

DU-07857-001_v01 | November 2015

Installation and User Guide

FFMPEG WITH NVIDIA
ACCELERATION ON UBUNTU
LINUX

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | ii

DOCUMENT CHANGE HISTORY

DU-07857-001_v01

Version Date Authors Description of Change

01 11/09/2015 ER Initial release

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | iii

TABLE OF CONTENTS

Step-by-Step Setup and Installation .. 1

Initial Setup .. 2

Install the Display Driver .. 3

NVENC SDK .. 7

CUDA Utility .. 7

Open Source Libraries .. 8

Build It All Together... ... 9

Using FFMPEG with NVENC .. 11

Transcode Performance... 11

Measuring CPU and GPU Utilization ... 12

CPU Utilization .. 12

GPU Utilization .. 12

Multiple outputs from an input (1:n) ... 13

Resize Example ... 14

Transcode Quality ... 16

Presets ... 16

VBV Buffer ... 16

B-Frames ... 17

Group of Pictures (GOP) ... 17

Adjusting Bit Budget Ratio Between I, P, & B Frames .. 18

Setting Quantization Limits ... 18

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | iv

LIST OF FIGURES

Figure 1 - Selecting the 64bit Ubuntu 14.04 LTS network Ubuntu package 4

Figure 2 - Selecting the 64bit Ubuntu 14.04 LTS local Ubuntu package 5

Figure 3 - A typical 1:n resize scenario .. 13

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 1

STEP-BY-STEP SETUP AND INSTALLATION

This chapter describes how to obtain and install the necessary software for using

FFmpeg with Ubuntu Linux (from 14.04 on). The tasks must be completed in the order

that they appear. When finished, you'll have FFmpeg with support for the following:

 NVIDIA

● NVENC (NVIDIA H/W Fixed Function video encoder for h.264 and HEVC)

● GPU zero-copy engine

● GPU accelerated resizer

 libx264 (x264 open source video codec for h.264/AVC)

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 2

INITIAL SETUP

These instructions assume a fresh install of x86_64 (64bit) Ubuntu 14.04 LTS.

If you are using another Linux distribution make sure that the NVIDIA display driver is

at least r352.39. There are no other host specific requirements other than being x86_64

(64bit).

1. Install Ubuntu workstation (or server*).
*not tested

2. Boot the PC.

3. Log in as your username.

You'll need internet access and sudo privilege to run this install sequence.

4. Install the build infrastructure packages.

~ $ sudo apt-get install build-essential git yasm unzip wget sysstat

Note: Before you begin to run commands to install FFmpeg you'll need to get some

NVIDIA Ubuntu packages and the NVENC SDK.

5. Download the NVIDIA Ubuntu packages into a directory called Ubuntu.

cd ~

~ $ mkdir Ubuntu

~ $ cd Ubuntu

~/Ubuntu $

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 3

INSTALL THE DISPLAY DRIVER

1. To use NVENC on Linux the display driver must be version 352.39 or later. GPUs

based on the Kepler or Maxwell architecture are supported.

2. There are two mechanisms to install NVIDIA display drivers.

- Within the Ubuntu application management system (via .deb files)

- A standalone installer (via .run files)

 These cannot be mixed together. Since we are assuming a fresh install in these

instructions we will continue to use the Ubuntu system.

 NVIDIA Display Driver Ubuntu packages are released with each CUDA SDK. The

CUDA 7.5 SDK repository from the NVIDIA developer's site has Display Driver

r352.39 integrated.

We will download the CUDA 7.5 SDK to use that driver.

Note: If you wish to use a more current version of the Display Driver you can

download it from http://www.nvidia.com/Download/index.aspx.

Before installation you must first uninstall all NVIDIA Ubuntu packages. See step 9

below for instructions on stopping the desktop, unloading and uninstalling the

Ubuntu driver.

All the commands you will need to run are in bold below.

Note: ONLY download the version that matches your OS.

