

PG-06183-001_v07| February 2018

Programming Guide

NVIDIA CAPTURE SDK
PROGRAMMING GUIDE

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | ii

DOCUMENT CHANGE HISTORY

 PG-06183-001_v07

Version Date Authors Description of Change

0.7 5/9/2011 BO Initial draft

0.8 10/18/2011 JB Adding information about NVFBC_TARGET_ADAPTER

0.9 1/2/2012 AC Updated for GRID Toolkit version 1.1

0.91 7/20/2012 AC Updated for Monterey Toolkit version 1.2

0.92 8/3/2012 JB Removed NvEncodeAPI.dll references

1.0 5/21/2013 BO Updated to match V2.0 of GRID SDK

2.1 7/29/2013 SD Update to include GRID SDK V2.1 features

2.3 3/6/2014 AR Update to include GRID SDK V2.3 features

3.0 7/8/2014 SD Update for GRID SDK 3.0

4.0 5/12/2015 SD Update for GRID SDK 4.0, include INVFBCHWEncoder

interface, deprecated NVFBCTOH264HWEncoder

interface.

4.1 7/9/2015 SD Update to include NVFBCToDX9Vid interface, remove

Tegra decode guide

4.1.1 11/17/2015 EY Added section 2.9.1.6 with details on how to change the

bitrate dynamically.

5.0 2/5/2016 SD Update for NVIDIA Capture SDK 5.0, Added Section 2.11

to describe usage of difference maps, Added

deprecation note for INVFBCHWEncoder interface

5.0 7/26/2016 SD Update for NvFBCFrameGrabInfo::dwDriverInternalError

diagnostic usage

6.0 1/20/2017 SD Added information for the Capture SDK 6.0 release.

6.1 5/10/2017 SD Update NVFBC DiffMap description

7.0 2/22/2018 SD Update NVFBC Classification Map description

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | iii

TABLE OF CONTENTS

Chapter 1. Overview .. 1

1.1 GPU accelerated readback and encode .. 1

1.1.1 NVFBC – NVIDIA Framebuffer Capture .. 1

1.1.2 NVIFR – NVIDIA Inband Frame Readback .. 2

1.1.3 API Reference documents .. 2

Chapter 2. NVFBC – Framebuffer Capture ... 3

2.1 Header files and code samples .. 6

2.2 Preparing the API for use... 7

2.2.1 Programmatically Enabling\Disabling NVFBC ... 7

2.2.2 Enabling NVFBC using Registry Settings ... 8

2.2.3 Loading the DLL ... 8

2.2.4 Accessing NVFBC Function Pointers .. 9

2.3 Selecting a GPU head for readback ... 9

2.4 Verifying NVFBC status .. 11

2.5 Creating NVFBC objects .. 11

2.5.1 Maximum supported resolution .. 13

2.5.2 Frame grab info structure ... 13

2.6 Capturing to system memory ... 14

2.6.1 Setting up the NVFBCToSys object .. 14

2.6.2 Grabbing frames with NVFBCToSys ... 16

2.6.3 Grabbing Mouse Separately with NVFBCToSys .. 18

2.6.4 Releasing the NVFBCToSys object ... 18

2.7 Capturing to CUDA device memory .. 19

2.7.1 Allocating a CUDA device buffer ... 19

2.7.2 Grabbing frames with NVFBCCuda .. 20

2.8 Capturing to IDirect3DSurface9* buffers ... 22

2.8.1 Setting up the NVFBCToDx9Vid object .. 22

2.8.2 Grabbing frames with NVFBCToDx9Vid ... 23

2.8.3 Releasing the NVFBCToDx9Vid object .. 25

2.9 Capturing with Hardware Video Compression .. 25

2.9.1 Setting up the INVFBCToHWEncoder object ... 26

2.9.2 Grabbing frames with INVFBCToHWEncoder .. 28

2.9.3 Reading Sequence and Picture Parameter Sets ... 31

2.9.4 Releasing the INVFBCToHWEncoder object .. 32

2.9.5 Using Intra-Refresh with INVFBCToHWEncoder ... 32

2.9.6 Using dynamic slice mode encoding with INVFBCToHWEncoder 33

2.9.7 INVFBCToHWEncoder Rate Control Modes ... 33

2.9.8 Using Adaptive Quantization with INVFBCToHWEncoder 33

2.9.9 Using Lossless encoding with INVFBCToHWEncoder 34

2.9.10 Using YUV 4:4:4 Encoding with INVFBCToHWEncoder 34

2.10 Capturing HW cursor on separate thread ... 36

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | iv

2.11 Difference Maps ... 37

2.11.1 Configuring Difference Map ... 37

2.12 Image Area Classification Maps .. 38

2.12.1 Configuring Classification Map.. 39

2.13 10 bit and HDR Capture Support ... 39

2.13.1 NVFBC 10 bit capture support .. 39

2.13.2 NVFBC 10 bit HDR capture support ... 40

2.14 Factors requiring NVFBC object re-creation .. 41

2.15 Handling Errors from NVFBC Grab API .. 42

2.15.1 Handling protected content ... 42

2.15.2 Handling an Invalidated Session ... 44

Chapter 3. NVIFR – Inband Frame Readback ... 45

3.1 Header files and code samples ... 46

3.2 Preparing the API for use.. 47

3.2.1 Loading the DLL .. 47

3.2.2 Loading the function pointer.. 47

3.3 Creating NVIFR objects .. 48

3.3.1 Creating Objects .. 48

3.3.2 Limitations ... 49

3.4 Capturing to system memory ... 49

3.4.1 Setting up the target buffers ... 49

3.4.2 Transferring the render target ... 51

3.4.3 Releasing the NVIFRToSys object ... 51

3.5 Capturing With Hardware Video Compression ... 52

3.5.1 Checking HW Video Encoder Capabilities ... 52

3.5.2 Setting up the target buffers ... 53

3.5.3 Transferring the render target ... 55

3.5.4 Getting the frame stats .. 56

3.5.5 Reading Sequence and Picture Parameter Sets ... 57

3.5.6 Releasing the INVIFRHWEncoder object ... 57

3.5.7 Using Intra-Refresh with INVIFRHWEncoder .. 58

3.5.8 Using Dynamic Slice mode with INVIFRHWEncoder 59

3.5.9 INVIFRHWEncoder Rate Control Modes .. 59

3.5.10 Using Adaptive Quantization with INVIFRToHWEncoder 59

3.5.11 Using Lossless encoding with INVIFRHWEncoder 60

3.5.12 Using YUV 4:4:4 Encoding with INVIFRHWEncoder 60

Chapter 4. Deploying a GRID-enabled application .. 62

4.1 Deployment on Windows .. 62

4.1.1 Microsoft DirectX redistributable runtime ... 62

4.1.2 DLL installation.. 63

4.1.3 Registry settings .. 63

4.1.4 Enabling generation of textual logs.. 64

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | v

LIST OF FIGURES

Figure 1 NVFBC framebuffer capture .. 3

Figure 2 Overview of NVFBC application flow .. 5

Figure 3 NVFBC objects association with GPU display heads 10

Figure 4 Handling protected content ... 43

Figure 5 NVIFR render context capture .. 46

LIST OF TABLES

Table 1 NVFBC header files ... 6

Table 2 NVFBC capture types ... 12

Table 3: NVFBC Grab API Diagnostic codes ... 42

Table 4 NVIFR interface Types .. 48

Table 5 NVIDIA Capture SDK DLL Path Names, Install Locations 63

file:///C:/P4/sw/docs/NVCapture/Programming-guide/NVIDIA%20Capture%20SDK%20Programming%20Guide_v06.docx%23_Toc507518661
file:///C:/P4/sw/docs/NVCapture/Programming-guide/NVIDIA%20Capture%20SDK%20Programming%20Guide_v06.docx%23_Toc507518665

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 1

Chapter 1. OVERVIEW

The NVIDIA® Capture Software Development Kit, previously called as GRID™ SDK, is

a comprehensive suite of tools for NVIDIA GPUs that enable high performance graphics

capture and encoding. This Programming Guide describes how to use the various

NVIDIA Capture SDK interfaces available on GRID, Quadro, and specific Tesla

Products.

1.1 GPU ACCELERATED READBACK AND ENCODE

The NVIDIA Capture SDK includes two API interfaces for high performance readback

of rendered content from the GPU and video encoding on the GPU:

1.1.1 NVFBC – NVIDIA Framebuffer Capture

The NVIDIA Framebuffer Capture (NVFBC) API captures and optionally compresses

the entire Windows desktop or full-screen applications running on the supported

Operating Systems (For list of Operating Systems, please refer to the SDK release notes).

It essentially provides the same output as a real connected monitor to the GPU: a full

desktop, with application windows, menu bar, composited overlay and hardware

cursor. As such, NVFBC is ideally suited to desktop capture and remoting.

NVFBC has many advantages over existing methods of framebuffer capture. It is

resilient to Aero DWM (enable/disable) changes and resolution changes. It operates

asynchronously to graphics rendering because it is able to use the dedicated hardware

compression and copy engines on the GPU. It delivers frame data to system memory

faster than any other display output or other readback mechanisms all while having

minimal impact on the rendering performance.

NVFBC is described in Chapter 2.

Overview

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 2

1.1.2 NVIFR – NVIDIA Inband Frame Readback

The NVIDIA Inband Frame Readback (NVIFR) API captures and optionally compresses

an individual DirectX or OpenGL graphics render target. Unlike NVFBC, the output

from NVIFR does not include any window manager decoration, composited overlay,

cursor or taskbar; it solely provides the pixels rendered into the render target, as soon as

their rendering is complete, ahead of any compositing that may be done by the windows

manager. In fact, NVIFR does not require that the render target even be visible on the

Windows desktop. It is ideally suited for application capture and remoting, where the

output of a single application, rather than the entire desktop environment, is captured.

NVIFR is intended to operate inband with a rendering application, either as part of the

application itself, or as part of a shim layer operating immediately below the application.

Like NVFBC, NVIFR operates asynchronously to graphics rendering, using dedicated

hardware compression and copy engines in the GPU, and delivering pixel data to

system memory with minimal impact on rendering performance.

NVIFR is described in Chapter 3.

1.1.3 API Reference documents

Details of APIs, parameters, etc. are documented in the API reference documents

“NVFBC.chm” and “NVIFR.chm” that are installed with the NVIDIA Capture SDK.

The term “NVFBC API Reference document” used in this programming guide refers to

NVFBC.chm.

The term “NVIFR API Reference document” used in this programming guide refers to

NVIFR.chm.

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 3

Chapter 2. NVFBC – FRAMEBUFFER
CAPTURE

NVIDIA Framebuffer Capture (NVFBC) is a high performance, low latency API for

reading back display frames from one or more GPU display heads. NVIDIA GPUs

typically support at least two display heads, and these are usually associated with a

physical display output such as a DVI, DisplayPort, or HDMI connector. NVFBC

provides essentially the same output one would see on a monitor connected to the GPU:

a full desktop, with application windows, menu bar, composited overlay and hardware

cursor. By operating asynchronously to graphics rendering and using dedicated

hardware compression and copy engines in the GPU, NVFBC delivers frame data to

CPU-based applications faster than any other display output or readback mechanism,

with minimal impact on rendering performance.

GPU

Windows OS
NVFBC-enabled

capture application

Display Connector

Display Head

Post-process

Cursor Overlay

DWM

Compositing Window Manager

3D Render

Video Decode

Application

Windows
Full Screen

Application
Application

Windows
Application

Windows

NVIDIA Drivers

Composited

Desktop

Captured frame

Encode

CUDA

buffers

Cache coherent

system memory

Figure 1 NVFBC framebuffer capture

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 4

NVFBC is supported on the Windows 7, Windows 8, Windows 8.1, & Windows 10

operating systems, and offers these features:

 Automatic capture of on-screen updates (graphics updates or mouse moves)

 Full operation through screen resolution changes, and Windows Aero on/off

 Compositing of hardware cursor and overlay with the base desktop image

 Color space conversion

 Cropping and scaling

 Pixel and tile-based differencing

 Stereoscopic capture

 Output of H.264 or H.265 compressed frames into cache-coherent, pinned system

memory

 Output of uncompressed frames into cache-coherent, pinned system memory; this

mode is ideally suited for use with CPU-based post-processing / compression

implementations.

 Output of uncompressed frames into D3D9-mapped buffers in the GPU framebuffer;

this mode is ideally suited for use with D3D9 post-processing / compression

implementations1.

 Output of uncompressed frames into CUDA-mapped buffers in the GPU framebuffer;

this mode is ideally suited for use with CUDA-based post-processing / compression

implementations2

Operation of NVFBC is straightforward: after doing one-time setup of the NVFBC API

on application load, an application creates an NVFBC object for each GPU display head it

wishes to read back from, and then enters a processing loop on each NVFBC object to

read back frames from each head. Figure 2 provides an overview of the processing flow,

which is described in more detail in the following sections.

Note:

1This mode works with baremetal, direct attached GPUs, and all vGPU profiles. This

is the recommended path when using vGPU profiles that support two or more

virtual machines sharing a single GPU. For such vGPU profiles, the CUDA driver

is not available. We recommend using this NVFBC path so that capture and encode

can be fully accelerated.

 2This mode is supported in baremetal, direct attached GPUs, and vGPU profiles
that limit one virtual machine. The CUDA driver is available and supported in this
configuration.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 5

Figure 2 Overview of NVFBC application flow

Load NVFBC DLL

Get Function Ptrs

NVFBC_GetStatusEx

OK?

NVFBC_ERROR_PROTE

CTED_CONTENT

No

No

Application Load

Create NVFBC Object

Set up grab/encode

mode, formats, buffer

pointers

Grab Frame

NVFBC_ERROR_INVAL

IDATED_SESSION

Change grab/encode

format, cursor mode

etc.?

Process Frame

Destroy NVFBC

object. See section

2.9.4.

Poll for end of

protected session.

See section 2.15

No

No

Yes

Yes

Yes

Yes

Select GPU head

Frame grab not

possible on this head

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 6

2.1 HEADER FILES AND CODE SAMPLES

This manual provides an overview of how to use NVFBC. Further details are contained

in the NVFBC header files and code samples that are included in the NVIDIA Capture

SDK Toolkit:

NVFBC header files are installed in %CAPTURESDK_PATH%\inc\NVFBC. All NVFBC

applications should include one or more of the mode-specific NVFBC header files,

depending on the functionality desired:

Header file Description

NVFBC.h Top level header file included by all NVFBC applications

NVFBCToSys.h Defines ToSys interface; reads back uncompressed frames to

system memory.

