

NVENC_VideoEncoder_API_PG-06155-001_v04 | July 2014

Programming Guide

NVENC - NVIDIA VIDEO
ENCODER INTERFACE

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | ii

REVISION HISTORY

Revision Date Author Description

1.0 2011/12/29 SD/CC Initial release.

1.1 2012/05/04 SD Update for Version 1.1

2.0 2012/10/12 SD Update for Version 2.0

3.0 2013/07/25 AG Update for Version 3.0

4.0 2014/07/01 SM Update for Version 4.0

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | iii

TABLE OF CONTENTS

NVIDIA Video Encoder Interface ... 1

Introduction .. 1

1. NVIDIA Video Encoder Interface .. 1

2. Setting up The Hardware for encoding ... 2

2.1 Opening an Encode Session .. 2

2.1.1 Initializing the Encode Device .. 2

2.2 Selecting an Encoder GUID ... 3

2.3 Querying Capability Values ... 3

2.4 Encoder Preset Configurations ... 3

2.4.1 Enumerating Preset GUIDs .. 3

2.4.2 Fetching Preset Encoder Configuration .. 4

2.5 Selecting an Encoder Profile .. 4

2.6 Getting Supported Input Format list ... 4

2.7 Initializing the Hardware Encoder Session .. 5

2.7.1 Configuring Encode Session Attributes .. 5

2.7.2 Finalizing the Codec Configuration for Encoding 6

2.7.3 Setting Encode Session Attributes ... 7

2.8 Creating Resources Required to Hold Input/Output Data 7

2.9 Retrieving Sequence Parameters .. 8

3. Encoding The Video Stream ... 9

3.1 Preparing Input Buffer for Encoding: .. 9

3.1.1 Input Buffers Allocated through the NVIDIA Video Encoder Interface: 9

3.1.2 Input Buffers Allocated Externally .. 9

3.2 Configuring Per-Frame Encode Parameters .. 9

3.2.1 Forcing the Current Frame to be used as Intra-Predicted Reference Frame10
3.2.2 Forcing the Current Frame to be used as a Reference Frame 10

3.2.3 Forcing current frame to be used as an IDR frame 10

3.2.4 Requesting Generation of Sequence parameters 10
3.2.6 Enforcing a Constant QP ... 10

3.3 Submitting Input for Encoding .. 11

3.4 Generating Encoded Output ... 11

4. End of Encoding .. 12

4.1 Notifying the End of Input Stream .. 12

4.2 Releasing the Created Resources ... 12

4.3 Closing the Encode Session .. 12

5. Modes of Operation .. 13

5.1 Asynchronous Mode .. 13

5.2 Synchronous Mode ... 14

6. Threading Model ... 15

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | iv

7. Using Additional Features ... 16

7.1 Low Latency Encoding ... 16

7.1.1 Low Latency Settings ... 16

7.1.2. Two-Pass Rate Control ... 17
7.1.3. Low latency Presets .. 17

7.2 QoS Features .. 18

7.2.1. Invalidate Reference Frame ... 18

7.2.1. Intra Refresh .. 18
7.2.2. Dynamic Bit-Rate and Resolution change 18

7.2.3. Forcing Intra .. 18

7.3 Reconfigure API ... 19

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 1

NVIDIA VIDEO ENCODER INTERFACE

INTRODUCTION

NVIDIA’s generation of GPUs based on the Kepler and Maxwell architectures contain a
hardware-based H.264 video encoder (referred to as NVENC). The NVENC hardware

takes YUV as input, and generates a H.264 video bitstream. NVENC hardware’s

encoding capabilities are accessed using the NVENC API. This document provides
information on how to program the NVENC using the APIs exposed in the SDK.

Developers should have a basic understanding of the H.264 Video Codec, and be

familiar with either Windows or Linux development.

1. NVIDIA VIDEO ENCODER INTERFACE

Developers can create a client application that calls NVENC API functions within

nvEncodeAPI.dll for Windows OSes or libnvidia-encode.so for Linux OSes.
These libraries are installed as part of the NVIDIA driver. The client application can

either link at run-time using LoadLibrary() on Windows OS or dlopen() for Linux

OS. The binary is copied to the system (.\System32) during the driver installation
process.

The client's first interaction with the NVIDIA Video Encoder Interface is to call

NvEncodeAPICreateInstance. This populates the input / output buffer passed to
nvEncodeAPICreateInstance with pointers to functions that implement the

functionality provided in the interface.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 2

2. SETTING UP THE HARDWARE FOR ENCODING

2.1 Opening an Encode Session

After loading the NVENC Interface, the client should first call
NvEncOpenEncodeSessionEx APIto open an encoding session. This function

provides an encode session handle to the client, and that handle must be used for all

further API calls in the current session.