3. You can manually download the driver following this link.

https://developer.nvidia.com/cuda-downloads

http://www.nvidia.com/object/nvidia-kepler.html
http://maxwell.nvidia.com/maxwell-features
http://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-downloads

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 4

4. Below is an example of downloading the Ubuntu 14.04 LTS deb (network) version.

The network version is a small (2.1k) package that will go to the internet for the

actual packages only when those parts are installed.

Figure 1 - Selecting the 64bit Ubuntu 14.04 LTS network Ubuntu package

5. Save the above file in the ~/Ubuntu directory or use the command line utility wget to

download the file using this URL.

~/Ubuntu $ wget

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cu

da-repo-ubuntu1404_7.5-18_amd64.deb

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_7.5-18_amd64.deb
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_7.5-18_amd64.deb

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 5

6. If your computer will not always have internet access you can download the local

version instead. It has the display driver and all the CUDA development packages so

it is a sizable 1.9GB.

Figure 2 - Selecting the 64bit Ubuntu 14.04 LTS local Ubuntu package

7. Save the above file in the ~/Ubuntu directory or use the command line utility wget to

download the file using this URL.

~/Ubuntu $ wget

http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/

cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb

8. Add the repository you downloaded to your local repository.

~/Ubuntu $ sudo dpkg -i cuda-repo-ubuntu1404*_7.5-18_amd64.deb

~/Ubuntu $ sudo apt-get update

http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 6

9. Before we can install the NVIDIA display driver we will need to turn off the desktop

and go back to a terminal prompt.

~/Ubuntu $ sudo service lightdm stop

10. If you do not see a text prompt you will need to change to another virtual console.

To do that press Alt-F1 or Alt-F2. You will then see a login prompt. Login as usual.

11. We now need to unload and remove the existing NVIDIA drivers. First we will see

what is loaded.

~/Ubuntu $ lsmod | grep nvidia

nvidia_uvm 76757 0

nvidia 8604684 1 nvidia_uvm

drm 303102 1 nvidia

Remove each module in the reverse order of use. In the printout above you can see

that nvidia is used by nvidia_uvm so we have to remove nvidia_uvm that first then

nvidia.

~/Ubuntu $ sudo rmmod nvidia_uvm

~/Ubuntu $ sudo rmmod nvidia

12. Once no NVIDIA modules are loaded we can uninstall the driver

~/Ubuntu $ sudo apt-get remove nvidia*

Note: If you are using a newer display driver skip step 13 below and run the

standalone installer instead. Click Accept and click through all the default options.

e.g. ~/Ubuntu $ sudo ./NVIDIA-Linux-x86_64-352.55.run

13. Install the NVIDIA display driver bundled in the CUDA 7.5 SDK repository you

downloaded from above.

~/Ubuntu $ sudo apt-get install nvidia-352

14. Once installed restart the desktop.

~/Ubuntu $ sudo service lightdm start

~/Ubuntu $ sudo restart

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 7

NVENC SDK

1. Get the NVENC SDK from the NVIDIA developer's site.

https://developer.nvidia.com/nvidia-video-codec-sdk

By clicking the link below or downloading via “wget”, you are confirming that you

have read and agree to be bound by the NVIDIA VIDEO CODEC SDK LICENSE

AGREEMENT.

http://developer.download.nvidia.com/compute/nvenc/v5.0/nvenc_5.0.1_sdk.zip

2. Copy the NVENC SDK to ~/Development.

~ $ mkdir Development

~ $ cd Development

~/Development $ wget

http://developer.download.nvidia.com/compute/nvenc/v5.0/nvenc_5.0.1_sdk

.zip

~/Development $ unzip nvenc_5.0.1_sdk.zip

3. Copy the NVENC headers to /usr/local/include to make it easier later.

~/Development $ sudo cp nvenc_5.0.1_sdk/Samples/common/inc/*.h

/usr/local/include

CUDA UTILITY

1. Download and install a light-weight library to communicate with the CUDA display

driver.

