
NVIDIA CUDA TOOLKIT V5.5

RN-06722-001 _v5.5 | August 2013

Release Notes for Windows, Linux, and Mac OS

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | ii

TABLE OF CONTENTS

Chapter 1. NVIDIA CUDA Toolkit v5.5 Release Notes... 1
1.1. Errata... 1

1.1.1. General CUDA.. 1
1.1.2. CUDA Libraries... 1

1.1.2.1. CUBLAS...1
1.1.2.2. CUFFT.. 2

1.1.3. CUDA Samples..5
1.1.4. CUDA Tools... 6

1.2. Documentation.. 7
1.3. List of Important Files...7

1.3.1. Core Files... 8
1.3.2. Windows lib Files..9
1.3.3. Linux lib Files.. 9
1.3.4. Mac OS X lib Files...9

1.4. Supported NVIDIA Hardware.. 9
1.5. Supported Operating Systems... 10

1.5.1. Windows... 10
1.5.2. Linux... 10
1.5.3. Mac OS X.. 11

1.6. Installation Notes..11
1.6.1. Windows... 11
1.6.2. Linux... 11

1.7. Deprecated Features..12
1.8. New Features.. 12

1.8.1. General CUDA...12
1.8.2. CUDA Libraries..13

1.8.2.1. CUBLAS... 13
1.8.2.2. CUFFT...14
1.8.2.3. CURAND...14
1.8.2.4. CUSPARSE...14
1.8.2.5. Thrust...14

1.8.3. CUDA Tools.. 14
1.8.3.1. CUDA Compiler..14
1.8.3.2. CUDA-GDB..15
1.8.3.3. CUDA-MEMCHECK..16
1.8.3.4. CUDA Profiler..16
1.8.3.5. Debugger API.. 17
1.8.3.6. Nsight Eclipse Edition..17

1.9. Performance Improvements..18
1.9.1. CUDA Libraries..18

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | iii

1.9.1.1. CUBLAS... 18
1.9.1.2. Math...18

1.10. Resolved Issues... 18
1.10.1. General CUDA... 18
1.10.2. CUDA Libraries.. 19

1.10.2.1. NPP.. 19
1.10.3. CUDA Tools...19

1.10.3.1. CUDA-GDB.. 19
1.10.3.2. Debugger API...19

1.11. Known Issues..19
1.11.1. Linux on ARMv7 Specific Issues.. 19
1.11.2. General CUDA... 20
1.11.3. CUDA Libraries.. 20

1.11.3.1. NPP.. 20
1.11.4. CUDA Tools...20

1.11.4.1. CUDA Compiler.. 20
1.11.4.2. CUDA Profiler.. 20

1.12. Source Code for Open64 and CUDA-GDB...21
1.13. More Information...21

Chapter 2. NVIDIA CUDA Toolkit v5.0 Release Notes..22
2.1. Errata..22

2.1.1. Known Issues..22
2.1.1.1. General CUDA... 22
2.1.1.2. CUDA Libraries.. 23
2.1.1.3. CUDA Tools...23

2.2. Documentation...24
2.3. List of Important Files... 24

2.3.1. Core Files..24
2.3.2. Windows lib Files.. 25
2.3.3. Linux lib Files.. 25
2.3.4. Mac OS X lib Files... 25

2.4. Supported NVIDIA Hardware...26
2.5. Supported Operating Systems... 26

2.5.1. Windows... 26
2.5.2. Linux... 26
2.5.3. Mac OS X.. 27

2.6. Installation Notes..27
2.6.1. Windows... 27
2.6.2. Linux... 27

2.7. New Features.. 28
2.7.1. General CUDA...28

2.7.1.1. Linux.. 29
2.7.2. CUDA Libraries..30

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | iv

2.7.2.1. CUBLAS... 30
2.7.2.2. CURAND...30
2.7.2.3. CUSPARSE...30
2.7.2.4. Math...31
2.7.2.5. NPP..32

2.7.3. CUDA Tools.. 32
2.7.3.1. CUDA Compiler..32
2.7.3.2. CUDA-GDB..33
2.7.3.3. CUDA-MEMCHECK..33
2.7.3.4. NVIDIA Nsight Eclipse Edition...33
2.7.3.5. NVIDIA Visual Profiler, Command Line Profiler...33