2.1.1 Initializing the Encode Device

The NVIDIA Encoder supports the use of the following types of Devices:

1) DirectX 9:

The client should create a DirectX 9 device with behavior flags including:

D3DCREATE_FPU_PRESERVE

D3DCREATE_MULTITHREADED

D3DCREATE_HARDWARE_VERTEXPROCESSING

The client should pass a pointer to the IUnknown interface of the created device [typecast to
void *] as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on
Windows 7 and later OS.

2) DirectX 10:

The client should pass a pointer to the IUnknown interface of the created device [typecast to
void *] as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on
Windows 7 and later OS.

3) DirectX 11:

The client should pass a pointer to the IUnknown interface of the created device [typecast to
void *] as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on
Windows 7 and later OS.

4) CUDA:

The client should create a floating CUDA context, and pass the cuda context handle as
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_CUDA. Use of CUDA device for Encoding is supported on
Windows XP and Linux, in addition to Windows 7 and later, from NVIDIA Video Encoder
Interface version 2.0 onwards.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 3

2.2 Selecting an Encoder GUID

The client calls the NVIDIA Encoder Interface to select an Encoding GUID that

represents the desired codec for encoding the video sequence in the following manner:

i) The client should call NvEncGetEncodeGUIDCount to get the number of supported
Encoder GUIDs from the NVIDIA Video Encoder Interface.

ii) The client should use this count to allocate a buffer of sufficient size to hold the
supported Encoder GUIDS.

iii) The client should then call NvEncGetEncodeGUIDs to populate this list.

The client should select a GUID that matches its requirement from this list and use that

as the encodeGUID for the remainder of the encoding session.

2.3 Querying Capability Values

In case the client needs to explicitly to query the features supported by the Encoder, the

following should be done

i) The client is required to specify the capability attribute it wants to query through the
NV_ENC_CAPS_PARAM::capsToQuery parameter. This should be a member of the
NV_ENC_CAPS enum.

ii) The client should call NvEncGetEncoderCaps to determine support for the required
attribute.

Refer to the API reference NV_ENC_CAPS enum definition for interpretation of individual

capability attributes.

2.4 Encoder Preset Configurations

The NVIDIA Encoder Interface exposes various presets to cater to different use cases

which can be used by the client. Using presets through the Encoder Interface will

automatically set all of the relevant encoding parameters. This is a coarse level of control
exposed by the NVIDIA Encoder Interface to the client.

2.4.1 Enumerating Preset GUIDs

The client can enumerate supported Preset GUIDs for the selected encodeGUID as

follows:

i) The client should call NvEncGetEncodePresetCount to get the number of
supported Encoder GUIDs from the NVIDIA Video Encoder Interface.

ii) The client should use this count to allocate a buffer of sufficient size to hold the
supported Preset GUIDS.

iii) The client should then call NvEncGetEncodePresetGUIDs to populate this list.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 4

2.4.2 Fetching Preset Encoder Configuration

The client can either use the preset GUID for configuring the encode session or it can

fine-tune the encoder configuration corresponding to a preset GUID. This mechanism

provides a client the ability to fine tune parameter values by overriding the preset
defaults.

The client should follow these steps to fetch a Preset Encode configuration:

i) The client should enumerate the supported presets as described above, in the section
“2.4.1 Enumerating Preset GUIDs”

ii) The client should select a Preset GUID for which the encode configuration is to be
fetched.

iii) The client should call NvEncGetPresetConfig with the selected EncodeGUID and
PresetGUID as inputs

iv) The required preset encoder configuration can be retrieved through
NV_ENC_PRESET_CONFIG::presetCfg.

v) This gives the client the flexibility to over-ride the encoder parameters that defaulted by
the specific preset.

2.5 Selecting an Encoder Profile

The client may specify a profile to encode for a specific encoder profile.

(Eg: encoding video for playback on iPod, encoding video for BD authoring, etc.)

The client should do the following to retrieve a list of supported encoder profiles:

i) The client should call NvEncGetEncodeProfileGUIDCount to get the number of
supported Encoder GUIDs from the NVIDIA Video Encoder Interface.

ii) The client should use this count to allocate a buffer of sufficient size to hold the
supported Encode Profile GUIDS.

iii) The client should then call NvEncGetEncodeProfileGUIDs to populate this list.

The client should select the profile GUID that best matches its requirement.

2.6 Getting Supported Input Format list

The client should follow these steps to retrieve the list of supported input formats:

i) The client should call NvEncGetInputFormatCount.

ii) The Client should use the count retrieved from NvEncGetInputFormatCount to
allocate a buffer to hold the list of supported input buffer formats [list elements of type
NV_ENC_BUFFER_FORMAT].

iii) The client should then populate this list by calling NvEncGetInputFormats.