NVFBCCuda.h Defines Cuda interface; reads back uncompressed frames to

CUDA-mapped buffers in the GPU’s framebuffer.

NVFBCToDx9vid.h Defines the DX9Vid interface; reads back uncompressed frames

to D3D9-mapped buffers in the GPU’s framebuffer.

NVFBCHWEnc.h Defines the capture+encode interface; reads back compressed

video frames to system memory. Compression is performed

using NVENC HW Encoder engine. Supports H.264 and HEVC

compression.

NVHWEnc.h Definitions for NVENC HW Encoder configuration settings, to be

included with NVFBCHWEnc.h in the application.

Table 1 NVFBC header files

The following NVFBC code samples are installed in %CAPTURESDK_PATH%\samples\.

Please refer to the NVIDIA Capture SDK Samples Description document for details

about NVFBC samples included with the SDK.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 7

2.2 PREPARING THE API FOR USE

Regardless of the mode in which an application uses the NVFBC API, the following

initialization steps are required:

 Enable NVFBC Registry Settings (Every time after GRID GPU driver update)

 Load the NVFBC DLL (At application load time)

 Obtain NVFBC function pointers (At application load time)

2.2.1 Programmatically Enabling\Disabling NVFBC

GRID SDK 3.1 adds the ability for an NVFBC client to programmatically Enable\Disable

NVFBC without needing to perform Steps mentioned in section 2.2.1 separately.

After loading the NVFBC DLL, the application should obtain a pointer to the

NVFBCEnable() API. The following code snippet demonstrates how to enable NVFBC.

// Load NVFBC function pointer

pfnNVFBC_Enable = (NVFBC_EnableFunctionType)

 GetProcAddress(handleNVFBC, "NVFBC_Enable");

// Check NVFBC Status

NVFBCStatusEx status;

pfnNVFBC_GetStatusEx(&status);

if (!status.bCurrentlyCapturing && !status.bIsCapturePossible)

{

 // NVFBC Capture has not been enabled. Try Enabling it.

 NVFBCRESULT res = pfnNVFBC_Enable(NVFBC_STATE_ENABLE);

}

The following code snippet demonstrates how to disable NVFBC.

// Check NVFBC Status

NVFBCStatusEx status;

pfnNVFBC_GetStatusEx(&status);

if (!status.bCurrentlyCapturing && status.bIsCapturePossible)

{

 // NVFBC Capture has been enabled, no capture process is currently

active. It is safe to disable NVFBC.

 NVFBCRESULT res = pfnNVFBC_Enable(NVFBC_STATE_DISABLE);

}

This API needs administrator privileges to work correctly. The API will return

NVFBC_ERROR_INSUFFICIENT_PRIVILEGES in case it is not called from a process

that has Administrator privileges.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 8

2.2.2 Enabling NVFBC using Registry Settings

The NVFBC technology requires a registry key to be set before the related functionality

can be accessed by an application. NVFBC object creation will fail if the registry settings

are not enabled.

 The procedure to enable these registry settings is described in section 4.1.3.

 An alternate method to enable NVFBC is described in section 2.2.1

This is required each time there is an update to the GRID GPU driver installed on the

system where NVFBC API is being used.

2.2.3 Loading the DLL

The NVFBC API is accessed via a 32- or 64- bit dynamic link library (DLL), which must

be loaded by the application before calling any NVFBC functions:

// 32-bit application

HINSTANCE handleNVFBC = ::LoadLibrary("NVFBC.dll");

// 64-bit application

HINSTANCE handleNVFBC = ::LoadLibrary("NVFBC64.dll");

Note: The NVFBC DLLs are in the NVIDIA driver directory. When shipping an
application that uses the NVIDIA Capture SDKs, you do not need to ship these DLLs,
as they are included in the driver. See Chapter 4 for further guidance on shipping
GRID-enabled applications.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 9

2.2.4 Accessing NVFBC Function Pointers

After loading the NVFBC DLL, the next step is to get pointers to the

NVFBC_GetStatusEx(), NVFBC_CreateEx(), and NVFBC_SetGlobalFlags() functions

in the DLL. This is accomplished with calls to GetProcAddress():

// Load NVFBC function pointers

pfnNVFBC_GetStatus = (NVFBC_GetStatusExFunctionType)

 GetProcAddress(handleNVFBC, "NVFBC_GetStatusEx");

pfnNVFBC_Create = (NVFBC_CreateFunctionExType)

 GetProcAddress(handleNVFBC, "NVFBC_CreateEx");

pfnNVFBC_SetGlobalFlags = (NVFBC_SetGlobalFlagsType)

 GetProcAddress(handleNVFBC, "NVFBC_SetGlobalFlagsEx");

pfnNVFBC_Enable = (NVFBC_EnableFunctionType)

 GetProcAddress(handleNVFBC, "NVFBC_Enable");

2.3 SELECTING A GPU HEAD FOR READBACK

The NVFBC API reads back frames from one or more GPU display heads. Exactly one

display head can be associated with an NVFBC session object. This association needs to

be established while creating the NVFBC object, and it stays bound throughout the

session lifetime. Note that exactly one NVFBC session can be associated with a display at

any given time, making this a 1:1 association.

NVIDIA GPUs typically support at least two display heads, and there may be multiple

NVIDIA GPUs present in the system.

Figure 3 shows an example system with two NVIDIA GPUs, each with multiple display

heads. An application is reading back frames from one display head on the first GPU,

and two display heads on the second GPU, and has created three NVFBC objects for this

purpose.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 10

Figure 3 NVFBC objects association with GPU display heads

Display heads are numbered using the ordinal adapter identifier value assigned by

Direct3D9. The number of attached D3D9 adapters can be acquired by calling

IDirect3D9::GetAdapterCount(). To get information about specific adapters

IDirect3D9::GetAdapterMonitor() or IDirect3D9::GetDeviceCaps() should be

called.

Note: For detailed code samples showing how to enumerate adapters using
Direct3D9 and cross-reference with those returned by GDI, and how to enable
display heads that do not have monitors attached to them, see the white paper
Displayless Multi-GPU on Windows 7, which is included with the GRID Toolkit.

The client can select a GPU head for readback by setting up NVFBC using either of the

following methods:

 Initialize a D3D9 device using Direct3D9 ordinal adapter identifier of the display

head to be read back and pass the IDirect3DDevice9 object to NVFBCCreateEx as
NVFBCCreateParams::pDevice

 If the client does not want to manage a D3D9 device, the client should set

NVFBCCreateParams::pDevice to NULL and Direct3D9 ordinal adapter identifier of

the display head to be read back should be passed to NVFBCCreateEx as
NVFBCCreateParams::dwAdapterIdx

Application using NVFBC

GPU Adapter a GPU Adapter b

Display

Head
Display

Head
Display

Head
Display

Head
Display

Head

Display Connectors
(may not be physically populated on some GPUs)

NVFBC

Object

NVFBC

Object
NVFBC

Object

Readback from head 2

1 2 0 3 4

Readback from head 4 Readback from head 0

2Display Connectors

n
Direct3D9 ordinal adapter ID: set NVFBC_TARGET_ADAPTER to this value at

NVFBC object creation time, to select the head to be associated with the object.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 11

2.4 VERIFYING NVFBC STATUS

Once a display head has been selected, verify the status of the NVFBC interface for that

head by calling NVFBC_GetStatusEx(), with the parameter

NVFBCStatusEx::dwAdapterIdx set to the selected adapter ordinal:

NVFBCStatusEx status;

...

// Get NVFBC status

pfnNVFBC_GetStatusEx(&status);

Please refer to the API reference document for details regarding the

NVFBC_GetStatusEx() API.

It is safe to call NVFBC_GetStatusEx() multiple times to poll for detecting completion of

NVFBC enable\disable operation.

2.5 CREATING NVFBC OBJECTS

All NVFBC readback operations are exposed as methods in NVFBC classes. Distinct

classes are used to support the different readback modes supported by NVFBC (to

system memory, to CUDA buffers, and H.264 encode). After using

NVFBC_GetStatusEx() to verify that readback is possible on a GPU head; the next step

is to create an NVFBC class object associated with the GPU head.

An NVFBC object is associated with exactly one GPU display head. Selecting a head for

readback is described in section 2.3.

Note: At most one NVFBC object can be active on a display head at any given time.

NVFBC objects cannot be created while any application is currently running in

fullscreen mode on any head. NVFBC-enabled applications should typically create

NVFBC objects for available display heads at system intialization time, before any

applications run in full screen mode.

To create an NVFBC object, allocate variables to store the maximum display width and

height, then call NVFBC_CreateEx() to create the object. The example below creates an

NVFBC_TO_SYS object, to read back data directly to system memory, but the create call is

similar for all classes of NVFBC object:

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 12

NVFBCRESULT (NVFBCAPI * NVFBC_CreateFunctionExType)

(void * pCreateParams);

// Example of usage:

// NVFBC_TARGET_ADAPTER env variable previously set...

NVFBCCreatParams createParams = {0};

createParams.dwVersion = NVFBC_CREATE_PARAMS_VER.

createParams.dwInterfaceType = NVFBC_TO_SYS;

createParams.dwMaxDisplayWidth = -1;

createParams.dwMaxDisplayHeight = -1;

createParams.pDevice = pD3DDevice; //Pointer to app’s

D3DDevice

createParams.pPrivateData = NULL;

createParams.dwPrivateDataSize = 0;

createParams.dwInterfaceVersion = NVFBC_DLL_VERSION;

createParams.pNVFBC = NULL; //OUT, pointer to requested NVFBC object

NVFBCRESULT result;

result = pfnNVFBC_CreateEx(&createParams);

The CreateParams.dwInterfaceType parameter specifies the type of NVFBC object to be

created;

dwCaptureType value Notes

NVFBC_TO_SYS Reads back frames to locked, cache-coherent buffers

in system memory. See section 2.5.2.

NVFBC_SHARED_CUDA Reads back frames in ARGB format to CUDA-mapped

buffers resident in the GPU’s framebuffer. See section

0.

NVFBC_SHARED_CUDA_YUV420P Reads back frames in YUV420p format to CUDA-

mapped buffers resident in the GPU’s framebuffer.

See section 0.

NVFBC_TO_HW_ENCODER Reads back compressed video frames to locked,

cache-coherent buffers in system memory. See section

2.9.

Table 2 NVFBC capture types

The createParams.dwMaxDisplayWidth and createParams.dwMaxDisplayHeight

parameters are used to return a maximum supported resolution supported by the

NVFBC interface.

The createParams.pPrivateData argument is reserved for future use, and should be

passed as NULL.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 13

If successful, the NVFBCCreateEx() call returns NVFBC_SUCCESS, with a pointer to a

newly-created NVFBC object in CreateParams.pDevice. Otherwise the call returns an

error code, as enumerated in NVFBC.h as NVFBCRESULT. An error can be caused by:

 An NVFBC object already active for the head indicated by NVFBC_TARGET_ADAPTER.

 An application running in full screen mode on any display head.

2.5.1 Maximum supported resolution

The maximum supported display resolution returned from the NVFBC_CreateEx() call

is a static property of the NVFBC interface, and is deliberately larger than the typical

maximum resolution supported on a single GPU display head. This allows NVFBC to

internally pre-allocate readback buffers, and handle dynamic resolution changes during

capture/readback without needing to reallocate buffers.

Similarly, applications using NVFBC may wish to use the reported maximum resolution

to size and pre-allocate any data buffers they use for handling readback data.

2.5.2 Frame grab info structure

Information about the grabbed frame is returned in the NVFBCFrameGrabInfo structure

passed to the call. Please refer to the API reference for details regarding

NVFBCFrameGrabInfo members.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 14

2.6 CAPTURING TO SYSTEM MEMORY

To capture uncompressed frames to system memory, create an NVFBC object from the

NVFBCToSys class by specifying:

CreateParams.dwInterfaceType = NVFBC_TO_SYS;

Please refer to NVFBCToSys Object definition in the NVFBC API Reference document.

2.6.1 Setting up the NVFBCToSys object

Before frames can be grabbed, the NVFBCToSys object requires a setup call,

NVFBCToSysSetup(), to specify the target capture mode and the required grab format.

The NVFBCToSysSetup() method returns pointers to buffers that will contain readback

data and difference maps. NVFBCToSysSetup() may subsequently be called again for an

NVFBCToSys object, any time the application wishes to change the capture mode or

grab format.

Please refer to NVFBC API reference document for details regarding

NVFBC_TOSYS_SETUP_PARAMS struct.

NVFBCRESULT NVFBCToSysSetUp(NVFBC_TOSYS_SETUP_PARAMS *pParam)

//! Example of usage:

unsigned char *pBuffer = NULL;

unsigned char *pDiffMap = NULL;

NVFBC_TOSYS_SETUP_PARAMS setupParams = {0};

setupParams.dwVersion = NVFBC_TOSYS_SETUP_PARAMS_VER;

setupParams.bWithHWCursor = FALSE;

setupParams.bDiffMap = TRUE;

setupParams.eDiffMapBlockSize = (NvU32) NVFBC_TOSYS_DIFFMAP_BLOCKSIZE_128X128;

setupParams.eMode = NVFBC_TOSYS_ARGB;

setupParams.ppBuffer = &pBuffer;

setupParams.ppDiffMap = &pDiffMap;

NVFBCRESULT result;

result = NVFBCToSys->NVFBCToSysSetUp(&setupParams);

If successful, NVFBCToSysSetup()returns NVFBC_SUCCESS, and the object is now ready

for frame grabbing. Otherwise it returns one of the errors enumerated in NVFBCRESULT.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 15

2.6.1.1 Capture mode

The NVFBC_TOSYS_SETUP_PARAMS::eMode parameter is a capture mode that specifies

the pixel format in which frame captures will be returned. Please refer the NVFBC API

reference for details regarding NVFBCToSysBufferFormat enum.

2.6.1.2 Hardware cursor handling

The NVFBC_TOSYS_SETUP_PARAMS::bWithHWCursor parameter controls hardware

cursor compositing: if specified as TRUE, any active hardware cursor is composited into

read back frames, otherwise it is not. If a software cursor is active, this will be

composited into the frame regardless of this parameter setting.