2.8. Performance Improvements..34
2.8.1. CUDA Libraries..34

2.8.1.1. CUBLAS... 34
2.8.1.2. CURAND...34
2.8.1.3. Math...34

2.9. Resolved Issues.. 34
2.9.1. General CUDA...35
2.9.2. CUDA Libraries..35

2.9.2.1. CURAND...35
2.9.2.2. CUSPARSE...35
2.9.2.3. NPP..36
2.9.2.4. Thrust...36

2.9.3. CUDA Tools.. 36
2.9.3.1. CUDA Compiler..36
2.9.3.2. CUDA Occupancy Calculator.. 36

2.10. Known Issues..37
2.10.1. General CUDA... 37

2.10.1.1. Linux, Mac OS..37
2.10.1.2. Windows.. 38

2.10.2. CUDA Libraries.. 38
2.10.2.1. NPP.. 38

2.10.3. CUDA Tools...38
2.10.3.1. CUDA Compiler.. 38
2.10.3.2. NVIDIA Visual Profiler, Command Line Profiler... 39

2.11. Source Code for Open64 and CUDA-GDB...40
2.12. More Information...40

Chapter 3. NVIDIA CUDA Toolkit v4.2 Release Notes..41
3.1. Errata..41

3.1.1. Known Issues..41
3.2. Release Highlights... 41
3.3. Documentation...42
3.4. List of Important Files... 42

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | v

3.4.1. Windows lib Files.. 43
3.4.2. Linux lib Files.. 43
3.4.3. Mac OS X lib Files... 43

3.5. Supported NVIDIA Hardware...43
3.6. Supported Operating Systems... 43

3.6.1. Windows... 43
3.6.2. Linux... 44
3.6.3. Mac OS X.. 45

3.7. Installation Notes..45
3.7.1. Windows... 45
3.7.2. Linux... 45

3.8. New Features.. 46
3.9. Resolved Issues.. 46
3.10. Known Issues..47

3.10.1. Windows..47
3.10.2. Linux & Mac... 47
3.10.3. Mac..48
3.10.4. Visual Profiler and Command Line Profiler...48

3.11. Source Code for Open64 and CUDA-GDB...49
3.12. More Information...49

Chapter 4. NVIDIA CUDA Toolkit v4.1 Release Notes..50
4.1. Release Highlights... 50
4.2. Documentation...51
4.3. List of Important Files... 51

4.3.1. Windows lib Files.. 52
4.3.2. Linux lib Files.. 52
4.3.3. Mac OS X lib Files... 52

4.4. Supported NVIDIA Hardware...52
4.5. Supported Operating Systems... 53

4.5.1. Windows... 53
4.5.2. Linux... 53
4.5.3. Mac OS X.. 54

4.6. Installation Notes..54
4.6.1. Windows... 54
4.6.2. Linux... 54

4.7. Upgrading from Previous CUDA Toolkit 4.0... 55
4.7.1. Vista, Server 2008 and Windows 7 Related..55
4.7.2. Linux and Mac.. 56
4.7.3. Mac Related...56

4.8. CUDA Toolkit Known Issues.. 56
4.8.1. SDK Related... 56
4.8.2. Visual Profiler and Command Line Profiler.. 57
4.8.3. CUDA-MEMCHECK... 59

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | vi

4.9. New Features in CUDA Release 4.1.. 59
4.9.1. CUDA Runtime.. 59
4.9.2. Compiler Related...59
4.9.3. CUDA Libraries..60
4.9.4. CUDA Driver...62

4.10. Performance Improvements in CUDA Release 4.1.. 63
4.11. Resolved Issues... 64
4.12. Source Code for Open64 and CUDA-GDB...66
4.13. More Information...66
4.14. Acknowledgements...67

Chapter 5. NVIDIA CUDA Toolkit v4.0 Release Notes..68
5.1. Release Highlights... 68
5.2. Documentation...69
5.3. Errata for Windows, Linux, and Mac OS X.. 69