The client should select a format enumerated in this list for creating input buffers.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 5

2.7 Initializing the Hardware Encoder Session

The client needs to call NvEncInitializeEncoder with a valid encoder configuration

specified through NV_ENC_INITIALIZE_PARAMS, and encoder handle (returned on

successful opening of encode session)

2.7.1 Configuring Encode Session Attributes

Encode session Configuration is divided into three parts:

2.7.1.1 Session Parameters

Common parameters such as output dimensions, input format, display aspect ratio,

frame rate, average bitrate, etc. are available in NV_ENC_INITIALIZE_PARAMS structure.

The client should use an instance of this structure as input to NvEncInitalizeEncoder.

The Client must populate the following members of the NV_ENC_INITIALIZE_PARAMS

struct for the Encode session to be successfully initialized:

i) NV_ENC_INITALIZE_PARAMS::encodeGUID : The client must select a suitable
codec GUID as described in section “2.2 Selecting an Encoder GUID”

ii) NV_ENC_INITIALIZE_PARAMS::encodeWidth : The client must specify the desired
width of the encoded video.

iii) NV_ENC_INITIALIZE_PARAMS::encodeHeight: The client must specify the
desired height of the encoded video.

2.7.1.2 Advanced Codec-level parameters

Parameters dealing with the encoded bitstream such as GOP length, encoder profile,

Rate Control mode, etc are exposed through the NV_ENC_CONFIG structure. The client
can pass codec level parameters through NV_ENC_INITIALIZE_PARAMS::codecConfig.

2.7.1.3 Advanced Codec-specific parameters

Advanced codec-specific parameters are available in NV_ENC_CONFIG_XXXX structures.

Eg: H.264-specific parameters are available in NV_ENC_CONFIG_H264.

The client can pass codec-specific parameters through the

NV_ENC_CONFIG::encodeCodecConfig union.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 6

2.7.2 Finalizing the Codec Configuration for Encoding

2.7.2.1 High-level Control Using Presets

This is the simplest method of configuring the NVIDIA Video Encoder Interface, and

involves minimal setup steps to be performed by the client. This is intended for use
cases where the client does not need to fine-tune any codec level parameters.

In this case, the client should follow these steps:

i) The client should specify the session parameters as described in section “2.7.1.1 Session
Parameters”

ii) Optionally, the client can enumerate and select Preset GUID that best suites the current
use case, as described in section “2.4.1 Enumerating Preset GUIDs” The client should
then pass the selected Preset GUID using
NV_ENC_INITIALIZE_PARAMS::presetGUID.

This helps the NVIDIA Video Encoder interface to correctly configure the encoder
session based on the encodeGUID and presetGUID provided. Hence, this step is
recommended.

iii) The client should set the advanced codec-level parameter pointer
NV_ENC_INITIALIZE_PARAMS::codecParams to NULL

2.7.2.2 Coarse Control by overriding Preset Parameters

The client can choose to edit some encoding parameters, but may not want to populate
the complete encode configuration from scratch. In this case, the client is advised to

follow these steps:

i) The client should specify the session parameters as described in section “2.7.1.1 Session
Parameters”

ii) The client should enumerate and select a Preset GUID that best suites the current use
case, as described in section “2.4.1 Enumerating Preset GUIDs” The client should
retrieve a Preset encode configuration as described in section “2.4.2 Fetching Preset
Encoder Configuration”

iii) The client may need to explicitly query the capability of the encoder to support certain
features or certain encoding configuration parameters. For this, the client should do the
following:

iv) The client is required to specify the capability attribute it wants to query through the
NV_ENC_CAPS_PARAM::capsToQuery parameter. This should be a member of the
NV_ENC_CAPS enum.

v) The client should call NvEncGetEncoderCaps to determine support for the required
attribute. Refer to NV_ENC_CAPS enum definition in the API reference for
interpretation of individual capability attributes.

vi) The client should then select a desired Preset GUID and fetch the corresponding Preset
Encode Configuration as described in: “2.4 Getting Preset Encoder Configurations”.

vii) The client can override any parameters from the preset NV_ENC_CONFIG according to
its requirements. The client should pass the fine-tuned NV_ENC_CONFIG structure using
NV_ENC_INITIALIZE_PARAMS::codecConfig pointer.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 7

viii) Additionally, the client should also pass the selected preset GUID through
NV_ENC_INITIALIZE_PARAMS::presetGUID. This is to allow the NVIDIA Video
Encoder interface to program internal parameters associated with the encoding session
to ensure that the encoded output conforms to the client’s request. Passing the preset
GUID will not override the fine-tuned parameters.

2.7.3 Setting Encode Session Attributes

Once all Encoder settings have been finalized, the client should populate a

NV_ENC_CONFIG struct, and use it as an input to NvEncInitializeEncoder in order to
freeze the Encode settings for the current encodes session. Some settings such as Rate

Control mode, Average Bitrate, can be changed on-the-fly.