2.6.1.3 Readback buffer

The NVFBC_TOSYS_SETUP_PARAMS::ppBuffer parameter is a pointer to pointer to a

buffer that will contain the read back frame data, in the format specified by the capture

mode in setupParams.eMode. Note that NVFBC allocates the buffer for the frame data,

the application simply passes a void ** argument to receive a pointer to the NVFBC-

allocated buffer.

2.6.1.4 Difference maps

The NVFBC_TOSYS_SETUP_PARAMS::ppDiffMap parameter is a pointer to a pointer to a

buffer (allocated by NVFBC) that will contain a frame-to-frame difference map

whenever a frame is read back. If your application will not make use of difference maps,

this argument may be passed as NULL.

Please refer to section 2.6.2.3 for more information.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 16

2.6.2 Grabbing frames with NVFBCToSys

To grab a frame with NVFBCToSys, call NVFBCToSysGrabFrame():

NVFBCRESULT NVFBCToSysGrabFrame(NVFBC_TOSYS_GRAB_FRAME_PARAMS *pParam);

// Example of usage:

NVFBCFrameGrabInfo frameGrabInfo;

NVFBC_TOSYS_GRAB_FRAME_PARAMS grabFrameParams = {0};

grabFrameParams.dwVersion = NVFBC_TOSYS_GRAB_FRAME_PARAMS_VER;

grabFrameParams.dwFlags = NVFBC_TOSYS_NOFLAGS;

grabFrameParams.dwTargetWidth = -1;

grabFrameParams.dwTargetHeight = -1;

grabFrameParams.dwStartX = 0;

grabFrameParams.dwStartY = 0;

grabFrameParams.eGMode = NVFBC_TOSYS_SOURCEMODE_FULL;

grabFrameParams.pNVFBCFrameGrabInfo = &frameGrabInfo;

NVFBCRESULT result;

result = NVFBCToSys->NVFBCToSysGrabFrame(&grabFrameParams);

Please refer to NVFBC API Reference document for details regarding

NVFBC_TOSYS_GRAB_FRAME_PARAMS struct.

By default, NVFBCToSysGrabFrame() is a blocking call, and returns once a new frame is

available.

If the call is successful, NVFBCToSysGrabFrame() returns NVFBC_SUCCESS, information

about the captured frame is returned in the NVFBCFrameGrabInfo struct passed as

NVFBC_TOSYS_GRAB_FRAME_PARAMS::pNvFBCFrameGrabInfo, and the readback buffer

obtained via the NVFBCToSysSetup() call contains the captured frame data. If a diffmap

pointer was specified in NVFBCToSysSetup(), the diffmap buffer will contain a

difference map, unless this is the first frame captured after the NVFBCToSysSetup() call,

in which case the difference map will contain all bits set to ‘1’.

If there is an error, NVFBCToSysGrabFrame()returns one of the errors enumerated in

NVFBCRESULT, indicating that a frame was not successfully captured. This can occur if the

return value is:

 NVFBC_ERROR_PROTECTED_CONTENT: Protected content is currently being displayed.

See section 2.15.1 for more information on handling protected content.

 The NVFBC object must be re-created. See section 2.15.2 for a discussion of the factors

that require this.

Please refer to the NVFBC API Reference for details about NVFBCRESULT values.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 17

2.6.2.1 Blocking and non-blocking frame grabs

The NVFBC_TOSYS_GRAB_FRAME_PARAMS::dwFlags parameter can be used to control

whether NVFBC should perform a blocking frame grab or a non-blocking frame grab.

Please refer to NVFBC_TOSYS_GRAB_FLAGS in the NVFBC API Reference document to

know more about the supported values.

Note: under normal operation, Windows may update the display image on a head
with exactly the same image that was previously displayed. In this case, a blocking
call NVFBCToSysGrabFrame() will return a new frame with identical content to

the previous one. Similarly, a non-blocking call to NVFBCToSysGrabFrame() will

always return the latest frame, which may not have changed from the last time
NVFBCToSysGrabFrame() was called. In both these cases, Difference Maps

(when enabled) can be used to detect when the frame returned is identical to the
previous one.

2.6.2.2 Scaling and cropping

The NVFBC_TOSYS_GRAB_FRAME_PARAMS::eGMode parameter specifies the grab mode for

the frame capture, controlling cropping or scaling on the captured frame. The grab

modes are mutually exclusive.

Please refer to NVFBCToSysGrabMode in the NVFBC API Reference document to know

more about supporting scaling\cropping modes.

Scaling of the capture frame may be useful when remoting frames to a client that has a

lower resolution than the local frame resolution. By downscaling at the point of capture,

the amount of data compressed and transmitted to the remote client is reduced.

Cropping of the frame may be useful when supporting a “panning” mode on a remote

client with lower resolution than the local frame, or to capture a specific application

window’s output. (Note that NVIFR, described in Chapter 3, allows for direct capture of

a DirectX render context ahead of any window manager compositing, and is typically

better suited for capture/remoting of specific application windows.)

2.6.2.3 Difference Maps

The difference maps feature is available with NVFBCToSys and NVFBCToDx9Vid

interfaces. Please refer to Section 2.11 for details.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 18

2.6.3 Grabbing Mouse Separately with NVFBCToSys

Cursor Capture support is available across all NVFBC interfaces starting from GRID

SDK 4.1 and associated GPU driver. Refer to Section 2.10 for details.

2.6.4 Releasing the NVFBCToSys object

After you have finished using NVFBCToSys you must release it to properly free the

resources.

NVFBCRESULT NVFBCToSysRelease();

// Example code

toSys->NVFBCtoSysRelease();

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 19

2.7 CAPTURING TO CUDA DEVICE MEMORY

To capture uncompressed frames to CUDA mapped buffers, create an NVFBC object

from the NVFBCCuda class by specifying NVFBC_SHARED_CUDA in the

NVFBC_CreateEx() call. Please refer to NVFBCCuda Object definition in the NVFBC

API Reference document.

NVFBCCuda *pNVFBCCuda = (NVFBCCuda*)

 pfnNVFBC_CreateEx(NVFBC_SHARED_CUDA, &maxDisplayWidth,

 &maxDisplayHeight, NULL);

NVFBC_SHARED_CUDA is used to capture frames in 32-bit ARGB pixel format, one byte per

channel.

2.7.1 Allocating a CUDA device buffer

NVFBCCuda requires the caller to allocate buffers to hold grabbed frames. Use

NVFBCCuda’s NVFBCCudaGetMaxBufferSize() method to determine the maximum-

sized frame that NVFBC can grab, then use cudaMalloc() to allocate a buffer in the

GPU’s framebuffer to accommodate it.

Please refer to NVFBCCudaGetMaxBufferSize() in NVFBC API Reference document.

// Determine maximum size that NVFBC can return

DWORD maxBufferSize = pNVFBCCuda->NVFBCCudaGetMaxBufferSize();

...

// Use CUDA driver API to alloc memory on CUDA device for grabbed frame

CUdeviceptr buffer;

cuMemAlloc(&buffer, maxBufferSize);

...

// Or, using the CUDA runtime API:

void * buffer;

cudaMalloc(&buffer, maxBufferSize);

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 20

2.7.2 Grabbing frames with NVFBCCuda
Grabbing a frame with NVFBCCuda is a single step process – call

NVFBCCudaGrabFrame() to trigger a readback, supplying a previously allocated CUDA

buffer. Please refer to NVFBCCudaGrabFrame in the NVFBC API Reference document.

NVFBCRESULT NVFBCCudaGrabFrame (NVFBC_CUDA_GRAB_FRAME_PARAMS *pParams)

// Example of usage:

NVFBCFrameGrabInfo frameGrabInfo;

NVFBC_CUDA_GRAB_FRAME_PARAMS grabParams = {0};

grabParams.dwVersion = NVFBC_CUDA_GRAB_FRAME_PARAMS_VER;

grabParams.pCUDADeviceBuffer = (void *)buffer;

grabParams.pNVFBCFrameGrabInfo = &frameGrabInfo;

grabParams.dwFlags = NVFBC_TOCUDA_NOFLAGS;

NVFBCRESULT result;

result = pNVFBCCuda->NVFBCCudaGrabFrame(&grabParams);

The input/output parameters to NVFBCCudaGrabFrame() are described in the following

sections. By default, NVFBCCudaGrabFrame() is a blocking call, and returns once a new

frame is available. If the call is successful, NVFBCCudaGrabFrame() returns

NVFBC_SUCCESS, information about the captured frame is returned in the

NVFBC_CUDA_GRAB_FRAME_PARAMS::pNVFBCFrameGrabInfo structure, and the supplied

buffer contains the captured frame data.

If there is an error, NVFBCCudaGrabFrame()returns one of the errors enumerated in

NVFBCRESULT, indicating that a frame was not successfully captured. This can occur if the

return value is:

 NVFBC_ERROR_PROTECTED_CONTENT: Protected content is currently being displayed . See

section 2.15.1 for more information on handling protected content.

 NVFBC_ERROR_INVALIDATED_SESSION: The NVFBC object must be re-created

(bMustRecreate is TRUE in the frame grab info structure). See section 2.15.2 for a

discussion of the factors that require this.

Please refer to the NVFBC API Reference for details about NVFBCRESULT values.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 21

2.7.2.1 Blocking and non-blocking frame grabs

The NVFBC_CUDA_GRAB_FRAME_PARAMS::dwFlags parameter specifies miscellaneous

control flags for the call. Please refer to NVFBC_CUDA_FLAGS in the NVFBC API Reference

document for more details.

Note: Under normal operation, Windows may update the display image on a head
with exactly the same image that was previously displayed. In this case, a blocking
call NVFBCCudaGrabFrame() will return a new frame with identical content to the
previous one. Similarly, a non-blocking call to NVFBCCudaGrabFrame() will always
return the latest frame, which may not have changed from the last time
NVFBCCudaGrabFrame() was called.

2.7.2.2 Frame grab info structure

Information about the grabbed frame is returned in the NVFBCFrameGrabInfo structure

passed as NVFBC_CUDA_GRAB_FRAME_PARAMS::pNVFBCFrameGrabInfo.Please refer to

the NVFBC API Reference document for details regarding NVFBCFrameGrabInfo.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 22

2.8 CAPTURING TO IDIRECT3DSURFACE9*
BUFFERS

To capture uncompressed frames to system memory, create an NVFBC object from the

NVFBCToSys class by specifying:

CreateParams.dwInterfaceType = NVFBC_TO_DX9_VID;

Please refer to NvFBCToDx9Vid Object definition in the NVFBC API Reference

document.

2.8.1 Setting up the NVFBCToDx9Vid object

Before frames can be grabbed, the NvFBCToDx9Vid object requires a setup call,

NvFBCToDx9VidSetUp(), to specify the target capture mode and the required grab

format. The NvFBCToDx9VidSetUp() method registers client provided d3d9 surfaces for

use with NVFBC.

Please refer to the NVFBC API reference document for details regarding

NVFBC_TODX9VID_SETUP_PARAMS struct.

NVFBCRESULT NvFBCToDx9VidSetUp(NVFBC_TODX9VID_SETUP_PARAMS *pParam);

// Example of usage:

NVFBCRESULT res = NVFBC_SUCCESS;

NVFBC_TODX9VID_SETUP_PARAMS setup = {0}NVFBC_TODX9VID_OUT_BUF

fbcOut[NBUFFERS] = {0};

//! Allocate surfaces

for (int nsurfout = 0; nsurfout < NBUFFERS; nsurfout++)

{

 //! Create a surface to pass to NVFBC

 hr = pD3DDev->CreateOffscreenPlainSurface(curWidth, curHeight,

 D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT,

 &fbcOut[nsurfout].pPrimary, NULL);

 if (FAILED(hr))

 {

 fprintf(stderr, "Failed to allocate NVFBC output surface.\n");

 return E_FAIL;

 }

}

//! Configure the grabber, get grab output buffer handle.

setup.dwVersion = NVFBC_TODX9VID_SETUP_PARAMS_VER;

setup.bWithHWCursor = false;

setup.dwNumBuffers = NBUFFERS;

setup.eMode = NVFBC_TODX9VID_ARGB;

setup.ppBuffer = fbcOut;

setup.bWithHWCursor = true;

res = toDx9Vid->NvFBCToDx9VidSetUp(&setup);

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 23

If successful, NVFBCToDx9VidSetup()returns NVFBC_SUCCESS, and the object is now

ready for frame grabbing. Otherwise, it returns one of the errors enumerated in

NVFBCRESULT.

2.8.1.1 Capture mode

The setupParams.eMode parameter is a capture mode that specifies the pixel format in

which frame captures will be returned. Please refer the NVFBC API reference for details

regarding NVFBCToDx9VidBufferFormat enum.

2.8.1.2 Hardware cursor handling

The setupParams.bWithHWCursor parameter controls hardware cursor compositing: if

specified as TRUE, any active hardware cursor is composited into read back frames,

otherwise it is not. If a software cursor is active, this will be composited into the frame

regardless of this parameter setting.

2.8.1.3 Readback buffers

The application should create d3d9 surfaces of a supported pixel format, and pass them

as an array using the parameter NVFBC_TODX9VID_SETUP_PARAMS::ppBuffer.

The NVFBC API will register these surfaces as target surfaces for holding the grabbed

images. A maximum of 3 output surfaces can be registered with a given NVFBC session.

Calling this API again with new surfaces will instruct NVFBC to invalidate previous

configuration and register the new surfaces.

The application is responsible for deallocating the surfaces, after releasing the NVFBC

session or invalidating the registration with NVFBC.

2.8.2 Grabbing frames with NVFBCToDx9Vid

To grab a frame with NVFBCToDx9Vid, call NVFBCToDx9VidGrabFrame():

NVFBCRESULT NVFBCToDx9VidGrabFrame(NVFBC_TODX9VID_GRAB_FRAME_PARAMS

*pParam);

// Example of usage:

NVFBCFrameGrabInfo frameGrabInfo;

NVFBC_TODX9VID_GRAB_FRAME_PARAMS

grabFrameParams = {0};

grabFrameParams.dwVersion = NVFBC_TODX9VID_GRAB_FRAME_PARAMS_VER;

grabFrameParams.dwFlags = NVFBC_TODX9VID_NOFLAGS;

grabFrameParams.eGMode = NVFBC_TOSYS_SOURCEMODE_FULL;

grabFrameParams.dwBufferIdx = i;

grabFrameParams.pNVFBCFrameGrabInfo = &frameGrabInfo;

NVFBCRESULT result;

result = toDx9Vid->NVFBCToDx9VidGrabFrame(&grabFrameParams);

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 24

Please refer to NVFBC API Reference document for details regarding

NVFBC_TODX9VID_GRAB_FRAME_PARAMS struct.

