counter list 
was reached. 

mailto:PerfKit@nvidia.com
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Querying Counter Attributes 

The counter name and unCounterID can be used to query additional counter attributes. 

CounterIDs are only guaranteed to be consecutive. The section Enumerating Available Counters 
describes how to get a list of counters. If the counter name is known the function 
GetCounterIDByContext can be used to query for a CounterID by name. 

Table 6. Counter Attributes 

Attribute Function Description 

Name GetCounterName() The programmatic name of the counter used as a key 
when adding, removing, querying attributes, or querying 
collected values. 

Description GetCounterDescription() A description of the counter. 

Counter Type GetCounterAttribute( 
unattributed = 
NVPMA_COUNTER_TYPE) 

Specifies if the counter is a raw GPU hardware counter, a 
OGL or D3D driver counter, a simplified experiment, or an 
aggregate counter. Aggregate counters are counters 
calculated using multiple raw GPU counters. 

Counter Display GetCounterAttribute( 
unattributed = 
NVPMA_COUNTER_DISPLAY) 

Specifies if the counter should be displayed as a raw 
value or as a ratio of value/cycles. 

Counter Value Type GetCounterAttribute( 
unattributed = 
NVPMA_COUNTER_VALUE_TYP
E) 

Specifies if the counter value is UINT64 or FLOAT64. 

Passing NULL for pcString and a valid pointer for punLen will return the length of the name in 
punLen.  Passing a pointer in pcString and a buffer size in punLen will attempt to write the name 
(\0 term) to pcString.  If the buffer is too small, nothing is written and punLen is set to the string 
length needed. 

NVPMRESULT GetCounterName(NVPMCounterID unCounterID, char *pcString, 

    NVPMUINT *punLen); 

 

NVPMRESULT GetCounterDescription(NVPMCounterID unCounterID, 

    char *pcString, NVPMUINT *punLen); 

 

NVPMRESULT GetCounterAttribute(NVPMCounterID unCounterID, NVPMUINT unAttribute, 

    NVPMUINT *punValue);   

Error return values: 

NVPM_ERROR_STRING_TOO_SMALL: pcString is too small based on size passed in punLen 

Enable a Counter for Sampling 

Real-time collection of counters using Sample() and experiment mode collection of counters 
both use the same interface to add and remove counters. The AddCounter*() functions can be 
used to enable collection of counters. 

NVPMRESULT AddCounterByName(NVPMContext hContext, char *pcName); 
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NVPMRESULT AddCounter(NVPMContext hContext, NVPMCounterID unID); 

 

NVPMRESULT AddCounters(NVPMContext hContext, NVPMUINT unCount, 

    NVPMCounterID *punIDs); 

Error return values: 

NVPM_ERROR_INVALID_COUNTER 

Disable a Counter 

NVPMRESULT RemoveCounterByName(NVPMContext hContext, char *pcName); 

 

NVPMRESULT RemoveCounter(NVPMContext hContext, NVPMCounterID unID); 

 

NVPMRESULT RemoveCounters(NVPMContext hContext, NVPMUINT unCount, 

    NVPMCoutnerID *punIDs); 

 

NVPMRESULT RemoveAllCounters(); 

Error return values: 

NVPM_ERROR_INVALID_COUNTER 

NVPM_WARNING_COUNTER_NOT_ENABLED 

NVPM_WARNING_NO_COUNTERS: No counters were enabled 

Running an Experiment 

In order to collect counters from many draw calls or compute dispatches the applications has to 
define an experiment. The functions BeginExperiment and EndExperiment are used to define a 
static set of work that can be replayed multiple times. 

The function BeginExperiment signals to NvPmApi that the application is ready to begin 
sampling.  It returns in pnNumPasses the number of passes it will take to provide data for all of 
the enabled counters.   

NVPMRESULT BeginExperiment(NVPMContext hContext, 

    NVPMUINT *punNumPasses); 

 

NVPMRESULT EndExperiment(NVPMContext hContext); 

Error return values: 

NVPM_ERROR_NO_COUNTERS: No counters are enabled 

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment not called 

NVPM_ERROR_EXPERIMENT_INCOMPLETE: Didn't call the correct number of passes specified by 
BeginExperiment 
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Defining an Experiment Pass 

Each replay of static work is called a pass. This often is mapped to a graphics frame but can also 
be used for any sequence of calls that can be repeated. The API calls BeginPass and EndPass are 
used to define a pass. 