5.3.1. Linux... 69
5.3.2. Resolved Issues... 69
5.3.3. Known Issues..69
5.3.4. More Information...71

5.4. List of Important Files... 71
5.4.1. Windows lib Files.. 72
5.4.2. Linux lib Files.. 72
5.4.3. Mac OS X lib Files... 72

5.5. Supported NVIDIA Hardware...72
5.6. Supported Operating Systems for Windows, Linux, and Mac OS X...............................73

5.6.1. Windows... 73
5.6.2. Linux... 73
5.6.3. Mac OS X.. 74

5.7. Installation Notes..74
5.7.1. Windows... 74
5.7.2. Linux... 74

5.8. Upgrading from Previous CUDA Toolkit 3.2... 75
5.9. Notes on New Features and Performance Improvements... 75

5.9.1. CUDA Driver Features... 75
5.9.2. CUDA Compiler Features..79
5.9.3. CUDA Libraries Features.. 80
5.9.4. CUDA Libraries Performance... 83

5.10. Known Issues..84
5.10.1. Vista, Server 2008 and Windows 7 Related.. 86
5.10.2. XP, Vista, Server 2008 and Windows 7 Related.. 86
5.10.3. XP Related... 87
5.10.4. Linux Only... 87
5.10.5. Linux and Mac...88
5.10.6. Mac Only... 88

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | vii

5.11. Resolved Issues... 89
5.11.1. Mac Related... 90

5.12. Source Code for Open64 and CUDA-GDB...94
5.13. More Information...94
5.14. Acknowledgements...94

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | viii

LIST OF TABLES

Table 1 Windows Operating Systems Supported in CUDA 5.5 ... 10

Table 2 Windows Compilers Supported in CUDA 5.5 ..10

Table 3 Linux Distributions Supported in CUDA 5.5 ...10

Table 4 Linux Distributions No Longer Supported as of CUDA 5.5 11

Table 5 Windows Compilers Supported in 5.0 ... 26

Table 6 Linux Distributions Supported in 5.0 .. 26

Table 7 Linux Distributions Not Supported in 5.0 ... 27

Table 8 Windows Compilers Supported in 4.2 ... 44

Table 9 Linux Distributions Supported in 4.2 .. 44

Table 10 Linux Distributions Not Supported in 4.2 ..44

Table 11 Mac OS X Platforms Supported in 4.2 ..45

Table 12 Windows Compilers Supported in 4.1 .. 53

Table 13 Linux Distributions Supported in 4.1 ...53

Table 14 Linux Distributions Not Supported in 4.1 ..53

Table 15 Mac OS X Platforms Supported in 4.1 ..54

Table 16 Windows Compilers Supported in 4.0 .. 73

Table 17 Linux Distributions Supported in 4.0 ...73

Table 18 Linux Distributions Not Supported in 4.0 ..74

Table 19 Mac OS X Platforms Supported in 4.0 ..74

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 1

Chapter 1.
NVIDIA CUDA TOOLKIT V5.5 RELEASE
NOTES

1.1. Errata

1.1.1. General CUDA
Visual Studio 2012 projects initially depended on the Visual Studio 2010 compiler
being installed. When a user who only has VS2012 installed on the system opens
samples_vs2012.sln for the first time, and the VS2012 projects are upgraded from
VS2010 (with the original VS2010 compiler settings) to the VS2012 compiler, the CUDA
CDP samples will fail to build with fatal error "LNK1319".

Two fixes address not only the CDP samples, but all other samples that are built with
VS2012.

‣ The first fix addresses this bug explicitly: remove _MSC_VER=1600; from
cdpSimplePrint_vs2012.vcxproj.

‣ The second fix addresses VS2012-only systems that are not properly
building the CUDA samples: in *_vs2012.vcxproj files, search
and replace <PlatformToolset>v100</PlatformToolset> with
<PlatformToolset>v110</PlatformToolset>.