 By default, NVFBCToDx9VidGrabFrame() is a blocking call, and returns once a new

frame is available.

If the call is successful, NVFBCToDx9VidGrabFrame () returns NVFBC_SUCCESS,

information about the captured frame is returned in the NVFBCFrameGrabInfo struct

passed as NVFBC_TODX9VID_GRAB_FRAME_PARAMS::pNVFBCFrameGrabInfo, and one of

the readback buffer registered via the NVFBCToDx9VidSetup() call contains the

captured frame data.

If there is an error, NVFBCToSysGrabFrame()returns one of the errors enumerated in

NVFBCRESULT, indicating that a frame was not successfully captured. This can occur if the

return value is:

 NVFBC_ERROR_PROTECTED_CONTENT: Protected content is currently being displayed.

See section 2.15.1 for more information on handling protected content.

 The NVFBC object must be re-created. Please refer section 2.15.2 for a discussion of

the factors that require this.

Please refer to the NVFBC API Reference for details about NVFBCRESULT values.

2.8.2.1 Blocking and non-blocking frame grabs

The NVFBC_TODX9VID_GRAB_FRAME_PARAMS::dwFlags parameter can be used to control

whether NVFBC should perform a blocking frame grab or a non-blocking frame grab.

Please refer to NVFBC_TODX9VID_GRAB_FLAGS in the NVFBC API Reference document to

know more about the supported values.

Note: under normal operation, Windows may update the display image on a head
with the exact same image that was previously displayed. In this case, a blocking
call NVFBCToDx9VidGrabFrame() will return a new frame with identical content

to the previous one. Similarly, a non-blocking call to NVFBCToDx9VidGrabFrame

() will always return the latest frame, which may not have changed from the last

time NVFBCToDx9VidGrabFrame () was called. In both these cases, Difference

Maps (when enabled) can be used to detect when the frame returned is identical
to the previous one.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 25

2.8.2.2 Scaling and cropping

The NVFBC_TODX9VID_GRAB_FRAME_PARAMS::eGMode parameter specifies the grab mode

for the frame capture, controlling cropping or scaling on the captured frame. The grab

modes are mutually exclusive.

Please refer to NVFBCToDx9VidGrabMode in the NVFBC API Reference document to

know more about supporting scaling\cropping modes.

Scaling of the capture frame may be useful when remoting frames to a client that has a

lower resolution than the local frame resolution. By downscaling at the point of capture,

the amount of data compressed and transmitted to the remote client is reduced.

Cropping of the frame may be useful when supporting a “panning” mode on a remote

client with lower resolution than the local frame, or to capture a specific application

window’s output. (Note that NVIFR, described in Chapter 3, allows for direct capture of

a DirectX render context ahead of any window manager compositing, and is typically

better suited for capture/remoting of specific application windows.)

2.8.3 Releasing the NVFBCToDx9Vid object

After you have finished using NVFBCToSys you must release it to properly free the

resources.

// Example code

NVFBCRESULT NVFBCToDX9VidRelease();

toDX9Vid->NVFBCToDX9VidRelease ();

2.9 CAPTURING WITH HARDWARE VIDEO
COMPRESSION

To capture compressed video frames to system memory, create an NVFBC object from

the INVFBCHWEncoder class by specifying NVFBC_TO_HW_ENCODER in the

NVFBC_CreateEx() call. Please refer to INVFBCHWEncoder object definition in the

NVFBC API Reference document.

Note: INVFBCHWEncoder interface is deprecated starting with NVIDIA Capture SDK
5.0. Future versions of the SDK will not include this interface definition. However,
compatibility with applications that are already compiled with this interface will
be preserved until further notice.

A combination of INVFBCToDX9Vid interface for capture and NVIDIA Video Codec
SDK for encoding is recommended as a replacement.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 26

INVFBCToHWEncoder *pNVFBCHWEnc = (INVFBCToHWEncoder *)

 pfnNVFBC_Create(NVFBC_TO_HW_ENCODER, &maxDisplayWidth,

 &maxDisplayHeight, NULL);

This NVFBC interface is codec-agnostic, and supports H.264 as well as HEVC

compression.

Note: Not all NVIDIA GPUs that support NVFBC support hardware compression. If
the GPU does not support hardware compression, the NVFBC_CreateEx() call for

an NVFBC_TO_HW_ENCODER object will return NULL.

Also, note that not all NVIDIA GPUs that support hardware compression can support
HEVC compression. If the GPU does not support HEVC hardware compression, the
NVFBC_CreateEx() call for an NVFBC_TO_HW_ENCODER object will return NULL.

2.9.1 Setting up the INVFBCToHWEncoder object

2.9.1.1 Checking HW Video Encoder Capabilities

INVFBCToHWEncoder::NVFBCGetHWEncCaps() can be used to check HW Video encoder

capabilities like supported codec, rate control modes, encoding presets, etc. Please refer

to the NVFBC API Reference document for details.

This should be done before calling INVFBCToHWEncoder::NVFBCHWEncSetup().

2.9.1.2 Performing the HW Video Encoder Setup

Before frames can be grabbed, the INVFBCToHWEncoder object requires a setup call,

NVFBCHWEncSetup(), to specify the capture mode and video encoding parameters.

Please refer NVFBC API Reference Document to know more about
NVFBC_HW_ENC_CONFIG_PARAMS, NVFBC_HW_ENC_SETUP_PARAMS,

NVFBCHWEncSetUp(), and related data types.

// Example of usage:

// Set the encoding parameters

NVFBC_HW_ENC_CONFIG_PARAMS = {0};

encodeConfig.dwVersion = NVFBC_HW_ENC_CONFIG_PARAMS_VER;

encodeConfig.eCodec = NV_HW_ENC_H264; // Use NV_HW_ENC_HEVC for HEVC

encodeConfig.dwProfile = 77; // Main profile

encodeConfig.dwFrameRateNum = 30;

encodeConfig.dwFrameRateDen = 1; // Set the target frame rate at 30

encodeConfig.dwAvgBitRate = 8000000; // Avg bitrate of 8 Mbps

encodeConfig.dwPeakBitRate = (NvU32)(8000000 * 1.50); // Set peak

 // bitrate to 150%

 // of average

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 27

encodeConfig.dwGopLength = 100; // The I-Frame frequency

encodeConfig.eRateControl = NVFBC_HW_ENC_PARAMS_RC_VBR;

encodeConfig.dwQP = 26; // Quantization parameter, between 0 and 51

encodeConfig.dwNumBFrames = 0; // Number of bi-directional frame refs.

encodeConfig.bOutBandSPSPPS = 0; // Use inband SPSPPS, if you need to

 // grab headers on demand use

 // outband SPSPPS

encodeConfig.bRecordTimeStamps = 0; // Don't record timestamps

encodeConfig.stereoFormat = NVFBC_HW_ENC_STEREO_NONE; // No stereo

NVFBC_HW_ENC_SETUP_PARAMS setupParams = {0};

setupParams.dwVersion = NVFBC_HW_ENC_SETUP_PARAMS_VER;

setupParams.bWithHWCursor = TRUE;

setupParams.EncodeConfig = encodeConfig;

// Setup the grab with hardware cursor and encode

NVFBCRESULT result;

result = pNVFBCHWEnc->NVFBCHWEncSetUp(&setupParams);

If successful, NVFBCHWEncSetUp() returns NVFBC_SUCCESS, and the object is now ready

for frame grabbing. Otherwise, NVFBCHWEncSetUp()returns one of the errors

enumerated in NVFBCRESULT.

Note: Not all NVIDIA GPUs that support hardware compression can support HEVC
compression.

If the GPU does not support HEVC hardware compression, the
NVFBCHWEncSetUp() call for NVFBC_HW_ENC_CONFIG_PARAMS::eCodec =

NV_HW_ENC_HEVC will return NULL.

2.9.1.3 Selecting Video Compression Standard

The NVFBC_HW_ENC_SETUP_PARAMS::eCodec parameter controls the type of video

compression that will be used. Please refer to NV_HW_ENC_CODEC enum in NVFBC API

Reference document for details.

2.9.1.4 Hardware cursor handling

The NVFBC_HW_ENC_SETUP_PARAMS::bWithHWCursor parameter controls hardware

cursor compositing: if specified as TRUE, any active hardware cursor is composited into

captured frames prior to compression, otherwise it is not. If a software cursor is active,

this will be composited into the frame regardless of this parameter setting.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 28

2.9.1.5 Video encoding parameters

The NVFBC_HW_ENC_CONFIG_PARAMS structure defines various parameters used to

configure the NVIDIA HW Video Encoder. Please refer to the NVFBC API Reference

document for details.

2.9.1.6 Changing Bitrate Dynamically

The NV_HW_ENC_PIC_PARAMS structure includes flags to change the bitrate and

encoding parameters dynamically. The structure requires that you modify the

NVFBC_HW_ENC_GRAB_FRAME_PARAMS flag and the bitrate parameters below before

the call to grab/encode the frame:

NV_HW_ENC_PIC_PARAMS EncodeParams

EncodeParams::bDynamicBitrate = 1;

EncodeParams::dwNewAvgBitrate = NEW_AVERAGE_BITRATE;

EncodeParams::dwNewPeakBitrate = NEW_PEAK_BITRATE;

EncodeParams::dwNewVBVBufferSize = NEW_VBV_BUFFER_SIZE;

EncodeParams::dwNewVBVInitialDelay = NEW_VBV_INITIAL_DELAY

2.9.2 Grabbing frames with INVFBCToHWEncoder

To grab a frame using INVFBCToHWEncoder, allocate an output buffer in system memory

to hold the compressed bitstream, then call NVFBCHWEncGrabFrame().

2.9.2.1 Sizing and allocating the output buffer

Compressed video frames are written into caller-allocated buffers, typically allocated in

cache-coherent system memory using malloc() or an equivalent Win32 function. A two

megabyte buffer is appropriate for capture of 1920x1080 resolution.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 29

2.9.2.2 Capturing frames

To grab a frame and capture as a video bitstream, call NVFBCHWEncGrabFrame()

Please refer NVFBC API Reference document for details of the API,

parameters, etc.

// Example of usage:

NVFBC_HW_ENC_GRAB_FRAME_PARAMS fbcHwEncGrabFrameParams = {0};

NV_HW_ENC_GET_BIT_STREAM_PARAMS frameInfo = {0};

unsigned int dwOutputBufferSize = 2*1024*1024;

//! Setup a buffer to put the encoded frame in

outputBuffer = (unsigned char *)malloc(dwOutputBufferSize);

frameInfo.dwVersion = NV_HW_ENC_GET_BIT_STREAM_PARAMS_VER;

fbcHwEncGrabFrameParams.dwVersion = NVFBC_HW_ENC_GRAB_FRAME_PARAMS_VER;

fbcHwEncGrabFrameParams.dwFlags = NVFBC_HW_ENC_NOWAIT;

fbcHwEncGrabFrameParams.NVFBCFrameGrabInfo = grabInfo;

fbcHwEncGrabFrameParams.GetBitStreamParams = frameInfo;

fbcHwEncGrabFrameParams.pBitStreamBuffer = outputBuffer;

//! Grab and encode the frame

res = encoder->NVFBCHWEncGrabFrame(&fbcHwEncGrabFrameParams);

The input/output parameters to NVFBCHWEncGrabFrame() are described in the NVFBC

API Reference document.

 By default, NVFBCHWEncGrabFrame() is a blocking call, and returns once a new frame is

available.

If the call is successful, NVFBCHWEncGrabFrame() returns NVFBC_SUCCESS, information

about the captured frame is returned in the grabFrameParams.pNVFBCFrameGrabInfo

structure, and the caller-allocated buffer pointed at by pBitStream contains the

compressed frame’s bitstream. The size of the output bitstream in bytes is written to

NV_HW_ENC_GET_BIT_STREAM_PARAMS::dwByteSize (i.e.
NVFBC_HW_ENC_GRAB_FRAME_PARAMS::GetBitStreamParams.dwByteSize).

If there is an error, NVFBCHWEncGrabFrame()returns one of the errors enumerated in

NVFBCRESULT, indicating that a frame was not successfully captured and compressed. This

can occur if the return value is:

 NVFBC_ERROR_PROTECTED_CONTENT: Protected content is currently being displayed. See

section 2.15.1 for more information on handling protected content.

 NVFBC_ERROR_INVALIDATED_SESSION: The NVFBC object must be re-created

(bMustRecreate is TRUE in the frame grab info structure). See section 2.15.2 for a

discussion of the factors that require this.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 30

2.9.2.3 Blocking and non-blocking frame grabs

The NVFBC_HW_ENC_GRAB_FRAME_PARAMS::dwFlags parameter can be used to control

whether NVFBC should perform a blocking frame grab or a non-blocking frame grab.

Please refer to NVFBC_HW_ENC_GRAB_FLAGS in the NVFBC API Reference document to

know more about the supported values.

Note: under normal operation, Windows may update the display image on a head
with exactly the same image that was previously displayed. In this case, a blocking
call NVFBCHWEncGrabFrame() will grab and encode a new frame with identical
content to the previous one. Similarly, a non-blocking call to
NVFBCHWEncGrabFrame() will always grab and encode the latest frame, which
may not have changed from the last time NVFBCHWEncGrabFrame() was called

2.9.2.4 Frame grab info structure

Information about the grabbed frame is returned in the NVFBCFrameGrabInfo structure

passed as NVFBC_HWENC_GRAB_FRAME_PARAMS::pNVFBCFrameGrabInfo.

Please refer to the NVFBC API Reference document for details regarding
NVFBCFrameGrabInfo.

2.9.2.5 NV_HW_ENC_GET_BIT_STREAM_PARAMS structure

Information about the compressed video frame is returned in the

NV_HW_ENC_GET_BIT_STREAM_PARAMS structure passed in
NVFBC_HW_ENC_GRAB_FRAME_PARAMS::GetBitStreamParams.