NVPMRESULT BeginPass(NVPMContext hContext, NVPMUINT nPass); 

 

NVPMRESULT EndPass(NVPMContext hContext, NVPMUINT nPass); 

Error return values: 

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment() was not called 

NVPM_ERROR_PASS_SKIPPED: Passes were not given in sequence 

NVPM_ERROR_INVALID_PASS: An pass number not valid for the current experiment was given 

NVPM_WARNING_PASS_NOT_ENDED: Previous pass was not ended with EndPass() 

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment() was not called 

NVPM_ERROR_NOT_IN_PASS: BeginPass wasn't called or was called with another pass number 

NVPM_WARNING_OBJECT_NOT_ENDED: The last EndObject was not called 

NVPM_WARNING_PASS_INCOMPLETE: BeginObject()/EndObject() was not called for all 
allocated objects 

Defining an Experiment Object 

Counters are collected for objects. Current objects can be draw calls or compute dispatches. 
Currently, the API can only collect information for one draw call or one dispatch per object. 

The caller should allocate slots for counter data prior to beginning the first pass. 

The function ReserveObjects tells the experiment how much memory to allocate. 

NVPMRESULT ReserveObjects(NVPMContext hContext, NVPMUINT unNumObjects); 

Error return values: 

NVPM_OUT_OF_MEMORY: Too many objects are trying to be allocated. 

 

The functions BeginObject and EndObject are used to delimit an object. 

NVPMRESULT BeginObject(NVPMContext hContext, NVPMUINT unObjectID); 

NVPM_ERROR_UNKNOWN_OBJECT: Object was not allocated with AllocObjects() 

NVPM_ERROR_NOT_IN_PASS: BeginPass was not called 

NVPM_ERROR_NOT_IN_EXPERIMENT: BeginExperiment was not called 

NVPM_WARNING_OBJECT_NOT_ENDED: EndObject wasn't called 
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The caller is responsible to force CPU/GPU synchronize before calling EndObject. Failure to flush 
the work will result in an error from EndObject. 

NVPMRESULT EndObject(NVPMContext hContext, NVPMUINT unObjectID); 

NVPM_ERROR_UNKNOWN_OBJECT: Object was not allocated with AllocObjects() 

NVPM_ERROR_NOT_IN_PASS: BeginPass was not called 

NVPM_WARNING_DRAW_COUNT_CHANGED: The number of DPs for the changed from one 
pass to the next 

Collecting Counter Results in Experiment 
Mode 

After calling EndExperiment the counter results can be collected using multiple methods. In 
version of NVPerfKit before 4.0 all counters were of type UINT64. In version of NVPerfKit 4.0 and 
later the counters can have different data types. This allows NVPerfKit to return floating point 
values for counters such as sm_inst_executed_ipc or l1_global_load_transactions_per_request. 

The section Querying Counter Attributes describes how to query the data type of the counter. 

The new GetCounterValueByName{Uint64, Float64} have the additional benefit that they return 
an overflow status. If the status is !0 the counter has overflowed and the counter value should 
not be trusted. 

NVPMRESULT GetCounterValueByNameUint64( 

    NVPMContext perfCtx, 

    const char *pcName, 

    NVPMUINT nObjectID, 

    NVPMUINT64 *pulValue, 

    NVPMUINT64 *pulCycles, 

    NVPMUINT8 *pOverflow) 

 

NVPMRESULT GetCounterValueByNameFloat64( 

    NVPMContext perfCtx, 

    const char *pcName, 

    NVPMUINT nObjectID, 

    NVPMFLOAT64 *pdValue, 

    NVPMUINT64 *pulCycles, 

    NVPMUINT8 *pOverflow) 

 

NVPMRESULT GetCounterValueByName(NVPMContext hContext, char *pcName, NVPMUINT 

unObjectID, NVPMUINT64 *pulValue, NVPMUINT64 *pulCycles); 

 

NVPMRESULT GetCounterValue(NVPMContext hContext, NVPMUINT unID, NVPMUINT 

unObjectID, NVPMUINT64 *pulValue, NVPMUINT64 *pulCycles); 

 

NVPMRESULT GetGPUBottleneckName(NVPMContext hContext,NVPMUINT ulValue, char 

*pcName); 

NVPM_ERROR_COUNTER_NOT_ENABLED: Asked for a counter that isn't currently sampling 

NVPM_ERROR_EXPERIMENT_NOT_RUN: No data because a new experiment needs to be run 
(usually happens when they run an exp, enable a counter, and try and sample the previous 
experiments) 
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NVPM_ERROR_EXPERIMENT_RUNNING: Cannot sample while the experiment is running 

Miscellaneous Functions 

UINT GetExtendedError() 
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