1.1.2. CUDA Libraries

1.1.2.1. CUBLAS

‣ The routine cublas<T>syrkx() has been added to the CUBLAS Library. This
routine, which is a variation of cublas<T>syrk(), can be used advantageously
to replace multiple calls to cublas<T>syr() where a different scalar alpha is
applied to each vector. Those vectors would form the matrix A, and a second matrix,
B, would be constructed by the same vectors, each scaled by the different alpha.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 2

Matrix B can be seen as the product of A with a diagonal matrix formed by the
different alpha scalars, and it can be easily computed using cublas<T>dgmm().

‣ In CUDA 5.0 and CUDA 5.5, the CUBLAS routine SGEMM() for operations NN
and NT can give wrong results on Kepler Architecture SM35 when the following
conditions are met :

4 * ldc * n >= 2^32 and m >= 256

where m, n, and ldc are respectively the number of rows, the number of columns,
and the leading dimension of the resulting matrix C.

1.1.2.2. CUFFT
There were a number of CUFFT documentation errors in CUDA 5.5.

‣ Some values of the enumerated type cufftResult are in error or are missing.
Values 0 through 10 are correct, values 11 through 13 are as follows:
CUFFT_INCOMPLETE_PARAMETER_LIST = 10, //Internal plan configuration error
CUFFT_INVALID_DEVICE = 11, //Execution of a plan was on a
 // different GPU than plan creation.
CUFFT_PARSE_ERROR = 12, //Internal plan database error
CUFFT_NO_WORKSPACE = 13 //No workspace has been provided
 // prior to plan execution.

‣ The arguments for cufftMakePlan1d() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. There is
an additional output parameter, which receives the size of the workspace required
by the plan. The actual calling sequence is as follows:
cufftResult CUFFTAPI cufftMakePlan1d(cufftHandle plan, //Handle returned
 // by cufftCreate
 int nx, //Transform size
 cufftType type, //Transform type, e.g., CUFFT_C2C
 int batch, //Number of transforms of size nx;
 // deprecated—use cufftPlanMany.
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftMakePlan2d() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. There is
an additional output parameter, which receives the size of the workspace required
by the plan. The actual calling sequence is as follows:
cufftResult CUFFTAPI cufftMakePlan2d(cufftHandle plan, //Handle returned
 // by cufftCreate
 int nx, int ny, //Transform x and y dimensions
 cufftType type, //Transform type, e.g., CUFFT_C2C
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftMakePlan3d() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. There is
an additional output parameter, which receives the size of the workspace required
by the plan. The actual calling sequence is as follows:
cufftResult CUFFTAPI cufftMakePlan3d(cufftHandle plan, //Handle returned
 // by cufftCreate
 int nx, int ny, int nz, //Transform x, y, and z dimensions
 cufftType type, //Transform type, e.g., CUFFT_C2C
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftMakePlanMany() are incorrect. The plan is a
cufftHandle returned from a prior call to cufftCreate(). It is an input

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 3

parameter only. There is an additional output parameter, which receives the size of
the workspace required by the plan. The actual calling sequence is as follows:
cufftResult CUFFTAPI cufftMakePlanMany(cufftHandle plan, //Handle returned
 // by cufftCreate
 int rank, //Dimensionality of the transform (1,2,or 3)
 int *n, //Array of size rank, describing the size of each
 // dimension
 int *inembed, //Array of size rank, describing the storage
 // dimensions of input data. If set to NULL, all
 // other advanced data layout parameters are
 // ignored.
 int istride, //Distance between two successive input elements in
 // the least significant (innermost) dimension
 int idist, //Distance between the first element of two
 // consecutive signals in a batch of input data
 int *onembed, //Array of size rank, describing the storage
 // dimensions of output data. If set to NULL, all
 // other advanced data layout parameters are
 // ignored.
 int ostride, //Distance between two successive input elements in
 // the least significant (innermost) dimension
 int odist, //Distance between the first element of two
 // consecutive signals in a batch of output data
 cufftType type, //Transform type, e.g., CUFFT_C2C
 int batch, //Batch size for this transform
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftGetSize1d() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftGetSize1d(cufftHandle plan,
 int nx, //Transform size
 cufftType type, //Transform type, e.g., CUFFT_C2C
 int batch, //Number of transforms of size nx;
 // deprecated—use cufftPlanMany.
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftGetSize2d() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftGetSize2d(cufftHandle plan, //Handle returned
 // by cufftCreate
 int nx, int ny, //Transform x and y dimensions
 cufftType type, //Transform type, e.g., CUFFT_C2C
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftGetSize3d() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftGetSize3d(cufftHandle plan, //Handle returned
 // by cufftCreate
 int nx, int ny, int nz, //Transform x, y, and z dimensions
 cufftType type, //Transform type, e.g., CUFFT_C2C
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftGetSizeMany() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftGetSizeMany(cufftHandle plan, //Handle returned
 // by cufftCreate
 int rank, //Dimensionality of the transform (1,2,or 3)
 int *n, //Array of size rank, describing the size of each
 // dimension
 int *inembed, //Array of size rank, describing the storage