~/Development/ $ wget

http://developer.download.nvidia.com/compute/redist/ffmpeg/1511-

patch/cudautils.zip

2. Copy the CUDA utility to ~/Development/.

~/Development/ $ unzip cudautils.zip

~/Development/cudautils/ $ cd cudautils

3. Build the CUDA utility.

~/Development/cudautils/ $ make

~/Development/cudautils/ $ cd ..

~/Development/ $

https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk-license-agreement
https://developer.nvidia.com/nvidia-video-codec-sdk-license-agreement
http://developer.download.nvidia.com/compute/nvenc/v5.0/nvenc_5.0.1_sdk.zip
http://developer.download.nvidia.com/compute/nvenc/v5.0/nvenc_5.0.1_sdk.zip
http://developer.download.nvidia.com/compute/nvenc/v5.0/nvenc_5.0.1_sdk.zip
http://developer.download.nvidia.com/compute/redist/ffmpeg/1511-patch/cudautils.zip
http://developer.download.nvidia.com/compute/redist/ffmpeg/1511-patch/cudautils.zip

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 8

OPEN SOURCE LIBRARIES

Download and install all the open source libraries.

1. Get x264.

~/Development $ git clone git://git.videolan.org/x264.git

~/Development $ cd x264

2. Configure x264.

~/Development/x264 $./configure \

 --disable-cli \

 --enable-static \

 --enable-shared \

 --enable-strip

3. Build x264.

~/Development/x264 $ make -j 10

4. Install x264.

~/Development/x264 $ sudo make install

~/Development/x264 $ sudo ldconfig

~/Development/x264 $ cd ..

~/Development/ $

git://git.videolan.org/x264.git

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 9

BUILD IT ALL TOGETHER...

1. Get FFmpeg.

~/Development/ $ git clone git://source.ffmpeg.org/ffmpeg.git

2. Download the NVIDIA acceleration.

~/Development/ $ wget

http://developer.download.nvidia.com/compute/redist/ffmpeg/1511-

patch/ffmpeg_NVIDIA_gpu_acceleration.patch

~/Development/ $ cd ffmpeg

3. Apply the NVIDIA acceleration patch. Note that this patch was created against the

git master commit:

 commit b83c849e8797fbb972ebd7f2919e0f085061f37f

 Date: Tue Nov 10 04:14:55 2015 +010

~/Development/ffmpeg $ git apply ../ffmpeg_NVIDIA_gpu_acceleration.patch

4. Configure FFmpeg with NVENC, NVRESIZE and x264 support.

~/Development/ffmpeg $ cd ..

~/Development/ $ mkdir ffmpeg_build

~/Development/ $ cd ffmpeg_build

~/Development/ffmpeg_build $../ffmpeg/configure --enable-nonfree \

--enable-nvenc \

--enable-nvresize \

--extra-cflags=-I../cudautils \

--extra-ldflags=-L../cudautils \

--enable-gpl \

--enable-libx264

5. Build FFmpeg.

~/Development/ffmpeg_build $ make -j 10

git://source.ffmpeg.org/ffmpeg.git
http://developer.download.nvidia.com/compute/redist/ffmpeg/1511-patch/ffmpeg_NVIDIA_gpu_acceleration.patch
http://developer.download.nvidia.com/compute/redist/ffmpeg/1511-patch/ffmpeg_NVIDIA_gpu_acceleration.patch

Step-by-Step Setup and Installation

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 10

6. Check that FFmpeg works. If NVENC and libx264 built properly you should get

them in this list of encoders. We can filter the list down to h.264 encoders with “grep

264”.