The client is required to explicitly specify the following while initializing the Encode
Session:

2.7.3.1 Mode of Operation

The client should set NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1 if it
wants to operate in Asynchronous mode. Set it to 0 for operating in Synchronous mode.

Asynchronous mode encoding is only supported on Windows 7 and later Windows OS.

Refer to section 5 for more detailed explanation.

2.7.3.2 Picture-type Decision

If the client wants to send the input buffers in display order, it must set enablePTD = 1.

If the client wants to send the input buffers in encode order, it must set enablePTD = 0,
and must specify

 NV_ENC_PIC_PARAMS:: pictureType

 NV_ENC_PIC_PARAMS_H26::.displayPOCSyntax

 NV_ENC_PIC_PARAMS_H264 ::refPicFlag

Note: NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync == 0 and

NV_ENC_INITIALIZE_PARAMS:: enablePTD == 1 are not a compatible combination.

If the client needs to use synchronous mode of operation, the client should also take care

of picture-type decision; i.e. if NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync == 0

then NV_ENC_INITIALIZE_PARAMS::enablePTD should also be 0.

2.8 Creating Resources Required to Hold Input/Output
Data

Once the Encode session is initialized, the client should allocate buffers to hold the
input/output data.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 8

The client may choose to allocate input buffers through the NVIDIA Video Encoder

Interface, by calling NvEncCreateInputBuffer API. The input buffer width and height
should be 32-aligned. In this case, the client is responsible to destroy the allocated input

buffers before closing the Encode Session. It is also the client’s responsibility to fill the

input buffer with valid input data according to the chosen input buffer format.

The client should allocate buffers to hold the output encoded bitstream using the

NvCreateBitstreamBuffer API. It is the client’s responsibility to destroy these buffers

before closing the Encode Session.

Alternatively, in scenarios where the client cannot or does not want to allocate input

buffers through the NVIDIA Video Encoder Interface, it can use any externally allocated

DirectX resource as an input buffer. However, the client has to perform some simple
processing to map these resources to resource handles that are recognized by the

NVIDIA Video Encoder Interface before use. The translation procedure is explained in

section “3.1.2 Input Buffers Allocated Externally”

If the client has used a CUDA device to initialize the encoder session, and wishes to use

input buffers NOT allocated through the NVIDIA Video Encoder Interface, the client is

required to use buffers allocated using the cuMemAlloc family of APIs. The NVIDIA
Video Encoder Interface version 2.0 only supports CUdevicePtr as input. Support for

CUarray inputs will be added future version.

Note: The client should allocate at least [1 + No. of B-Frames] Input/Output buffers.

2.9 Retrieving Sequence Parameters

After configuring the Encode Session, the client can retrieve the Sequence parameter

information at any time by calling NvEncGetSequenceParams. The client must allocate a
buffer of size NV_MAX_SEQ_HDR_LEN to hold the Sequence parameters. It is the client’s

responsibility to manage this memory.

By default, SPS PPS data will be attached to every IDR frame. However, the client can
request the NVIDIA Video Encoder Interface to generate SPS PPS data on the fly as well.

For this, the client must set NV_ENC_PIC_PARAMS::encodeFlags to

NV_ENC_FLAGS_OUTPUT_SPSPPS. The output frame generated for the current input will
then contain SPS PPS data attached to it.

The client can call NvEncGetSequenceParams at any time during the encoding session,

after it has called NvEncInitializeEncoder.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 9

3. ENCODING THE VIDEO STREAM

Once the Encode Session is configured and input/output buffers are allocated, the client

can start streaming the input data for encoding. The client is required to pass a handle to
a valid input buffer and a valid bitstream buffer to the NVIDIA Video Encoder Interface

for encoding an input picture.

3.1 Preparing Input Buffer for Encoding:

3.1.1 Input Buffers Allocated through the NVIDIA Video Encoder
Interface:

If the client has allocated input buffers through NvEncCreateInputBuffer, the client

needs to fill valid input data before using the buffer as input for encoding. For this, the
client should call NvEncLockInputBuffer to get a CPU pointer to the input buffer. Once

the client has filled input data, it should call NvUnlockInputBuffer. The client should

use the input buffer for encode only after unlocking it. The client must also take care to
unlock any locked input buffer before destroying it.

3.1.2 Input Buffers Allocated Externally

If the client is using externally allocated buffers as input, the client is required to call

NVEncRegisterResource before use with the NVIDIA Video Encoder Interface. The

client should also explicitly call NvEncUnregisterResource with this handle before
destroying the resource. The client should call NvEncMapInputResource to retrieve a

handle to the resource that is understandable by the NVIDIA Video Encoder Interface.