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 4

 // dimensions of input data. If set to NULL, all
 // other advanced data layout parameters are
 // ignored.
 int istride, //Distance between two successive input elements in
 // the least significant (innermost) dimension
 int idist, //Distance between the first element of two
 // consecutive signals in a batch of input data
 int *onembed, //Array of size rank, describing the storage
 // dimensions of output data. If set to NULL, all
 // other advanced data layout parameters are
 // ignored.
 int ostride, //Distance between two successive input elements in
 // the least significant (innermost) dimension
 int odist, //Distance between the first element of two
 // consecutive signals in a batch of output data
 cufftType type, //Transform type, e.g., CUFFT_C2C
 int batch, //Batch size for this transform
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftEstimateMany() are incorrect. There is no plan argument
for this call. The actual calling sequence is as follows:
cufftResult CUFFTAPI cufftEstimateMany(int rank, //Dimensionality of the
 // transform (1,2,or 3)
 int *n, //Array of size rank, describing the size of each
 // dimension
 int *inembed, //Array of size rank, describing the storage
 // dimensions of input data. If set to NULL, all
 // other advanced data layout parameters are
 // ignored.
 int istride, //Distance between two successive input elements in
 // the least significant (innermost) dimension
 int idist, //Distance between the first element of two
 // consecutive signals in a batch of input data
 int *onembed, //Array of size rank, describing the storage
 // dimensions of output data. If set to NULL, all
 // other advanced data layout parameters are
 // ignored.
 int ostride, //Distance between two successive input elements in
 // the least significant (innermost) dimension
 int odist, //Distance between the first element of two
 // consecutive signals in a batch of output data
 cufftType type, //Transform type, e.g., CUFFT_C2C
 int batch, //Batch size for this transform
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftGetSize() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftGetSize(cufftHandle plan, //Handle returned
 // by cufftCreate
 size_t *workSize); //Size of work area for the transform

‣ The arguments for cufftSetAutollocation() are incorrect. The plan is a
cufftHandle returned from a prior call to cufftCreate(). It is an input
parameter only. The actual calling sequence is as follows:
cufftResult CUFFTAPI cufftSetAutoAllocation(cufftHandle plan, //Handle
 // returned by cufftCreate
 int autoAllocate); //Non-zero indicates CUFFT should allocate
 // workspace automatically

‣ The arguments for cufftSetWorkArea() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftSetWorkArea(cufftHandle plan, //Handle returned
 // by cufftCreate

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 5

 void *workArea); //Pointer to device memory for CUFFT to use as
 // its work area

‣ The arguments for cufftExedC2C() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftExecC2C(cufftHandle plan, //Handle returned
 // by cufftCreate
 cufftComplex *idata, //Pointer to the complex input data
 // (in GPU memory) to transform
 cufftComplex *odata, //Pointer to the complex output data
 // (in GPU memory)
 int direction); //The transform direction: CUFFT_FORWARD or
 // CUFFT_INVERSE

‣ The arguments for cufftExecR2C() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftExecR2C(cufftHandle plan, //Handle returned
 // by cufftCreate
 cufftReal *idata, //Pointer to the real input data
 // (in GPU memory) to transform
 cufftComplex *odata); //Pointer to the complex output data
 // (in GPU memory)