~/Development/ffmpeg_build $./ffmpeg -encoders | grep 264
ffmpeg version N-76328-g1b82a00 Copyright (c) 2000-2015 the FFmpeg developers

 built with gcc 4.8 (Ubuntu 4.8.4-2ubuntu1~14.04)

 configuration: --enable-nonfree --enable-nvenc --enable-nvresize --extra-cflags=-I../cudautils

--extra-ldflags=-L../cudautils --enable-gpl --enable-libx264

 libavutil 55. 4.100 / 55. 4.100

 libavcodec 57. 12.100 / 57. 12.100

 libavformat 57. 11.100 / 57. 11.100

 libavdevice 57. 0.100 / 57. 0.100

 libavfilter 6. 14.100 / 6. 14.100

 libswscale 4. 0.100 / 4. 0.100

 libswresample 2. 0.100 / 2. 0.100

 libpostproc 54. 0.100 / 54. 0.100

 V..... libx264 libx264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (codec h264)

 V..... libx264rgb libx264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 RGB (codec h264)

 V..... nvenc NVIDIA NVENC h264 encoder (codec h264)

 V..... nvenc_h264 NVIDIA NVENC h264 encoder (codec h264)

7. Check that FFmpeg has the NVRESIZE video filter. We can filter the list down with

“grep nvresize”.

~/Development/ffmpeg_build $./ffmpeg -filters | grep nvresize
ffmpeg version N-76328-g1b82a00 Copyright (c) 2000-2015 the FFmpeg developers

 built with gcc 4.8 (Ubuntu 4.8.4-2ubuntu1~14.04)

 configuration: --enable-nonfree --enable-nvenc --enable-nvresize --extra-cflags=-I../cudautils

--extra-ldflags=-L../cudautils --enable-gpl --enable-libx264

 libavutil 55. 4.100 / 55. 4.100

 libavcodec 57. 12.100 / 57. 12.100

 libavformat 57. 11.100 / 57. 11.100

 libavdevice 57. 0.100 / 57. 0.100

 libavfilter 6. 14.100 / 6. 14.100

 libswscale 4. 0.100 / 4. 0.100

 libswresample 2. 0.100 / 2. 0.100

 libpostproc 54. 0.100 / 54. 0.100

... nvresize V->N GPU accelerated video resizer.

8. Install FFmpeg.

~/Development/ffmpeg_build $ sudo make install

~/Development/ffmpeg_build $ sudo ldconfig

~/Development/ffmpeg_build $ cd ..

~/Development/ $ cd ..

~/ $

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 11

USING FFMPEG WITH NVENC

The following command lines will compare NVENC to x264:

TRANSCODE PERFORMANCE

This comparison will measure the time taken to transcode an input file to h.264 @5Mbps.

It will copy the audio track to the output (if present).

In the interest of space and avoiding line wrapping in this document the Linux

“continue command on next line” operator will be used (‘\’) to wrap the command to

the next line.

Using NVENC:

~/ $ time ffmpeg -y -i <mp4 input file> \

-vcodec nvenc -b:v 5M \

-acodec copy \

<OUTPUT.mp4>

Using x264:

~/ $ time ffmpeg -y -i <INPUT.mp4> \

-vcodec libx264 -b:v 5M \

-acodec copy \

OUTPUT.mp4

Using FFMPEG with NVENC

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 12

MEASURING CPU AND GPU UTILIZATION

When comparing NVENC to x264 it is useful to monitor the CPU and GPU utilization.

To do this we will use two command line tools.

CPU Utilization

The important column is the cpu “us” (user) utilization.

ubuntu@localmachine:~$ vmstat -w -n 1

procs ---------------memory-------------- ---swap-- -----io---- -system-- ------cpu-----

 r b swpd free buff cache si so bi bo in cs us sy id wa st

 9 0 29748 187236 170928 445720 0 0 384 0 4522 10101 81 0 19 0 0

 5 0 29748 183020 170928 449664 0 0 2432 0 4668 11630 80 0 19 0 0

12 0 29748 179424 170936 452716 0 0 2304 12 4571 11792 75 0 25 0 0

 9 0 29748 176820 170936 455496 0 0 1408 52 4809 10742 83 0 17 0 0

14 0 29748 174092 170936 458180 0 0 1536 0 4925 10767 84 0 15 0 0

15 1 29748 170992 170936 460920 0 0 1664 0 4652 10504 80 0 20 0 0

GPU Utilization

The NVENC utilization can be seen in the “enc” column. The “sm” column is the CUDA

workload. We will use this later when doing GPU resize.