Please refer NVFBC API Reference document for details.

2.9.2.6 Scaling and cropping

The NVFBC_HW_ENC_GRAB_FRAME_PARAMS::eGMode parameter specifies the grab mode

for the frame capture, controlling cropping or scaling on the captured frame. The grab

modes are mutually exclusive.

Please refer to NVFBC_HW_ENC_GRAB_MODE in the NVFBC API Reference document to

know more about supporting scaling\cropping modes.

Scaling of the capture frame may be useful when remoting frames to a client that has a

lower resolution than the local frame resolution. By downscaling at the point of capture,

the amount of data compressed and transmitted to the remote client is reduced.

Cropping of the frame may be useful when supporting a “panning” mode on a remote

client with lower resolution than the local frame, or to capture a specific application

window’s output. (Note that NVIFR, described in Chapter 3, allows for direct capture of

a DirectX render content ahead of any window manager compositing, and is typically

better suited for capture/remoting of specific application windows.)

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 31

2.9.3 Reading Sequence and Picture Parameter Sets

The SPS (sequence parameter set) and PPS (picture parameters set) headers contain data

about the encoded frames in the stream, such as their resolution, that is necessary to

decode them properly. Typically, a decoder will only need to decode these headers once,

before decoding the first encoded frame in the scene.

If NV_HW_ENC_CONFIG_PARAMS::bRepeatSPSPPSHeader is set to TRUE(1), SPS and PPS

headers will be returned with every I-frame.

If NV_HW_ENC_CONFIG_PARAMS::bOutBandSPSPPS parameter is set to FALSE (0), one set

of SPS and PPS headers will be generated with the first I-frame in the stream.

Subsequent I-frames will not include these headers, so the first encoded I-frame must be

decoded to continue decoding the rest of the stream.

If this parameter is set to TRUE (1), then the SPS and PPS headers will not be returned

with any encoded frame but must be obtained by calling

NVFBCHwEncGetStreamHeader(). After decoding these headers, a decoder should be

able to decode any I-frame generated by the decoder and then decode the subsequent P-

and B-frames. This will allow a decoder to successfully start decoding from

intermediate points in the stream without having to decode the first encoded frame.

Use NVFBCHWEncGetStreamHeader() to read sequence and picture parameter sets for

the current encode stream. Please refer NVFBC API Reference for details about

parameters.

// Example of usage:

NvU32 size;

char * buffer = malloc(1024);

NVFBC_HW_ENC_GET_STREAM_HEADER_PARAMS getHeaderParams;

getHeaderParams.dwVersion = NVFBC_HW_ENC_GET_STREAM_HEADER_PARAMS_VER;

getHeaderParams.dwSize = size;

getHeaderParams.pBuffer = buffer;

NVFBCRESULT result;

result = pNVFBCHWEnc->NVFBCHWEncGetStreamHeader(&getHeaderParams);

pBuffer is a caller-allocated buffer used to return the parameter sets, and should be at

least 1024 bytes in size. pSize is a pointer to an NvU32 that returns the numbers of bytes

written to pBuffer by the function.

If successful, NVFBCHWEncGetStreamHeader() returns NVFBC_SUCCESS, and

NVFBC_HW_ENC_GET_STREAM_HEADER::dwSize indicates how many bytes were written.

Otherwise NVFBCHWEncGetStreamHeader() returns one of the errors enumerated in

NVFBCRESULT.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 32

2.9.4 Releasing the INVFBCToHWEncoder object

After you have finished using NVFBCToHWEncoder you must release it to properly free

the resources.

NVFBCRESULT NVFBCHWEncRelease();

// Example code

pNVFBCHWEnc->NVFBCHWEncRelease();

2.9.5 Using Intra-Refresh with INVFBCToHWEncoder

Intra-Refresh is an error-resiliency feature supported by NVIDIA Capture SDK, which

allows the client to enable gradual decoder refresh or intra-refresh. This is supported

only for GOP structures that do not use B-frames.

For example:

If Intra-Refresh cycle count = n and no. of Macroblocks per frame = m,

then for 1st frame, 0 to (m/n) - 1 macroblocks are coded as intra-predicted, for 2nd

frame (m/n) to (2m/n) – 1 macroblocks are coded as intra-predicted, and so on.

To use this feature, the client should set

NV_HW_ENC_CONFIG_PARAMS::bEnableIntraRefresh = 1;

To initiate Intra-refresh, the client should follow this example:

NVFBC_HW_ENC_GRAB_FRAME_PARAMS fbcHwEncGrabFrameParams = {0};

NV_HW_ENC_GET_BIT_STREAM_PARAMS frameInfo = {0};

NV_HW_ENC_PIC_PARAMS encParams = {0};

unsigned int dwOutputBufferSize = 2*1024*1024;

//! Setup a buffer to put the encoded frame in

outputBuffer = (unsigned char *)malloc(dwOutputBufferSize);

frameInfo.dwVersion = NV_HW_ENC_GET_BIT_STREAM_PARAMS_VER;

encParams.dwVersion = NV_HW_ENC_PIC_PARAMS_VER:

//! Start an Intra-Refresh cycle over n frames.

encParams.bForceIntraRefresh = 1;

encParams.dwIntraRefreshCount = n;

fbcHwEncGrabFrameParams.dwVersion = NVFBC_HW_ENC_GRAB_FRAME_PARAMS_VER;

fbcHwEncGrabFrameParams.dwFlags = NVFBC_HW_ENC_NOWAIT;

fbcHwEncGrabFrameParams.NVFBCFrameGrabInfo = grabInfo;

fbcHwEncGrabFrameParams.GetBitStreamParams = frameInfo;

fbcHwEncGrabFrameParams.pBitStreamBuffer = outputBuffer;

//! Grab and encode

res = encoder->NVFBCHWEncGrabFrame(&fbcHwEncGrabFrameParams);

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 33

Note that using Reference frame Invalidation in conjunction with Intra-Refresh is not

supported. Reference frame invalidation requests will be ignored if client has enabled

Intra-Refresh.

2.9.6 Using dynamic slice mode encoding with
INVFBCToHWEncoder

Dynamic Slice mode encoding allows the client to configure how the encoded picture

will be divided into slices. This is done by setting two parameters:

NV_HW_ENC_CONFIG_PARAMS::eSlicingMode and

NV_HW_ENC_CONFIG_PARAMS::dwSlicingModeParam before calling
NVFBCHWEncSetup().

Please refer NV_HW_ENC_SLICING_MODE in NVFBC API Reference for usage details.

2.9.7 INVFBCToHWEncoder Rate Control Modes

Please refer NVFBC API Reference document for details regarding supported Rate

Control Modes.

2.9.8 Using Adaptive Quantization with
INVFBCToHWEncoder

Adaptive Quantization (AQ) can be controlled using

NV_HW_ENC_CONFIG_PARAMS::bEnableAdaptiveQuantization flag.

Quantization artifacts like blockiness in a flat region are more visible than in a complex

region. With AQ enabled, the goal is to improve quality in a flat region. With Adaptive

Quantization enabled, the quantization parameter is set depending upon complexity of

macroblock data, thus assigning higher values of qp for macroblocks in high complex

regions and lower values of qp for macroblocks in flat regions, thereby improving the

visual quality of flat regions.

Note: Adaptive quantization works only with 2 pass rate control modes.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 34

2.9.9 Using Lossless encoding with
INVFBCToHWEncoder

To retain the same quality after encoding-decoding, a lossless encoding feature is

introduced. There is no loss of data in this mode; however, the size of the bit stream is

large compared to lossy encoding.

Client should call NVFBCHWEncGetCaps() to check for NV_HW_ENC_GET_CAPS::

bLosslessEncodingSupported for the currently set codec type before configuring

lossless encode, as not all NVIDIA GPUs support lossless encoding.

//! Example:

//! Check capability

NV_HW_ENC_GET_CAPS caps = {0};

caps.dwVersion = NV_HW_ENC_GET_CAPS_VER;

caps.eCodec = codec;

pNVFBCHWEnc->NVFBCHWEncGetCaps(&caps);

NV_HW_ENC_CONFIG_PARAMS encodeConfig = {0};

//! Other encode config init

if (caps.bLosslessEncodingSupported)

{

 encodeConfig.dwProfile = 244;

 encodeConfig.ePresetConfig= NVFBC_HW_ENC_PRESET_LOSSLESS_HP;

 encodeConfig.eRateControl = NVFBC_HW_ENC_PARAMS_RC_CONSTQP;

 encodeConfig.dwQP = 0;

}

2.9.10 Using YUV 4:4:4 Encoding with
INVFBCToHWEncoder

YUV 4:4:4 encoding is useful in cases where chroma subsampling from RGB to YUV

4:2:0 will result in visible and unacceptable loss of video/image quality after encoding.

Such loss is typically perceptible in regions with low luminance or blue/red text or wire

mesh content (e.g. content with lines that are 1-2 pixels wide).

Client should call NVFBCHWEncGetCaps() to check for

NV_HW_ENC_GET_CAPS::bYUV444Supported for the currently set codec type before

configuring lossless encode, as not all NVIDIA GPUs support lossless encoding.

//! Example:

//! Check capability

NV_HW_ENC_GET_CAPS caps = {0};

caps.dwVersion = NV_HW_ENC_GET_CAPS_VER;

caps.eCodec = codec;

Note: Lossless encoding will work only with constant QP rate control mode. If any
other rate control mode is set, an error will be returned. Also, the quantization
parameter value will be overridden to 0 and profile to 244.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 35

pNVFBCHWEnc->NVFBCHWEncGetCaps(&caps);

NV_HW_ENC_CONFIG_PARAMS encodeConfig = {0};

//! Other encode config init

if (caps.bYUV444Supported)

{

 encodeConfig.bEnableYUV444Encoding = 1;

}

Note: Some NVIDIA GPUs that are capable of HW encoding, are not capable of
supporting YUV 4:44 video encoding. Client code should check HW capabilities as
described above before enabling YUV4:4:4 encoding mode.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 36

2.10 CAPTURING HW CURSOR ON SEPARATE
THREAD

To enable grabbing the HW cursor separately, the client must set the flag

bEnableSeparateCursorCapture in the respective NVFBC interface setup parameters.

For example, for NVFBCToSys, set NVFBC_TOSYS_SETUP_PARAMS::bEnableMouseGrab

while calling NvFBCToSysSetup().

Similarly, set NVFBC_HW_ENC_SETUP_PARAMS::bEnableSeparateCurosrCapture while

calling NvFBCHWEncSetup().

If this flag is set, NVFBC will return a valid event handle in hCursorCaptureEvent

member of the setup parameters. For example, NVFBC_TOSYS_SETUP_PARAMS::
hCursorCaptureEvent

Every time NVFBC captures an update to the cursor, this event will be signaled. The

client should spawn a thread to wait on this event. The thread should wake up when the

event is signalled and read back the cursor data.

Below is a sample code snippet to grab cursor glyph using NVFBCToSys:

Please refer to NVFBC_CURSOR_CAPTURE_PARAMS in NVFBC API Reference document for

details.

//! Example Code

NVFBC_TOSYS_SETUP_PARAMS fbcSysSetupParams = {0};

//! Common configuration code here

//...

//! Set up separate HW cursor grab

fbcSysSetupParams.bEnableMouseGrab = true;

status = NVFBCToSys->NVFBCToSysSetUp(&fbcSysSetupParams);

hMouseEventHandle = fbcSysSetupParams.hCursorCaptureEvent;

NVFBC_CURSOR_CAPTURE_PARAMS pCursorCaptureParams;

pMouseGrabParams.dwVersion = NVFBC_CURSOR_CAPTURE_PARAMS_VER;

while(1)

{

 WaitForSingleObject(handle ,INFINITE); //handle returened from

//NVFBCToSysSetUp call

 ToSys->NVFBCToSysCursorCapture(&pCursorCaptureParams);

 if(pMouseGrabParams.bIsHwCursor)

 {

 out = base + _itoa(FrameID, frameNo, 10) + ".bmp";;

 SaveARGB(out.c_str(), (BYTE*) pCursorCaptureParams.pBits,

pCursorCaptureParams.dwWidth, pCursorCaptureParams.dwHeight);

 temp++;

 }

}

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 37

2.11 DIFFERENCE MAPS

Difference maps are supported for NVFBCToSys and NVFBCToDX9Vid interfaces.

The difference map format is a byte array, where each byte represents a block of the

pixel region on the screen (in row-major order). If the byte is non-zero then some pixels

have changed in that region. For resolutions that aren’t a multiple of 128 in either

direction, the resolution is rounded up to the next multiple of 128.

In order to get an accurate reconstruction of the grabbed images, the client application

must apply each difference map since the last reference image. Discarding one or more

difference maps may lead to corruption in reconstructed images. If the client application

needs to discard a grabbed image, it should still merge the difference map with the

previously captured difference map. Since difference maps are bit-arrays, the cost of

condensing multiple difference maps into one buffer is very low: it can be achieved by

OR-ing two 128-bit arrays.

2.11.1 Configuring Difference Map

NVFBC Capture SDK 6.1 adds support for generating difference maps with block size of

16x16, 32x32, 64x64 apart from legacy 128x128 blocksize. The client should call

NvFBC_GetStatusEx() to determine if the driver supports configuring pixel block size

for difference maps. NvFBCStatusEx::bSupportConfigurableDiffMap is set if 16x16,

32x32, 64x64 blocksizes are supported.

Any supported block size can be requested by setting the parameter

NVFBC_TODX9VID_SETUP_PARAMS::eDiffMapBlockSize with one of the enum in

NVFBC_DX9VID_DIFFMAP_BLOCKSIZE. This enum must be typecasted to NvU32 before

assigning. Eg:

 NVFBC_TODX9VID_SETUP_PARAMS NvFBCDX9SetupParams = { 0 };

 NvFBCDX9SetupParams.bDiffMap = TRUE;

 NvFBCDX9SetupParams.eDiffMapBlockSize =

 (NvU32)NVFBC_DX9VID_DIFFMAP_BLOCKSIZE_16X16;

 NvFBCDX9SetupParams.dwDiffMapBuffSize = DIFF_MAP_BUF_SIZE;

 NvFBCDX9SetupParams.ppDiffMap = (void **)&g_pDiffMap;

 result = NvFBCDX9->NvFBCToDx9VidSetUp(&NvFBCDX9SetupParams));

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 38

2.12 IMAGE AREA CLASSIFICATION MAPS

NVIDIA Capture SDK 7.0 introduces a new feature for classifying areas of images that

may benefit from being encoded at a higher quality. This feature is referred to as NVFBC

Image Area Classification, and its output is referred to as a Classification Map. This

output can be directly passed to NVENC, where it is referred to as the Emphasis Map.