Note that the client is required to pass the registered handle as
NV_ENC_MAP_INPUT_RESOURCE::registeredResource. The mapped handle will

be made available in NV_ENC_MAP_INPUT_RESOURCE::mappedResource. The client

should use this mapped handle as the input buffer handle in NV_ENC_PIC_PARAM. The
client should call NvEncUnmapInputResource after it has finished using the resource as

an input to the NVIDIA Video Encoder Interface. The resource should not be used for

any other purpose outside the NVIDIA Video Encoder Interface while it is in ‘mapped’
state. Such usage is not supported and may lead to undefined behavior.

3.2 Configuring Per-Frame Encode Parameters

The client should populate a NV_ENC_PIC_PARAMS struct with the parameters it

requires to be applied to the current input picture. The client can do the following on a
per-frame basis:

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 10

3.2.1 Forcing the Current Frame to be used as Intra-Predicted
Reference Frame

The client should set NV_ENC_PIC_PARAMS::encodeFlags to
NV_ENC_FLAGS_FORCEINTRA.

3.2.2 Forcing the Current Frame to be used as a Reference Frame

The client should set NV_ENC_PIC_PARAMS_H264::refPicFlag to 1

3.2.3 Forcing current frame to be used as an IDR frame

The client should set NV_ENC_PIC_PARAMS_H264::forceIDR to 1.

3.2.4 Requesting Generation of Sequence parameters

The client should set NV_ENC_PIC_PARAMS::encodeFlags to

NV_ENC_FLAGS_OUTPUT_SPSPPS.

3.2.6 Enforcing a Constant QP

The client should set the flag NV_ENC_PIC_PARAMS::userForcedConstQP to 1 and

specify the required RateControl QP value in NV_ENC_RC_PARAMS:: constQP. This
request will be honored only if the Encode Session is already running with rate control

mode NV_ENC_PARAMS_RC_CONSTQP, or the rate control mode is being set to

NV_ENC_PARAMS_RC_CONSTQP in the current operation.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 11

3.3 Submitting Input for Encoding

The client should call NvEncEncodePicture to perform encoding.

The input picture data will be taken from the specified input buffer, and the encoded

bitstream will be available in the specified bitstream buffer once the encoding process
completes.

Common parameters such as timestamp, duration, input buffer pointer, etc are available

in NV_ENC_PIC_PARAMS while Codec-specific parameters are available in
NV_ENC_PIC_PARAMS_XXXX structures.

For example, H.264-specific parameters are available in NV_ENC_PIC_PARAMS_H264.

The client should specify the codec specific structure to NV_ENC_PIC_PARAMS using the
NV_ENC_PIC_PARAMS::codecPicParams member.

3.4 Generating Encoded Output

Upon completion of the encoding process for an input picture, the client is required to

call NvEncLockBitstream to get a CPU pointer to the encoded bit stream. The client can
choose to make a local copy of the encoded data or pass on the CPU pointer to a media

file writer.

The CPU pointer will remain valid until the client calls NvUnlockBitstreamBuffer. The
client should call NvUnlockBitstreamBuffer after it completes processing the output

data.

The client must ensure that all bit stream buffers are unlocked before destroying them
(while closing an encode session) or even before reusing it again as an output buffer.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 12

4. END OF ENCODING

4.1 Notifying the End of Input Stream

To notify the end of input stream, the client must call NvEncEncodePicture, with the
flag NV_ENC_PIC_PARAMS::encodeFlags set to NV_ENC_FLAGS_EOS. This must be done

before closing the Encode Session.

When notifying End of Stream, the client should set all other members of
NV_ENC_PIC_PARAMS to 0. No input buffer is required in case of EOS notification.

EOS notification effectively flushes the encoder. This can be called multiple times in a

single encode session.

4.2 Releasing the Created Resources

Once encoding completes, the client should destroy all allocated resources.

The client should call NvEncDestroyInputBuffer if it had allocated input buffers

through the NVIDIA Video Encoder Interface. The client must be sure not to destroy a
buffer while it is locked.

The client should call NvEncDestroyBitStreamBuffer to destroy each bitstream buffer

it had allocated. The client must be sure not to destroy a bitstream buffer while it is
locked.

4.3 Closing the Encode Session

The client should call NvEncDestroyEncodeSession to close the encoding session. The
client should ensure that all resources tied to the encode session being closed have been

destroyed before calling NvEncDestroyEncodeSession. These include Input buffers,

bitstream buffers, SPSPPS buffer, etc.