‣ The arguments for cufftExedZ2Z() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftExecZ2Z(cufftHandle plan, //Handle returned
 // by cufftCreate
 cufftDoubleComplex *idata, //Pointer to the complex input data
 // (in GPU memory) to transform
 cufftDoubleComplex *odata, //Pointer to the complex output data
 // (in GPU memory)
 int direction); //The transform direction: CUFFT_FORWARD or
 // CUFFT_INVERSE

‣ The arguments for cufftExecD2Z() are incorrect. The plan is a cufftHandle
returned from a prior call to cufftCreate(). It is an input parameter only. The
actual calling sequence is as follows:
cufftResult CUFFTAPI cufftExecD2Z(cufftHandle plan, //Handle returned
 // by cufftCreate
 cufftDoubleReal *idata, //Pointer to the real input data
 // (in GPU memory) to transform
 cufftDoubleComplex *odata); //Pointer to the complex output data
 // (in GPU memory)

1.1.3. CUDA Samples
‣ When graphics samples targeting the i386 architecture are built on an x86_64

machine, the resulting binary is copied into the native, x86_64 bin directory instead
of the i386 bin directory.

‣ When the Linux .run installer is used to install the CUDA Samples without the
CUDA Toolkit, it will report an installation failure in the summary, even though the
installation may have succeeded.

‣ During the cross-building of 32-bit samples on a 64-bit Linux machine, some
libraries may not be found and the build will fail. Use the EXTRA_LDFLAGS Makefile
variables to point to the needed libraries to fix the issue.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 6

1.1.4. CUDA Tools
‣ On the GK110, the kernel occasionally may produce incorrect results. This happens

when, either by loop unrolling or straight lines of code, there are more than 63
outstanding texture/LDG instructions at one point during the program execution.
"Outstanding" in this case means none of the results of these instructions have
been used. The underlying cause is that the texture barrier can track at most 63
outstanding texture/LDG instructions. If there are more than 63 such instructions,
the texture barrier can no longer be relied on to ensure that any instruction's result is
correct.

This issue can be worked around by adding -maxrregcount 63 to ptxas. This
guarantees there are at most 63 outstanding texture instructions because each
texture/LDG will write at least one register. However, this may downgrade
performance because it limits the maximum number of registers. (This issue has been
fixed for CUDA 6.0.)

‣ Clang is now supported as a host compiler on Mac OS 10.8 as a BETA
feature in CUDA 5.5. To use Clang as the host compiler, invoke nvcc with -
ccbin=path-to-clang-executable. There are some features that are not yet
supported: Clang language extensions (see http://clang.llvm.org/docs/
LanguageExtensions.html), LLVM libc++ (only GNU libstdc++ is currently
supported), language features introduced in C++11, the __global__ function
template explicit instantiation definition, and 32-bit architecture cross-compilation.
(This replaces the previously released statement about Clang support.)

‣ The CUPTI (CUDA Profiling Tools Interface) release notes are now part of this
document.
Changes Incompatible with CUPTI 4.0

A number of non-backward compatible API changes were made in CUPTI 4.1.
These changes require minor source modifications to existing code compiled
against CUPTI 4.0. In addition, some previously incorrect and undefined
behavior is now prevented by improved error checking. Your code may need to
be modified to handle these new error cases.

‣ Multiple CUPTI subscribers are not allowed. In CUPTI 4.0,
cuptiSubscribe() could be used to enable multiple subscriber callback
functions to be active at the same time. When multiple callback functions
were subscribed, invocation of those callbacks did not respect the
domain registration for those callback functions. In CUPTI 4.1 and later,
cuptiSubscribe() returns CUPTI_ERROR_MAX_LIMIT_REACHED if there is
already an active subscriber.

‣ The CUpti_EventID values for Tesla devices have changed in CUPTI
4.1 to make all CUpti_EventID values unique across all devices. Going
forward, CUpti_EventID values will be added for new devices and events,
but existing values will not be changed. If your application has stored
CUpti_EventID values (for example, as part of the data collected for a
profiling session), those CUpti_EventIDs must be translated to the new ID
values before being used in CUPTI 4.1 and later APIs.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 7

‣ In enumeration CUpti_EventDomainAttribute,
CUPTI_EVENT_DOMAIN_MAX_EVENTS has been removed. The
number of events in an event domain can be retrieved with
cuptiEventDomainGetNumEvents().