This feature is supported by NvFBCToSys and NvFBCToDx9Vid interfaces. It can be

enabled along with the NVFBC Difference map feature.

The classification map format is a byte array, where each byte represents a 16x16 block

of the pixel region on the screen (in row-major order). The value of the byte can be from

0 to 5. A value of 0 indicates the corresponding pixel block is a flat region - that is, a low

frequency region. A non-zero value indicates the strength of high frequency content in

the pixel block, with 5 indicating the highest strength.

The following is an example of setting up the NVFBC Image Area Classification feature.

NVFBC_TODX9VID_SETUP_PARAMS NvFBCDX9SetupParams = { 0 };

 NvFBCDX9SetupParams. bClassificationMap= TRUE;

 NvFBCDX9SetupParams. dwClassificationMapStampWidth = 16;

 NvFBCDX9SetupParams. dwClassificationMapStampHeight = 16;

 NvFBCDX9SetupParams.dwClassificationMapBuffSize =

 NVFBC_TODX9VID_MAX_CLASSIFICATION_MAP_SIZE;

 NvFBCDX9SetupParams. ppClassificationMap=(void**)&g_pClassificationMap;

 result = NvFBCDX9->NvFBCToDx9VidSetUp(&NvFBCDX9SetupParams));

Note: The client must call NVFBC_GetStatusEx() to check for configuring

difference map block size. bSupportConfigurableDiffMap is set if 16x16,

32x32, and 64x64 difference map is supported. If the client requests any of these
blocksizes in setup parameters for an unsupported driver, NVFBC will ignore the
request and return 128x128 difference map.

Note: The client must call NVFBC_GetStatusEx() to check if the driver

supports the Image Area Classification feature. The bit field
bSupportImageClassification will be set if the image area classification

feature is supported.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 39

2.12.1 Configuring Classification Map

The client can configure the classification map output by choosing stamp size. Stamp is

any valid rectangular shape that can be built by a unit of 16x16 pixel block. By selecting

a stamp size for this feature, NVFBC ensures that the High Frequency strength output is

uniform across each 16x16 pixel block within a stamp. Refer to the whitepaper

NvFBC_Image_Area_Classification_WhitePaper.pdf from NVIDIA Capture SDK

documents directory for more details on how stamp size affects output.

The classification map output is always 16x16 reduced, irrespective of the stamp

configuration the client chooses.

NVFBC accepts only a valid stamp size as input. A stamp size is valid only if following

criteria are satisfied.

 Stamp width and height dimension must be a multiple of 16.

 Minimum stamp height and width is 16 pixels.

 Maximum stamp height and width is 256 pixels.

An invalid stamp size will result in NVFBC_ERROR_INVALID_PARAM returned from the

NVFBC session setup.

2.13 10 BIT AND HDR CAPTURE SUPPORT

2.13.1 NVFBC 10 bit capture support
NVIDIA Capture SDK 6.0 adds support for ARGB10 output format to the following

interfaces: NvFBCToSys, NvFBCToDx9Vid and NvFBCToCuda.

To request 10 bit Capture, the client should use the 10 bit capture format enum from the

corresponding interface. Eg: For NVFBCToSys, the client should use

NVFBC_TOSYS_ARGB10.

Any 8 bit to 10 bit format conversion required will be taken care by the driver.

 NVFBC_TOSYS_SETUP_PARAMS fbcSysSetupParams = {0};

 fbcSysSetupParams.eMode = NVFBC_TOSYS_ARGB10;

 result = nvfbcToSys->NvFBCToSysSetUp(&fbcSysSetupParams);

Note: Classification Map buffer output is always 16x16 reduced, and each byte
corresponds to a 16x16 pixel block of the grabbed frame. Stamp dimension does
not alter this mapping.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 40

2.13.2 NVFBC 10 bit HDR capture support

NVIDIA Capture SDK 6.0 adds support for capturing in HDR format if the display is

configured for HDR, and the content is rendered in HDR.

To request HDR capture, the client should set the "bHDRRequest" flag in NVFBC setup

parameters. A new flag, NvFBCFrameGrabInfo::bIsHDR, should be used to check if the

current captured frame is in HDR. NvFBCFrameGrabInfo::bIsHDR will be set to 1 only if

client requests HDR capture and NVFBC is able to capture in HDR format.

 NVFBC_TOSYS_SETUP_PARAMS fbcSysSetupParams = {0};

 fbcSysSetupParams.eMode = NVFBC_TOSYS_ARGB10;

 fbcSysSetupParams.bHDRRequest = TRUE;

 result = nvfbcToSys->NvFBCToSysSetUp(&fbcSysSetupParams);

 fbcSysGrabParams.pNvFBCFrameGrabInfo = &grabInfo;

 if (grabInfo.bIsHDR)

 {

 // captured content is HDR

 }

Note: 10 bit HDR HEVC encode support is available only for Pascal GPUs, using
NVENC API. NVFBCToHWEnc interface does not have support for 10bit or HDR
capture.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 41

2.14 FACTORS REQUIRING NVFBC OBJECT RE-
CREATION

Under the following circumstances, NVFBC objects must be destroyed and re-created in

order to continue grabbing frames. This is indicated by

NVFBCFrameGrabInfo::MustRecreate set to TRUE in the NVFBCFrameGrabInfo

structure or NVFBC_ERROR_SESSION_INVALIDATED error code returned by a Grab call.

 The system transitions through an S3 (sleep) or S4 (hibernate) power state – for

example, on a notebook platform, the user closes and later re-opens the notebook.

 Display topology is changed during an active NVFBC capture session.

Display capabilities are changed in a manner that changes the maximum display

resolution, while an NVFBC capture session is running. Threading considerations

NVFBC is designed for use in multi-threaded applications, to allow for parallelism in

handling readback operations on different heads, and in CPU-based post-processing of

pixel data returned from NVFBC.

However, the API requires that all NVFBC API calls made on a given NVFBC object

should be made from the thread that created the object. If an application uses an

NVFBC object in different threads, each of those threads may have NVFBC API calls

outstanding at the same time. Exceptions to this are as follows:

 In case a thread running an NVFBC session exits abnormally, the application should

reset the directx9 device that was being used for NVFBC interaction, as the abnormal

exit may leave the directx9 device context in an unstable state.

 The requirement is relaxed in case the client is using separate HW mouse cursor

capture API in conjunction with NVFBCToSys. In this case, it is permitted to use

NVFBCToSysCaptureMouse() and NVFBCToSysGrabFrame() on separate threads.

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 42

2.15 HANDLING ERRORS FROM NVFBC GRAB API

When NVFBC Grab succeeds, the API returns a status code NVFBC_SUCCESS. In case of

failure, the API can return status codes depending upon the error. The status codes are

documented in NVFBC API reference. In addition,

NvFBCFrameGrabInfo::dwDriverInternalError holds more information about the failure.

This is intended to be used as diagnostic information while investigating failures. If the

API succeeds, this code should be ignored.

The table below outlines some values that can be actionable for the client application:

Value Meaning

0xFBCB0001 Non-fatal. Grab was called while a resolution change or display topology

change was in progress

0xFBCB0002 Non-fatal. Invalid grab flags, retry with a valid value for grab flags. Current

request was treated as if no flags were set.

0xFBCB0003 Non-fatal. No screen update for 1 second after the capture session was

created, output is black.

0xFBCE0003 Non-fatal. Invalid parameters, retry with correct parameters.

0xFBCE0004 Fatal. Invalid sequence of API calls or Capture session is in invalid state.

Release capture session and create new session.

0xFBCE0027 Non-fatal. Invalid cropping rect, retry with valid cropping rect based on

current and maximum display dimensions.

0xFBCE0028 Non-fatal. Invalid scaling target rect, retry with valid target rect.

0xFBCE0044 Fatal. NVFBC feature was disabled since the last Grab(). Release capture

session.

Table 3: NVFBC Grab API Diagnostic codes

2.15.1 Handling protected content

Playback of protected content such as DVD or BluRay disks typically requires an

encrypted, secured path to the physical display output device. To prevent violation of

protected content license terms, NVFBC will not capture frames from the GPU

whenever a protected content session is active.

NVFBC indicates the presence of protected content by returning

NVFBC_ERROR_PROTECTED_CONTENT from calls to NVFBC GrabFrame(), and no frame

data is returned.

While protected content is active, applications should fall back to non-accelerated,

standard Windows APIs to capture the desktop without the protected content, in order

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 43

to continue providing visual output to the user. In parallel with this, NVFBC API frame

grabs should be attempted periodically to determine when the protected content session

has ended, and accelerated frame grabbing is once again possible. Figure 4 summarizes

the suggested program flow:

Figure 4 Handling protected content

Grab frame via

NVFBC

NVFBC_ERROR_PROTE

CTED_CONTENT

Grab frame via

standard Windows

API

Grab frame via

NVFBC

NVFBC_ERROR_PROTE

CTED_CONTENT

Periodically

Yes No

No Yes

Start

NVFBC – Framebuffer Capture

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 44

2.15.2 Handling an Invalidated Session

If the error code NVFBC_ERROR_INVALIDATED_SESSION is returned when

attempting a frame grab, the user must re-create the NVFBC session by:

 Destroying allocated buffers and closing event handles.

 Releasing NVFBC by calling the Release() API of the corresponding interface.

 If possible, releasing the DX9 device that was passed to NVFBC, and creating a new

device.

 Following the NVFBC initialization steps again.

pNVFBCHWEnc->NVFBCHWEncRelease();

pNVFBCHWEnc= (NVFBCToHWEncoder*) pfnNVFBC_Create (NVFBC_TO_

HW_ENCODER, &maxWidth, &maxHeight);

//! Setup the grab and encode

NVFBCRESULT result;

…

result = pNVFBCHWEnc->NVFBCHWEncSetUp(&setupParams);

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 45

Chapter 3. NVIFR – INBAND FRAME
READBACK

NVIDIA Inband Frame Readback (NVIFR) is a high performance, low latency API for

capturing and optionally compressing an individual DirectX graphics render target. The

output from NVIFR does not include any window manager decoration, composited

overlay, cursor or taskbar; it provides only the pixels rendered into the render target, as

soon as their rendering is complete, ahead of any compositing that may be done by the

windows manager. In fact, NVIFR does not require that the render target even be visible

on the Windows desktop. It is ideally suited to application capture and remoting, where the

output of a single application, rather than the entire desktop environment, is captured.

NVIFR is intended to operate inband with a rendering application, either as part of the

application itself, or as part of a shim layer operating immediately below the application.

Like NVFBC, NVIFR operates asynchronously to graphics rendering, using dedicated

hardware compression and copy engines in the GPU, and delivering pixel data to

system memory with minimal impact on rendering performance.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 46

3.1 HEADER FILES AND CODE SAMPLES

This manual provides an overview of how to use NVIFR. Further details are contained

in the NVIFR header files and code samples that are included in the NVIDIA Capture

SDK Toolkit:

The NVIFR header files, including interface-specific is installed in

%CAPTURESDK_PATH%\inc\NVIFR\. All NVIFR applications don’t need to include

NVIFR.h directly, as the specific versions of the NVIFR interfaces include it.

NVIFR code samples are installed in %CAPTURESDK_PATH%\samples\.

Please refer to the NVIDIA Capture SDK Samples Description document for details

regarding the NVIFR samples packaged in the NVIDIA Capture SDK.

GPU

Windows OS
Application

Rendering

Commands

3D Render

NVIDIA Drivers

Render

Target

NVIFR-enabled capture

Cache coherent

system memory

Encode

Post-process
CUDA

buffers

Read-back render target

Display Head

Figure 5 NVIFR render context capture

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 47

3.2 PREPARING THE API FOR USE

Regardless of the mode in which an application uses the NVIFR API, the following

initialization steps are required at application load time:

 Load the NVIFR DLL.

 Load the NVIFR_CreateEx function pointer.

3.2.1 Loading the DLL

The NVIFR API is accessed via a 32- or 64- bit dynamic link library (DLL), which must

be loaded by the application before calling any NVIFR functions:

// Load an instance of the NVIFR DLL

// 32-bit application

HINSTANCE handleNVIFR = ::LoadLibrary("NVIFR.dll");

// 64-bit application

HINSTANCE handleNVIFR = ::LoadLibrary("NVIFR64.dll");

Note: In the NVIDIA Capture SDK toolkit, the NVIFR DLLs are located in
…\<toolkit install dir>\lib\NVIFR. When shipping an application that

uses the NVIDIA Capture SDKs, we recommend instaling the DLLs in the same
directory as your application. The path name passed to ::LoadLibrary() should

be amended accordingly. See Chapter 4 for further guidance on shipping GRID-
enabled applications.

3.2.2 Loading the function pointer

After loading the NVIFR DLL, the next step is to get the NVIFR_Create() function

pointer from the DLL. This is accomplished with a call to GetProcAddress():

// Load the NVIFR_Create funtion

NVIFR_CreateFunctionExType pfnNVIFR_Create = NULL;

pfnNVIFR_Create = (NVIFR_CreateFunctionExType)

 GetProcessAddress(handleNVIFR, "NVIFR_CreateEx");

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 48

3.3 CREATING NVIFR OBJECTS

3.3.1 Creating Objects

All NVIFR readback operations are exposed as methods in NVIFR classes. Distinct

classes are used to support the different readback modes supported by NVIFR (readback

to system memory and readback as compressed video).

To create an NVIFR object you must create an instance of IDirect3D9Device or

ID3D10Device or ID3D11Device. This device interface is passed into

NVIFR_CreateEx() along with the readback format:

NVIFRRESULT (__stdcall *NVIFR_CreateFunctionExType) (void *pParams);

// Example usage

ID3D10Device * pDevice = NULL;

D3D10CreateDeviceAndSwapChain(…, &pDevice); // Create the device

NVIFR_CREATE_PARAMS params = {0};

params.version = NVIFR_CREATE_PARAMS_VER;

params.dwInterfaceType = NVIFR_TOSYS;

params.pDevice = pDevice;

NVIFRToSys * toSys = NULL;

NVIFRRESULT res = pfnNVIFR_Create(¶ms);

if (res == NVIFR_SUCCESS)

{

 toSys = (NVIFRToSys *)params.pNVIFR;

}

If successful, the NVIFR_Create() call returns a pointer to the newly-created NVIFR

object, otherwise it returns NULL.