It must also ensure that all registered events are unregistered, and all mapped input

buffer handles are unmapped.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 13

5. MODES OF OPERATION

The NVIDIA Video Encoder Interface supports the following two modes of operation:

5.1 Asynchronous Mode

This mode of operation is used for asynchronous output buffer processing. It is also 0

event driven. For this mode, the client allocates an event object and associates the event

with an allocated output buffer. This event object is passed to the NVIDIA Encoder
Interface as part of the NvEncEncodePicture API. The client can wait on the event in a

separate thread. When the event is signaled, the client calls the NVIDIA Video Encoder

Interface to copy bitstream output produced by the HW encoder. Note: For NVIDIA
Video Encoder Interface versions 1.0, 2.0 and 3.0 can support asynchronous mode of

operation for Windows only. In Linux, only synchronous mode is supported (refer to

Section “5.2 Synchronous Mode”)

The client should set the flag NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1

to indicate that it wants to operate in asynchronous mode. After creating the Event

objects [one object corresponds to each bitstream buffer it creates], the client needs to
register them with the NVIDIA Video Encoder Interface through the

NvEncRegisterAsyncEvent API. The client is required to pass a bitstream buffer

handle and an event handle as input to NvEncEncodePicture. The NVIDIA Video
Encoder Interface will signal this event when the HW finishes encoding the current

input data. The client can then call NvEncLockBitstream in non-blocking mode

[NV_ENC_LOCK_BITSTREAM::doNotWait flag set to 1] to fetch the output data.

The client should call NvEncUnregisterAsyncEvent to unregister the Event handles

before destroying the Event objects. This is the preferred mode of operation.

A step-by-step control flow would be:

i) When working in asynchronous mode, the output sample must consist of an event + output
buffer and clients must work in multi-threaded manner (D3D9 device should be created
with MULTITHREADED flag).

ii) The output buffers are allocated using NvEncCreateBitstream API. The NVIDIA
Video Encoder Interface will return an opaque pointer to the output memory in
NV_ENC_CREATE_BITSTREAM_BUFFER::bitstreambuffer. This opaque output
pointer should be used in NvEncEncodePicture and NvEncLockBitsteam /
NvEncUnlockBitsteam calls. For accessing the output memory using CPU, client must
call NvEncLockBitsteam API. The number of IO buffers should be at least 4 + number
of B frames.

iii) The events are windows event handles allocated using win32 CreateEvent API and
registered with NvEncodeAPI calling the function NvEncRegisterAsyncEvent before
encoding. The registering of events is required only once per encoding session. Clients must
unregister the events using NvEncUnregisterAsyncEvent before destroying the event
handles. The number of event handles must be same as number of output buffers as each
output buffer is associated with an event.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 14

iv) Client must create a secondary thread in which it can wait on the completion event and copy
the bitstream data from the output sample. Client will have 2 threads; one is the main
application thread which submits encoding work to NVIDIA Encoder while secondary
thread waits on the completion events and copies the compressed bitstream data from the
output buffer.

v) Client must send both the event and output buffer in
NV_ENC_PIC_PARAMS::outputBitstream and
NV_ENC_PIC_PARAMS::completionEvent

fields as part of NvEncEncodePicture API call.

vi) Client should then wait on the event on the secondary thread in the same order in which
they have called NvEncEncodePicture calls irrespective of input buffer re-
ordering(encode order != display order). NVIDIA Encoder takes care of the reordering in
case of B frames and should be transparent to the encoder clients.

vii) When the event gets signalled then client must send down the output buffer of the output
sample on whose event it was waiting on in
NV_ENC_LOCK_BITSTREAM::outputBitstream field as part of
NvEncLockBitstream.

viii) The NVIDIA Encoder Interface returns a CPU pointer and bitstream size in bytes as part of
the NV_ENC_LOCK_BITSTREAM.

ix) After copying the bitstream data, client must call NvEncUnlockBitstream for the locked
output bitstream buffer.

Note:
 The client will receive the events signal and output buffer in the same order in which they

have been queued.

 The LockBitstream parameter struct has a picture type field which will notify the output
picture type to the clients.

 Both, the input and output sample (output buffer and the output completion event) are free
to be reused once the NVIDIA Video Encoder Interface has signalled the event and the
client has copied the data from the output buffer.

5.2 Synchronous Mode

This mode of operation is used for synchronous output buffer processing. In this mode

the client makes a blocking call to the NVIDIA Video Encoder Interface to retrieve the
output bitstream data from the encoder. The client sets the flag

NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 0 for operation in synchronous

mode. The client then must call NvEncEncodePicture without setting a completion
Event handle. The client must call NvEncLockBitstream with flag

NV_ENC_LOCK_BITSTREAM::doNotWait set to 0, so that the lock call blocks until the HW

Encoder finishes writing the output bitstream. The client can then operate on the
generated bitstream data and call NvEncUnlockBitstream.