‣ Routines cuptiDeviceGetAttribute(),
cuptiEventGroupGetAttribute(), and
cuptiEventGroupSetAttribute() now take a size parameter, and the
value parameter now has type void *.

‣ Routine cuptiEventDomainGetAttribute() no longer takes
a CUdevice parameter. This function is now used to get event
domain attributes that are device independent. A new function
cuptiDeviceGetEventDomainAttribute() has been added to get event
domain attributes that are device dependent.

‣ Routines cuptiEventDomainGetNumEvents(),
cuptiEventDomainEnumEvents(), and cuptiEventGetAttribute() no
longer take a CUdevice parameter.

‣ The contextUid field of the CUpti_CallbackData structure has been
changed from type uint64_t to type uint32_t.

Known Issues
The activity API functions cuptiActivityEnqueueBuffer() and
cuptiActivityDequeueBuffer() are deprecated and will be removed
in a future release. The new asynchronous API implemented by
cuptiActivityRegisterCallbacks(), cuptiActivityFlush(), and
cuptiActivityFlushAll() should be adopted. See the CUPTI documentation
for details.

1.2. Documentation
For a list of documents supplied with this release, please refer to the doc directory of
your CUDA Toolkit installation. PDF documents are available in the doc/pdf folder.
Several documents are now also available in HTML format and are found in the doc/
html folder.

‣ The HTML documentation is now fully available from a single entry page available
both locally in the CUDA Toolkit installation folder under doc/html/index.html
and online at http://docs.nvidia.com/cuda/index.html.

‣ The license information for the toolkit portion of this release can be found at doc/
EULA.txt.

‣ The CUDA Occupancy Calculator spreadsheet can be found at tools/
CUDA_Occupancy_Calculator.xls.

‣ The CHM documentation has been removed.

1.3. List of Important Files
If the CUDA 5.5 Toolkit was installed using the RPM/DEB installers, the installation
directory has changed. There is a targets directory in the root of the installation

http://docs.nvidia.com/cuda/index.html

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 8

directory with a sub-directory for each possible target. Currently, the follwoing targets
are supported: i386-linux, x86_64-linux, and armv7-linux-gnueabihf In each of
these target directories there is a lib directory for that target's libraries and an include
directory for that target's header files. The installer creates the proper symbolic links in
the installation's root directory for backward compatibility.

1.3.1. Core Files
bin/
 nvcc CUDA C/C++ compiler
 cuda-gdb CUDA Debugger
 cuda-memcheck CUDA Memory Checker
 nsight Nsight Eclipse Edition (Linux and Mac OS)
 nvprof NVIDIA Command-Line Profiler
 nvvp NVIDIA Visual Profiler (Located in libnvvp/
 on Windows)

include/
 cuda.h CUDA driver API header
 cudaGL.h CUDA OpenGL interop header for driver API
 cudaVDPAU.h CUDA VDPAU interop header for driver API
 (Linux)
 cuda_gl_interop.h CUDA OpenGL interop header for toolkit API
 (Linux)
 cuda_vdpau_interop.h CUDA VDPAU interop header for toolkit API
 (Linux)
 cudaD3D9.h CUDA DirectX 9 interop header (Windows)
 cudaD3D10.h CUDA DirectX 10 interop header (Windows)
 cudaD3D11.h CUDA DirectX 11 interop header (Windows)
 cufft.h CUFFT API header
 cublas_v2.h CUBLAS API header
 cublas.h CUBLAS Legacy API header
 cusparse_v2.h CUSPARSE API header
 cusparse.h CUSPARSE Legacy API header
 curand.h CURAND API header
 curand_kernel.h CURAND device API header
 thrust/* Thrust headers
 npp.h NPP API header
 nvToolsExt*.h NVIDIA Tools Extension headers (Linux and Mac)
 nvcuvid.h CUDA Video Decoder header (Windows and Linux)
 cuviddec.h CUDA Video Decoder header (Windows and Linux)
 NVEncodeDataTypes.h CUDA Video Encoder header (Windows; C-library
 or DirectShow)
 NVEncoderAPI.h CUDA Video Encoder header (Windows; C-library)
 INvTranscodeFilterGUIDs.h CUDA Video Encoder header (Windows; DirectShow)
 INVVESetting.h CUDA Video Encoder header (Windows; DirectShow)