ubuntu@localmachine:~$ nvidia-smi dmon -i 0

gpu pwr temp sm mem enc dec mclk pclk

Idx W C % % % % MHz MHz

 0 82 35 12 4 86 0 3304 1151

 0 82 35 11 4 90 0 3304 1151

 0 83 35 11 4 93 0 3304 1151

 0 83 35 12 5 92 0 3304 1151

 0 83 36 11 4 94 0 3304 1151

 0 83 36 9 4 96 0 3304 1151

Using FFMPEG with NVENC

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 13

MULTIPLE OUTPUTS FROM AN INPUT (1:N)

In many scenarios multiple output formats are created at the same time from the input

format.

Software resize is CPU intensive and quickly bottlenecks the ability to encode. For that

reason, NVIDIA has implemented a GPU zero-copy engine to share frames between

plugins as well as a video filter that does GPU resize (“nvresize”).

Figure 3 - A typical 1:n resize scenario

In the Figure above the video is resized into 7 formats and combined as different video

streams in a single output container. The audio stream is copied from the input

container to the new output container.

Using FFMPEG with NVENC

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 14

Resize Example

In the following example we will take a 1080p30 input file and downsize it to 5 formats,

each stream is encoded with NVENC and then the output stream is put in its own

container output file along with a copy of the audio (if present).

 Software resize provided resized frames at 75fps (375fps total - using 37% NVENC

utilization).

 GPU resize provided resized frames at 190fps (950fps total - capped by 100% NVENC

utilization).

Software based resize:

~/ $ time ffmpeg -y -i INPUT.mp4 \

 -acodec copy -vcodec nvenc -b:v 5M -s hd1080 out1sw.mkv \

 -acodec copy -vcodec nvenc -b:v 4M -s hd720 out2sw.mkv \

 -acodec copy -vcodec nvenc -b:v 3M -s hd480 out3sw.mkv \

 -acodec copy -vcodec nvenc -b:v 2M -s wvga out4sw.mkv \

 -acodec copy -vcodec nvenc -b:v 1M -s cif out5sw.mkv

Using FFMPEG with NVENC

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 15

GPU Accelerated Resize

Note how the pipe character ‘|’ has to be escaped “\|” for a bash shell.

~/ $ time ffmpeg -y -i INPUT.mp4 -filter_complex \

nvresize=5:s=hd1080\|hd720\|hd480\|wvga\|cif:readback=0[out0][out1]

[out2][out3][out4] \

-map [out0] -acodec copy -vcodec nvenc -b:v 5M out0nv.mkv \

-map [out1] -acodec copy -vcodec nvenc -b:v 4M out1nv.mkv \

-map [out2] -acodec copy -vcodec nvenc -b:v 3M out2nv.mkv \

-map [out3] -acodec copy -vcodec nvenc -b:v 2M out3nv.mkv \

-map [out4] -acodec copy -vcodec nvenc -b:v 1M out4nv.mkv

Using FFMPEG with NVENC

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 16

TRANSCODE QUALITY

The above performance tests relied heavily on the default parameters. The quality of the

output has not been optimized. We can make the output better by adjusting some of the

encoding parameters.

These parameters are generic FFmpeg commands so they apply to NVENC and x264.

The following commands can be run again using x264 for comparison to NVENC by

changing the “vcodec” from “nvenc” to “libx264”.

In the following examples we will add a tuning one by one. Each change is highlighted

in yellow.

Presets

First we will use a higher quality preset. The NVENC “slow” preset turns on 2-pass

encoding. This improves the rate control as well as the quality. We’ll discuss rate control

later in these examples.

~/ $ time ffmpeg -y -i INPUT.mp4 \

-vcodec nvenc -preset slow -b:v 5M \

-acodec copy \

OUTPUT.mp4

VBV Buffer

The H.264 standard includes a section called the VUI information. This describes how

fast the video stream can be transmitted and the size of the FIFO buffer on the target

decoder. Defining the VUI buffer size (VBV) as well as the maximum rate it can be filled

controls how much the current bitrate can deviate from the target bitrate. A good size

for the VBV is 2 seconds of video - thus twice the size of the desired target bitrate. In this

example, let’s allow it to fill at twice the target bitrate.