It is important to note that if the client wants to use Synchronous mode for encoding

with B-frames, the client must also set NV_ENC_CONFIG::enablePTD to 0, i.e. the client
must also handle the picture-type decision, and send a valid picture input to the

NVIDIA Encoder Interface.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 15

6. THREADING MODEL

In order to get maximum performance for encoding, the encoder client should create a

separate thread to wait on events or when making any blocking calls to the encoder
interface.

The client should avoid making any blocking calls from the main encoder processing

thread. The main encoder thread should be used only for encoder initialization and to
submit work to the HW Encoder using NvEncEncodePicture API, which is non-

blocking.

Output buffer processing, such as waiting on the completion event in asynchronous
mode or calling the NvEncLockBitstream/NvEncUnlockBitstream blocking API in

synchronous mode, should be done on the secondary thread. This ensures the main

encoder thread is never blocked except when the encoder client runs out of resources.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 16

7. USING ADDITIONAL FEATURES

7.1 Low Latency Encoding

The following section describes the NVIDIA recommended settings for H.264 encoder
for low-latency applications such as cloud gaming, real-time streaming etc.

7.1.1 Low Latency Settings

The VBV buffer size determines the maximum size of a coded picture. Typical VBV

buffer size values are in the range of 0.5*maxBitrate to 3.0*maxBitrate, which

corresponds to a maximum transmission delay of 500ms to 3s over a constant bitrate
channel. We would recommend the clients to use 2 Pass Rate control modes for low

latency scenarios.

For low-latency applications, the lowest transmission delay can be achieved by setting
the VBV buffer size to the average frame size. In this case, the GOP length should be set

to NVENC_INFINITE_GOPLENGTH, as such a small VBV buffer size severely restricts the

quality of I-frames. When the rate control mode is set to
NV_ENC_PARAMS_RC_2_PASS_QUALITY, the encoder is allowed to exceed the VBV

buffer size at scene changes (and I frames) in order to minimize the coding artifacts

resulting from the limited maximum frame size (When the rate control mode is
NV_ENC_RC_2_PASS_FRAMESIZE_CAP, the coded picture size is never allowed to exceed

the VBV buffer size).

uint32_t maxFrameSize = B/N;

NV_ENC_RC_PARAMS::vbvBufferSize= maxFrameSize;

NV_ENC_RC_PARAMS::vbvInitialDelay= maxFrameSize;

NV_ENC_RC_PARAMS::maxBitRate= NV_ENC_CONFIG::vbvBufferSize *N; // where

N is the encoding frame rate.

NV_ENC_RC_PARAMS::averageBitRate=

 NV_ENC_RC_PARAMS::vbvBufferSize *N; // where N is the encoding frame

rate.

NV_ENC_RC_PARAMS::rateControlMode= NV_ENC_RC_2_PASS_FRAMESIZE_CAP;

The client should also not enable B frames for low latency scenarios.

To maintain uniform quality at all times, both I and P-frames must be encoded with the

same quality. However, encoding I frames with quality comparable to P frame requires
significantly more bits. With single-frame VBV buffer size, this is not possible, and

results in poor quality I-frames.

For low-latency applications, NVIDIA recommends using infinite GOP length while
encoding. This is achieved by setting NV_ENC_CONFIG::gopLength to

NVENC_INFINITE_GOPLENGTH. Infinite GOP length disables automatic insertion of I

frames. The client is recommended to avoid sending I frames unless it is necessary for
error recovery.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 17

Additionally, clients can also use two pass rate control

(NV_ENC_PARAMS_RC_2_PASS_QUALITY), which will allow encoder to detect and
perform additional processing to encode scene-cuts at better quality.

NV_ENC_CONFIG::idrPeriod = 0xffffffff;

NV_ENC_CONFIG::gopLength = NVENC_INFINITE_GOPLENGTH;

The time-stamps passed must be same as NV_ENC_PIC_PARAMS::inputTimeStamp
value sent as part of the NvEncEncodePicture API while encoding those frames.

7.1.2. Two-Pass Rate Control
For better quality, it is recommended to use two-pass rate control (e.g.

NV_ENC_PARAMS_RC_TWOPASS_CBR), which allows better-quality encoding compared to

single pass rate control (e.g. NV_ENC_PARAMS_RC_CBR) with a drop in performance.

If client sets NV_ENC_PARAMS_RC_2_PASS_QUALITY, encoder might violate the

VBV settings to improve the quality of I frames.

Applications using strict single frame VBV and single pass rate control will result in

poor quality scene-cuts and lower quality for frames with high complexity. Using two-

pass rate control helps to mitigate these issues. It should be set as follows:

NV_ENC_RC_PARAMS::rateControlMode= NV_ENC_RC_2_PASS_FRAMESIZE_CAP;

7.1.3. Low latency Presets

The client application can use either of the following three encoding presets provided by

NvENC interface which can be specified by NV_ENC_CONFIG parameter. This controls
various encoding parameters for motion estimation (ME) and mode decision in the

H.264 encoder.