The dwInterfaceType parameter specifies the type of NVIFR object to create:

dwInterfaceType value Notes

NVIFR_TOSYS Reads back frames to locked, cache-coherent buffers

in system memory. See section 3.4.

NVIFR_TO_HW_ENCODER Reads back compressed frames to locked, cache-

coherent buffers in system memory. See section 3.5.

Table 4 NVIFR interface Types

The pdwNVIFRVersion parameter is an output argument which will contain the NVIFR

version after the call has been completed.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 49

3.3.2 Limitations

There are certain limitations when creating multiple NVIFR objects using the same

DirectX device:

 Creating NVIFRToSys and NVIFRToHWEncoder objects using the same DirectX

device may result in undefined behavior.

 If an application creates multiple NVIFRToHWEncoder objects using the same

DirectX device, it should also take care to release all objects at one go. Releasing one

object and continuing to use other objects will lead to undefined behavior. The same

applies for NVIFRToSys.

 Creating multiple NVIFRToHWEncoder objects that produce output videos of

different frame sizes is supported but is suboptimal for performance. The same

applies for NVIFRToSys.

These are known limitations in the NVIDIA Capture SDK up to NVIDIA Capture SDK

6.0, and may be fixed in future revisions.

3.4 CAPTURING TO SYSTEM MEMORY

To capture render targets to system memory, create an NVIFRToSys object by specifying

NVIFR_TOSYS in the NVIFR_Create() call:

// Create an instance of NVIFRToSys

NVIFRToSys *toSys = pfnNVIFR_Create(device, NVIFR_TOSYS, &version);

3.4.1 Setting up the target buffers

SetupTargetBufferToSys() must be called before reading back render target buffers.

NVIFRRESULT NVIFRSetUpTargetBufferToSys(NVIFR_TOSYS_SETUP_PARAMS

*pParams)

// Example usage

#define NUMFRAMESINFLIGHT = 3

unsigned char *buffer;

HANDLE gpuEvent;

NVIFR_TOSYS_SETUP_PARAMS params = {0};

params.dwVersion = NVIFR_TOSYS_SETUP_PARAMS_VER;

params.eFormat = NVIFR_FORMAT_RGB;

params.eSysStereoFormat = NVIFR_SYS_STEREO_NONE;

params.dwNBuffers = 1;

params.ppPageLockedSysmemBuffers = buffer;

params.ppTransferCompletionEvents = &gpuEvent;

NVIFRRESULT result = toSys->NVIFRSetUpTargetBufferToSys(¶ms);

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 50

If successful, NVIFRSetUpTargetBufferToSys() returns NVIFR_SUCCESS and the object

is ready to transfer the render target. Otherwise it returns one of the error codes

specified by NVIFRRESULT in NVIFR.h.

3.4.1.1 Capture mode

The NVIFR_TOSYS_SETUP_PARAMS::eFormat field specifies the pixel format in which the

render target content is captured. Please refer to NVIFR_BUFFER_FORMAT enum in the

NVIFR API Reference document.

3.4.1.2 Stereo Format

The NVIFR_TOSYS_SETUP_PARAMS::eSysStereoFormat field specifies the stereo format

to capture. Please refer to NVIFR_SYS_STEREO_FORMAT enum in the NVIFR API

Reference document.

This is currently not supported.

3.4.1.3 Number of output buffers

The NVIFR_TOSYS_SETUP_PARAMS::dwNBuffers field specifies the number of output

buffers to generate. The NVIFRToSys interface allows you to use multiple output

buffers. The number of output buffers generated is equal to

NVIFR_TOSYS_SETUP_PARAMS::dwNBuffers.

3.4.1.4 Readback buffers

The NVIFR_TOSYS_SETUP_PARAMS::ppPageLockedSysmemBuffers field is an an array

of pointers. Each pointer will point to a buffers that will contain the read back pixel data,

in the format specified by the capture mode in NVIFR_TOSYS_SETUP_PARAMS::eFormat.

The buffers are allocated by NVIFR, the application simply passes a unsigned char**

argument to receive a pointers to the NVIFR allocated buffers. The number of buffers

generated depends on the NVIFR_TOSYS_SETUP_PARAMS::dwNBuffers parameter.

3.4.1.5 Completion events

The NVIFR_TOSYS_SETUP_PARAMS::ppTransferCompletionEvents field is a pointer to

an array of Event HANDLEs that will be created by NVIFR. There number of HANDLEs

must be equal to the NVIFR_TOSYS_SETUP_PARAMS::dwNBuffers parameter.

3.4.1.6 Scaling

The NVIFR_TOSYS_SETUP_PARAMS::dwTargetWidth and

NVIFR_TOSYS_SETUP_PARAMS::dwTargetHeight fields are optional, and may be

specified to apply scaling to the captured render target before transferring to the output

buffer. If either parameter is set to 0 then no scaling is performed. Otherwise, the width

and height of the output image are set to the specified values.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 51

3.4.2 Transferring the render target

Transfering the render target is an asynchronous operation. Call

NVIFRTransferRenderTargetToSys() to initiate a transfer; when the transfer is

complete, an Event HANDLE that was earlier provided to

NVIFRSetUpTargetBufferToSys() will be signaled.

NVIFRRESULT NVIFRTransferRenderTargetToSys(NvU32 dwBufferIndex));

//! Example usage

NVIFRRESULT result;

result = toSys->NVIFRTransferRenderTargetToSys(0);

WaitForSingleObject(gpuEvent);

//! Render target is now transferred into system memory

3.4.2.1 Buffer Index

The dwBufferIndex parameter is used to specify which locked system memory buffer

and completion event HANDLE will be used for the transfer. The dwBufferIndex must be

less than the NVIFR_TOSYS_SETUP_PARAMS::dwNBuffers parameter passed to the

SetUpTargetBufferToSys() call.

For multi-threading:

 In the main thread, call NVIFRTransferRenderTargetToSys with dwBufferIndex ‘i’

in a loop where 0 < i < NVIFR_TOSYS_SETUP_PARAMS::dwNBuffers.

 In a worker thread, in a loop, call WaitForSingleObject(gpuEvent[i]); where 0
< i < dwNumBuffers.

 Consume grabbed image from the worker thread.

3.4.3 Releasing the NVIFRToSys object

After you have finished using NVIFRToSys you must release it to properly free the

resources.

NVIFRRESULT NVIFRRelease();

//! Example code

toSys->NVIFRRelease();

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 52

3.5 CAPTURING WITH HARDWARE VIDEO
COMPRESSION

To capture compressed video frames to system memory, create an INvIFRHWEncoder

object by specifying NVIFR_TO_HWENCODER in the NVIFR_CreateEx() call:

//! Create an instance of INVIFRHWEncoder

IDirect3DDevice9 * pDevice = NULL;

IDirect3D9 *pD3D = NULL;

InitD3D(pD3D, pDevice); // Create the device

NVIFR_CREATE_PARAMS params = {0};

params.version = NVIFR_CREATE_PARAMS_VER;

params.dwInterfaceType = NVIFR_ TO_HWENCODER;

params.pDevice = pDevice;

INVIFRHWEncoder * toHWEnc = NULL;

NVIFRRESULT res = pfnNVIFR_CreateEx(¶ms);

if (res == NVIFR_SUCCESS)

{

 toHWEnc = (INVIFRHWEncoder *)params.pNVIFR;

}

Note: Not all NVIDIA GPUs that support NVIFR support hardware video
compression. If the GPU does not support hardware video compression, the
NVIFR_CreateEx() call for an NVIFR_TO_HWENCODER object will return

NVIFR_CREATE_PARAMS::pNVIFR==NULL.

3.5.1 Checking HW Video Encoder Capabilities

INVIFRHWEncoder::NVIFRGetHWEncCaps() can be used to check HW Video encoder

capabilities like supported codec, rate control modes, encoding presets, etc. Please refer

to the NVIFR API Reference document for details.

This should be done before calling INVIFRHWEncoder:: NVIFRSetUpHWEncoder().

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 53

3.5.2 Setting up the target buffers

Before the compressed buffers can be copied into system memory they need to be set up.

This is accomplished by calling NVIFRSetUpHWEncoder().

//! Example usage

#define N_BUFFERS 3

//! container for pagelocked sysmem buffers for encoded bitstream

unsigned char * g_pBitStreamBuffer[N_BUFFERS];

//! event handles used to signal encode completion

HANDLE g_EncodeCompletionEvent[N_BUFFERS];

NVIFR_HW_ENC_SETUP_PARAMS params = {0};

params.dwVersion = NVIFR_HW_ENC_SETUP_PARAMS_VER;

//! eCodec must be NV_HW_ENC_H264 or NV_HW_ENC_HEVC

params.configParams.eCodec = eCodec;

params.dwNBuffers = N_BUFFERS;

params.dwBSMaxSize = 2048*1024;

params.ppPageLockedBitStreamBuffers = &g_pBitStreamBuffer;

params.ppEncodeCompletionEvents = &g_EncodeCompletionEvent;

NV_HW_ENC_CONFIG_PARAMS encodeConfig = {0};

encodeConfig.dwVersion = NV_HW_ENC_CONFIG_PARAMS_VER;

encodeConfig.dwProfile = 100;

encodeConfig.dwAvgBitRate = (DWORD)dBitRate;

encodeConfig.dwFrameRateDen = 1;

encodeConfig.dwFrameRateNum = 30;

encodeConfig.dwPeakBitRate =

 (encodeConfig.dwAvgBitRate * 12/10); // +20%

encodeConfig.dwGOPLength = 75;

encodeConfig.dwQP = 26 ;

encodeConfig.eRateControl = NV_HW_ENC_PARAMS_RC_CBR;

encodeConfig.ePresetConfig= NV_HW_ENC_PRESET_LOW_LATENCY_HQ;

//! Set Encode Config

params.configParams = encodeConfig;

NVIFRRESULT res = toHWEnc->NVIFRSetUpHWEncoder(¶ms);

If succesful, NVIFRSetUpHWEncoder() returns NVIFR_SUCCESS and the

NVIFRToHWEncoder object is ready to transfer the render target. Otherwise it returns

one of the error codes specified by NVIFRRESULT in NVIFR.h.

3.5.2.1 HW encoding parameters

The NV_HW_ENC_CONFIG_PARAMS structure defines encoding parameters to be used by

the hardware encoder. Please refer to NVIFR API Reference document for details. . PL

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 54

3.5.2.2 Number of output buffers

The NVIFR_HW_ENC_SETUP_PARAMS::dwNBuffers field specifies the number of output

buffers to generate. The INVIFRHWEncoder interface allows you to use multiple output

buffers. The number of output buffers generated is equal to dwNBuffers reguardless of

the stereo mode.

3.5.2.3 Maximum bitstream size

The NVIFR_HW_ENC_SETUP_PARAMS::dwBSMaxSize field sets the maximum size of a

bitstream frame.

3.5.2.4 Output buffers

The NVIFR_HW_ENC_SETUP_PARAMS::ppPageLockedBitStreamBuffers field is a

pointer to pointer to a buffer that will contain the read back frame data, in the format

specified by the capture mode in eFormat. The buffers are allocated by NVIFR, the

application simply passes a unsigned ** argument to receive a pointers to the NVIFR

allocated buffers. The number of buffers generated depends on the dwNBuffers

parameter.

3.5.2.5 Completion events

The NVIFR_HW_ENC_SETUP_PARAMS::ppEncodeCompletionEvents field is a pointer to

an array of HANDLEs created by the application. There number of HANDLEs must be equal

to the dwNBuffers parameter.

3.5.2.6 Scaling

The NVIFR_HW_ENC_SETUP_PARAMS::dwTargetWidth and

NVIFR_HW_ENC_SETUP_PARAMS::dwTargetHeight fields are optional, and may be

specified to apply scaling to the captured render target before encode. If either

parameter is set to 0 then no scaling is performed. Otherwise, the width and height of

the output video stream are set to the specified values.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 55

3.5.3 Transferring the render target

Transferring the compressed render target is an asynchronous operation. Call

TransferRenderTargetToHWEncoder()to initiate a transfer. When the transfer is

complete the corresponding

NVIFR_HW_ENC_SETUP_PARAMS::ppEncodeCompletionEvent is signaled. The size of

the compressed frame written to the output buffer can be queried by calling
NVIFRGetStatsFromHWEncoder().

NVIFRTransferRenderTargetToHWEncoder

 (NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS *pParams);

//! Example usage

NV_HW_ENC_PIC_PARAMS encodePicParams = {0};

encodePicParams.dwVersion = NV_HW_ENC_PIC_PARAMS_VER;

NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS params = {0};

params.dwVersion = NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS_VER;

params.dwBufferIndex = i;

params.encodePicParams = encodePicParams;

NVIFRRESULT res =

 toHWEnc->NVIFRTransferRenderTargetToHWEncoder(¶ms);

if (res == NVIFR_SUCCESS) {

 WaitForSingleObject(g_EncodeCompletionEvents[i], INFINITE);

}

3.5.3.1 Buffer Index

The NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS::dwBufferIndex field is used to

specify which locked system memory buffer and completion event object will be used

for the transfer. The

NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS::dwBufferIndex must be less than

the NVIFR_HW_ENC_SETUP_PARAMS::dwNBuffers parameter passed into the

NVIFRSetUpHWEncoder() call.

3.5.3.2 Per frame encoding parameters

The NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS::encodePicParams parameter

is used to specify some per-frame customizations for the HW Encoder. Please refer to

NV_HW_ENC_PIC_PARAMS in the NVIFR API Reference document for details.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 56

3.5.4 Getting the frame stats

NVIFRGetStatsFromHWEncoder() should be called on receiving the encode completion

event signal, to get the frame stats for the encoded frame.