~/ $ time ffmpeg -y -i INPUT.mp4 \

-vcodec nvenc -preset slow -b:v 5M \

-maxrate 10M -bufsize:v 10M -bf 2 -ref 1 \

-acodec copy \

OUTPUT.mp4

Using FFMPEG with NVENC

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 17

B-Frames

Next we will add B-frames. These are the most efficient frames in the H.264 standard.

We will also limit to one reference frame (for broader H.264 player compatibility).

Reference frames are the frames that can be referred to by B frames.

~/ $ time ffmpeg -y -i INPUT.mp4 \

-vcodec nvenc -preset slow -b:v 5M \

-maxrate 10M -bufsize:v 10M -bf 2 -ref 1 \

-bf 2 -ref 1 \

-acodec copy \

OUTPUT.mp4

Group of Pictures (GOP)

Next we will define the order of I, P, and B frames. A collection of these is called a GOP.

When you seek back and forth on video you must start at a GOP boundary. For internet

video this is typically 5 seconds. For control over the experience, for example on Blu-ray,

it’s 1 second. Let’s use a 5-second GOP in this example and assume the input is 30fps -

thus the GOP is 30x5 = 150.

Setting the number of B-frames and the GOP defines the order of I, P, and B frames.

For example: B-frames = 2, GOP = 15 would result in

I P B B P B B P B B P B B P I

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~/ $ time ffmpeg -y -i INPUT.mp4 \

-vcodec nvenc -preset slow -b:v 5M \

-maxrate 10M -bufsize:v 10M -bf 2 -ref 1 \

-bf 2 -ref 1 -g 150 \

-acodec copy \

OUTPUT.mp4

Using FFMPEG with NVENC

FFMPEG with NVIDIA Acceleration on Ubuntu Linux DU-07857-001_v01 | 18

Adjusting Bit Budget Ratio Between I, P, & B Frames

Next we will adjust the ratio of bits used in I, P and B frames. By adjusting this bias we

can tune the overall perceived quality. This parameter is content dependent. The values

in this example are for real world videos not computer generated video content like

animated stories or computer gameplay.

~/ $ time ffmpeg -y -i INPUT.mp4 \

-vcodec nvenc -preset slow -b:v 5M \

-maxrate 10M -bufsize:v 10M -bf 2 -ref 1 \

-bf 2 -ref 1 -g 150 \

-i_qfactor 1.1 -b_qfactor 1.25 \

-acodec copy \

OUTPUT.mp4

Setting Quantization Limits

Quantization is the complexity of each frame. By setting maximum and minimum limits

we can control how wide the deviation is from the target bitrate. A quantization (“qp”)

of 1 is basically lossless. Anything above 30 is really complex. For this example we’ll use

a range of 1..50.

~/ $ time ffmpeg -y -i INPUT.mp4 \

-vcodec nvenc -preset slow -b:v 5M \

-maxrate 10M -bufsize:v 10M -bf 2 -ref 1 \

-bf 2 -ref 1 -g 150 \

-i_qfactor 1.1 -b_qfactor 1.25 \

-qmin 1 -qmax 50 \

-acodec copy \

OUTPUT.mp4

www.nvidia.com

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided.
However, NVIDIA Corporation (“NVIDIA”) does not give any representations or warranties, expressed or
implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties
that may result from its use. This publication supersedes and replaces all other specifications for the product
that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other
changes to this specification, at any time and/or to discontinue any product or service without notice.
Customer should obtain the latest relevant specification before placing orders and should verify that such
information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized
representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general
terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military,
aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death or property or environmental damage.
NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and
therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid
a default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this specification. NVIDIA does not accept any liability related to any default,
damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any
manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA
intellectual property right under this specification. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents
or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other
intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if
reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all
associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be
limited in accordance with the NVIDIA terms and conditions of sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2015 NVIDIA Corporation. All rights reserved.