NV_ENC_PRESET_LOW_LATENCY_HQ_GUID: This preset is desgined for to give the highest
quality but at the least speed among all the low latency presets.

NV_ENC_PRESET_DEFAULT_GUID: This is the default low latency preset and the quality

and speed is midway of the two other presets.

NV_ENC_PRESET_LOW_LATENCY_HP_GUID: This is the preset designed to give the

maximum speed but the qaulity is expected to be the lowest among the three low

latency presets.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 18

7.2 QoS Features

7.2.1. Invalidate Reference Frame

This is the recommended error resiliency feature for low latency applications. When a
client decoder detects a lost packet or corrupt frame, it can signal the server side encoder

to invalidate that frame and all the frames, which have been constructed using the

corrupt frame. If no frames are left for motion estimation, then the current frame will be
encoded as an I frame. The client must set a large DPB size (NV_ENC_CONFIG_H264::

maxNumRefFrames) to allow encoder to store a large number of backup reference frames,

in case encoder has to fallback to use older reference frames for motion estimation when
recent reference frames have been invalidated. Note that using a large DPB size doesn’t

increase the actual number of frames used for motion estimation; so there is no drop in

performance. The recommended DPB size is 16 frames. This achieved by setting the
following parameter while calling NvEncInitializeEncoder :

NV_ENC_CONFIG_H264::maxNumRefFrames = 16;

Let’s say server receives a request from the decoder to invalidate N reference frames
with capture time-stamps of a, b, c, … Then, the NvEncInvalidateRefFrames API must

be called once with each time-stamp that needs to be invalidated.

7.2.1. Intra Refresh

This is also a recommended Error resiliency feature where after waves of Intra Macro

blocks are forced over the frames to help recover from error gradually.

7.2.2. Dynamic Bit-Rate and Resolution change

Due to fluctuations in channel bandwidth the encoder may need to dynamically adjust
resolutions and bitrate on the fly without destroying and recreating a new encoder

session. This can be achieved by using Reconfigure API described in the next session.

7.2.3. Forcing Intra

The client can force individual frame to be encoded as intra-coded frame by setting

NV_ENC_PIC_PARAMS::encodePicFlags to include
NV_ENC_PIC_FLAG_FORCEINTRA while calling NvEncEncodePicture API.

NVENC - NVIDIA Video Encoder Interface PG-06155-001_v04 | 19

7.3 Reconfigure API

NvEncReconfigureEncoder API allows changing of encoder initialization parameters

in NV_ENC_INITIALIZE_PARAMS without closing existing encoder session. The

reconfigured parameters are passed via

NV_ENC_RECONFIGURE_PARAMS::reInitEncodeParams. It is much more efficient than

recreating a new encode session.

Features like dynamic resolution change, bitrate change, and resetting the encoder are

now supported using this API. This API was introduced in NV Encode API version 3.0.

Currently reconfiguration of following parameters is not supported via this method:

1. Change in GOP structure (NV_ENC_CONFIG_H264::idrPeriod,

NV_ENC_CONFIG::gopLength, NV_ENC_CONFIG:: frameIntervalP)

2. Change in sync-async mode (NV_ENC_INITIALIZE_PARAMS::
enableEncodeAsync)

3. Change in MaxWidth & MaxHeight (NV_ENC_INITIALIZE_PARAMS::

maxEncodeWidth, NV_ENC_INITIALIZE_PARAMS::maxEncodeHeight)

4. Change in PTDmode (NV_ENC_INITIALIZE_PARAMS::enablePTD)

Support for changing these parameters may be added in the future versions of the API.

Resolution change is possible only if maxEncodeWidth & maxEncodeHeight of

NV_ENC_INITIALIZE_PARAMS is set while creating encoder session.

If the client wishes to change the resolution using this API, it is advisable to force the

next frame following the reconfiguration as an IDR frame by setting

NV_ENC_RECONFIGURE_PARAMS:: forceIDR to 1.

If the client wishes to reset the internal rate control state, set

NV_ENC_RECONFIGURE_PARAMS::resetEncoder to 1.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,

AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED

“AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE

WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF

NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation

assumes no responsibility for the consequences of use of such information or for any

infringement of patents or other rights of third parties that may result from its use. No

license is granted by implication of otherwise under any patent rights of NVIDIA Corporation.

Specifications mentioned in this publication are subject to change without notice. This

publication supersedes and replaces all other information previously supplied. NVIDIA

Corporation products are not authorized as critical components in life support devices or

systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the

U.S. and other countries. Other company and product names may be trademarks of the

respective companies with which they are associated.

Copyright

© 2011-2014 NVIDIA Corporation. All rights reserved.