NVIFRRESULT NVIFRGetStatsFromHWEncoder

 NVIFR_HW_ENC_GET_BITSTREAM_PARAMS *pParams);

//! Example usage

NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS params = {0};

params.dwVersion = NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS_VER;

params.dwBufferIndex = i;

params.encodePicParams = encodePicParams;

NV_HW_ENC_PIC_PARAMS encodePicParams = {0};

encodePicParams.dwVersion = NV_HW_ENC_PIC_PARAMS_VER;

NVIFRRESULT res =

 toHWEnc->NVIFRTransferRenderTargetToHWEncoder(¶ms);

if (res == NVIFR_SUCCESS)

{

 WaitForSingleObject(g_EncodeCompletionEvents[i], INFINITE);

 ResetEvent(g_EncodeCompletionEvent[i]);

 //! Get frame stats from the HWencoder

 NVIFR_HW_ENC_GET_BITSTREAM_PARAMS params = {0};

 params.dwVersion = NVIFR_HW_ENC_GET_BITSTREAM_PARAMS_VER;

 params.bitStreamParams.dwVersion =

 NV_HW_ENC_GET_BIT_STREAM_PARAMS_VER;

 params.dwBufferIndex = i;

 NVIFRRESULT res = toHWEnc->NVIFRGetStatsFromHWEncoder(¶ms);

 //! Can Write new data to disk

}

If successful, NVIFRGetStatsFromHWEncoder() returns NVIFR_SUCCESS, and the size of

the bitstream in bytes is written to NV_HW_ENC_GET_BIT_STREAM_PARAMS::dwByteSize

passed as NVIFR_HW_ENC_GET_BITSTREAM_PARAMS::bitStreamParams. Otherwise it

returns one of the error codes specified by NVIFRRESULT in NVIFR.h.

3.5.4.1 Buffer Index

The NVIFR_HW_ENC_GET_BITSTREAM_PARAMS::dwBufferIndex field is used to specify

the output buffer to read, and must be less than the

NVIFR_HW_ENC_SETUP_PARAMS::dwNBuffers parameter passed into the

NVIFRSetUpHWEncoder() call.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 57

3.5.4.2 Frame Stats

The NVIFR_HW_ENC_GET_BITSTREAM_PARAMS::bitStreamParams parameter returns

the stats for the encoded frame. Refer to NVIFR API Reference document for details

regarding NV_HW_ENC_GET_BIT_STREAM_PARAMS.

3.5.5 Reading Sequence and Picture Parameter Sets

Once the NVIFRToHWEncoder setup is successfully completed, a client can call

NVIFRGetHeaderFromHWEncoder() at any time during the session to fetch the current

H.264 or H.265 sequence parameter set and picture parameter set.

The API will populate a client allocated buffer with SPS NALU followed by PPS NALU.

NVIFRRESULT

NVIFRGetHeaderFromHWEncoder(NVIFR_HW_ENC_GET_STREAM_HEADER_PARAMS

*pParams)

//! Example Usage

#define MAX_SPS_PPS_HEADER_SIZE 1024*1024;

unsigned char buffer[MAX_SPS_PPS_HEADER_SIZE];

int dwSize = 0;

NVIFR_HW_ENC_GET_STREAM_HEADER_PARAMS headerParms = {0};

Memset(buffer, 0, MAX_SPS_PPS_HEADER_SIZE);

headerParams.dwVersion = NVIFR_HW_ENC_GET_STREAM_HEADER_PARAMS_VER;

headerParams.pBuffer = &buffer;

headerParams.pSize = &dwSize;

NVIFRRESULT result = NVIFR_SUCCESS;

result = toHWEnc->NVIFRGetHeaderFromHWEncoder(&headerParms);

3.5.6 Releasing the INVIFRHWEncoder object

After you have finished using NVIFRToHWEncoder you must release it to properly free

the resources.

NVIFRRESULT Release();

//! Example Usage

toHWEnc->Release();

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 58

3.5.7 Using Intra-Refresh with INVIFRHWEncoder

Intra-Refresh is an error-resiliency feature supported by NVIDIA Capture SDK, which

allows the client to enable gradual decoder refresh or intra-refresh. This is supported

only for GOP structures that do not use B-frames.

For example:

If Intra-Refresh cycle count = n and no. of Macroblocks per frame = m,

Then for 1st frame, 0 to (m/n) - 1 macroblocks are coded as intra-predicted, for 2nd

frame (m/n) to (2m/n) – 1 macroblocks are coded as intra-predicted, and so on.

To use this feature, the client should set
NV_HW_ENC_CONFIG_PARAMS::bEnableIntraRefresh = 1;

before calling NVIFRSetUpHWEncoder().

To indicate start of an Intra-refresh cycle, the client should set
NV_HW_ENC_PIC_PARAMS::bForceIntraRefresh = 1;

NV_HW_ENC_PIC_PARAMS::dwIntraRefreshCnt = n;

before calling NVIFRTransferRenderTargetToHWEncoder().

At this point, NVIFR will begin an Intra-Refresh cycle, spread out over ‘n’ frames.

NVIFRTransferRenderTargetToHWEncoder

 (NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS *pParams);

//! Example usage

NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS params = {0};

params.dwVersion = NVIFR_HW_ENC_TRANSFER_RT_TO_HW_ENC_PARAMS_VER;

params.dwBufferIndex = i;

//! Start an Intra-Refresh cycle over n frames.

NV_HW_ENC_PIC_PARAMS encodePicParams = {0};

encodePicParams.dwVersion = NV_HW_ENC_PIC_PARAMS_VER;

encodePicParams.bForceIntraRefresh = 1;

encodePicParams.dwIntraRefreshCount = n;

params.encodePicParams = encodePicParams;

NVIFRRESULT res =

 toHWEnc->NVIFRTransferRenderTargetToHWEncoder(¶ms);

if (res == NVIFR_SUCCESS)

{

 WaitForSingleObject(g_EncodeCompletionEvents[i], INFINITE);

}

Note: Using Reference frame Invalidation in conjunction with Intra-Refresh is not
supported. If client has enabled Intra-Refresh while setting up
INVIFRHWEncoder,ference frame invalidation requests will be ignored.

Also, Intra-refresh takes higher precedence over Dynamic Slice Mode settings [Ref.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 59

Section 3.5.8]. Intra-refresh will always divide the picture in an integral number
of slices depending upon the value specified for
NV_HW_ENC_PIC_PARAMS::dwIntraRefreshCnt.

3.5.8 Using Dynamic Slice mode with
INVIFRHWEncoder

Dynamic Slice mode encoding allows the client to configure how the encoded picture

will be divided into slices. This is done by setting two parameters:

NV_HW_ENC_CONFIG_PARAMS::dwSlicingMode and

NV_HW_ENC_CONFIG_PARAMS::dwSlicingModeParam before calling
NVIFRSetUpHWEncoder() .

Their usage is summarized in the NVIFR API Reference document.

Note: Intra-refresh takes higher precedence over Dynamic Slice Mode settings [Ref.
Section 3.5.8]. Intra-refresh will always divide the picture in an integral number
of slices depending upon the value specified for
NV_HW_ENC_PIC_PARAMS::dwIntraRefreshCnt.

3.5.9 INVIFRHWEncoder Rate Control Modes
The rate control modes supported by INVIFRHWEncoder are described in the NVIFR

API Reference document.

3.5.10 Using Adaptive Quantization with
INVIFRToHWEncoder

Adaptive Quantization (AQ) can be controlled using

NV_HW_ENC_CONFIG_PARAMS::bEnableAdaptiveQuantization flag.

Quantization artifacts like blockiness in a flat region are more visible than in a complex

region. With AQ enabled, the goal is to improve quality in a flat region. With Adaptive

Quantization enabled, the quantization parameter is set depending upon complexity of

macroblock data, thus assigning higher values of QP for macroblocks in high complex

regions and lower values of QP for macroblocks in flat regions, thereby improving the

visual quality of flat regions.

Note: Adaptive quantization works only with 2 pass rate control modes.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 60

3.5.11 Using Lossless encoding with INVIFRHWEncoder

To retain the same quality after encoding-decoding, a lossless encoding feature is

introduced. There is no loss of data in this mode; however, the size of the bit stream is

large compared to lossy encoding.

Client should call NVIFRGetHWEncCaps() to check for NV_HW_ENC_GET_CAPS::

bLosslessEncodingSupported for the currently set codec type before configuring

lossless encode, as not all NVIDIA GPUs support lossless encoding.

//! Example:

//! Check capability

NV_HW_ENC_GET_CAPS caps = {0};

caps.dwVersion = NV_HW_ENC_GET_CAPS_VER;

caps.eCodec = codec;

toHWEnc-> NVIFRGetHWEncCaps (&caps);

NV_HW_ENC_CONFIG_PARAMS encodeConfig = {0};

//! Other encode config init

if (caps.bLosslessEncodingSupported)

{

 encodeConfig.dwProfile = 244;

 encodeConfig.ePresetConfig= NVFBC_HW_ENC_PRESET_LOSSLESS_HP;

 encodeConfig.eRateControl = NVFBC_HW_ENC_PARAMS_RC_CONSTQP;

 encodeConfig.dwQP = 0;

}

3.5.12 Using YUV 4:4:4 Encoding with
INVIFRHWEncoder

YUV 4:4:4 encoding is useful in cases where chroma subsampling from RGB to YUV

4:2:0 will result in visible and unacceptable loss of video/image quality after encoding.

Such loss is typically perceptible in regions with low luminance or blue/red text or

wiremesh content (e.g. content with lines that are 1-2 pixels wide).

Client should call NVFBCHWEncGetCaps() to check for

NV_HW_ENC_GET_CAPS::bYUV444Supported for the currently set codec type before

configuring lossless encode, as not all NVIDIA GPUs support lossless encoding.

//! Example:

//! Check capability

NV_HW_ENC_GET_CAPS caps = {0};

caps.dwVersion = NV_HW_ENC_GET_CAPS_VER;

Note: Lossless encoding will work only with constant QP rate control mode. If any
other rate control mode is set, an error will be returned. Also, the quantization
parameter value will be overridden to 0 and profile to 244.

NVIFR – Inband Frame Readback

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 61

caps.eCodec = codec;

pNVFBCHWEnc->NVFBCHWEncGetCaps(&caps);

NV_HW_ENC_CONFIG_PARAMS encodeConfig = {0};

//! Other encode config init

if (caps.bYUV444Supported)

{

 encodeConfig.bEnableYUV444Encoding = 1;

}

Note: Some NVIDIA GPUs that are capable of HW encoding, are not capable of
supporting YUV 4:44 video encoding. Client code should check HW capabilities as
described above before enabling YUV4:4:4 encoding mode.

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 62

Chapter 4. DEPLOYING A GRID-
ENABLED APPLICATION

This chapter provides guidance on shipping a GRID-enabled application.

4.1 DEPLOYMENT ON WINDOWS

Deploying an NVFBC- and NVIFR-enabled application with GeForce, Quadro, and Tesla

GPUs on Windows platforms requires that you deploy a Microsoft DirectX

redistributable runtime along with your application, and execute an install-time applet

to set NVIDIA Capture SDK’s required registry settings.

4.1.1 Microsoft DirectX redistributable runtime

The NVIDIA Capture SDK DLLs are linked with version 33 of the Microsoft DirectX

runtime. As this version may not be present on an end user’s platform, you should

include the Microsoft redistributable end-user runtime with your application. The

redistributable can be downloaded from here:

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=8109

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=8109
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=8109

Deploying a GRID-enabled application

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 63

4.1.2 DLL installation

When shipping an NVFBC or NVIFR-enabled application, you do not need to include

the NVFBC and/or NVIFR DLLs with your shipping application, as they are included in

NVIDIA driver releases after 320.00.

DLL Install Path Notes

NVFBC.DLL For 32Bit OS: %systemroot%\system32

For 64Bit OS: %systemroot%\syswow64

Application should load the

correct version [32bit\64bit]

of the DLLs based on the OS

and application’s target

architecture from the paths

listed here.

Application should not

package these DLLs with their

installers, as they will be

installed along with NVIDIA

drivers.

NVFBC64.DLL For 64Bit OS only.

%systemroot%\system32

NVIFR.DLL For 32Bit OS: %systemroot%\system32

For 64Bit OS: %systemroot%\syswow64

NVIFR64.DLL For 64Bit OS only.

%systemroot%\system32

Table 5 NVIDIA Capture SDK DLL Path Names, Install Locations

The DLL locations in the NVIDIA Capture SDK Toolkit are shown in Table 24 above.

4.1.3 Registry settings

The NVIDIA Capture SDK’s NVFBC component requires some registry settings to be

present on the system to operate correctly. Enable and disable of these registry settings

is abstracted into a simple executable, NVFBCEnable.exe, which should be shipped with

your application install package and executed during application installation.

 To enable NVFBC registry settings, execute: NVFBCEnable –enable.

 To disable NVFBC registry settings, execute: NVFBCEnable –disable.

 To check status of NVFBC on your system, execute: NVFBCEnable -checkstatus

NVFBCEnable is provided in …\<toolkit install dir>\bin in the GRID toolkit.

After changing the registry settings, this tool will trigger a reload of the driver to ensure

that the settings have taken effect.

Please note that this tool will need to be run on a system before using it to run the SDK

samples or test an application using NVFBC.

Deploying a GRID-enabled application

NVIDIA CAPTURE SDK Programming Guide PG-06183-001_v07 | 64

4.1.4 Enabling generation of textual logs

NVFBC and NVIFR support generating textual of varying verbosity. Logging can be

enabled by setting the following registry entries:

NVIFR:

[HKEY_LOCAL_MACHINE\SOFTWARE\NVIDIA Corporation\GRID]

"NVIFRLog"=dword:000000xy

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\NVIDIA Corporation\GRID]

"NVIFRLog"=dword:000000xy

NVFBC:

[HKEY_LOCAL_MACHINE\SOFTWARE\NVIDIA Corporation\GRID]

"NVFBCLog"=dword:000000xy

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\NVIDIA Corporation\GRID]

"NVFBCLog"=dword:000000xy

Permissible values for x:

0- No logging
1- Log errors only
2- Log errors and names of APIs called
3- Log errors, names of APIs and parameters passed to APIs
4- Log everything

Permissible values for y:

0- No logging
1- Log to console
2- Log to console and text file on disk, in c:\GridLog directory.

In case of any problems encountered while using the NVFBC or NVIFR APIs, the client

can collect the logs by setting these registry settings.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of

HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2011-2018 NVIDIA Corporation. All rights reserved.