extras/
 CUPTI CUDA Profiling Tools Interface API
 Debugger CUDA Debugger API

nvvm/include/
 nvvm.h Optimizing Compiler Library API header

nvvm/libdevice/
 libdevice.compute*.bc NVIDIA Common Device Math Functions Library

src/
 fortran.{c,h} FORTRAN interface files for CUBLAS and CUSPARSE

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 9

1.3.2. Windows lib Files
(Corresponding 32-bit or 64-bit DLLs are in bin/.)
lib/{Win32,x64}/
 cuda.lib CUDA driver library
 cudart.lib CUDA runtime library
 cudadevrt.lib CUDA runtime device library
 cublas.lib CUDA BLAS library
 cublas_device.lib CUDA BLAS device library
 cufft.lib CUDA FFT library
 cuinj.lib CUDA internal library for profiling
 cusparse.lib CUDA Sparse Matrix library
 curand.lib CUDA Random Number Generation library
 npp.lib NVIDIA Performance Primitives library
 nvcuvenc.lib CUDA Video Encoder library
 nvcuvid.lib CUDA High-level Video Decoder library
 OpenCL.lib OpenCL library

nvvm/lib/{Win32,x64}/
 nvvm.lib Optimizing Compiler Library

1.3.3. Linux lib Files
lib{64}/
 libcudart.so CUDA runtime library
 libcuinj.so CUDA internal library for profiling
 libcublas.so CUDA BLAS library
 libcublas_device.a CUDA BLAS device library
 libcufft.so CUDA FFT library
 libcusparse.so CUDA Sparse Matrix library
 libcurand.so CUDA Random Number Generation library
 libnpp.so NVIDIA Performance Primitives library

nvvm/lib{64}/
 libnvvm.so Optimizing Compiler Library

1.3.4. Mac OS X lib Files
lib/
 libcudart.dylib CUDA runtime library
 libcuinj.dylib CUDA internal library for profiling
 libcublas.dylib CUDA BLAS library
 libcublas_device.a CUDA BLAS device library
 libcufft.dylib CUDA FFT library
 libcusparse.dylib CUDA Sparse Matrix library
 libcurand.dylib CUDA Random Number Generation library
 libnpp.dylib NVIDIA Performance Primitives library
 libtlshook.dylib NVIDIA internal library

nvvm/lib/
 libnvvm.dylib Optimizing Compiler Library

1.4. Supported NVIDIA Hardware
See http://www.nvidia.com/object/cuda_gpus.html.

http://www.nvidia.com/object/cuda_gpus.html

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 10

1.5. Supported Operating Systems

1.5.1. Windows
The next two tables list the currently supported Windows operating systems and
compilers.

Table 1 Windows Operating Systems Supported in CUDA 5.5

Windows 8 Windows XP

Windows 7 Windows Server 2012 (64-bit)

Windows Vista Windows Server 2008 R2

Table 2 Windows Compilers Supported in CUDA 5.5

Compiler IDE

Visual C++ 11.0 Visual Studio 2012

Visual C++ 11.0 Visual Studio 2012 Express (32-bit)

Visual C++ 10.0 Visual Studio 2010

Visual C++ 9.0 Visual Studio 2008

1.5.2. Linux
The CUDA development environment relies on tight integration with the host
development environment, including the host compiler and C runtime libraries, and
is therefore only supported on distribution versions that have been qualified for this
CUDA Toolkit release.

Table 3 Linux Distributions Supported in CUDA 5.5

Distribution 32 64 Kernel GCC GLIBC

Fedora 18 x 3.6.10-4.fc18.x86_64 4.7.2 2.16

ICC Compiler 12.1 x

OpenSUSE 12.2 x 3.4.6-2.10-desktop 4.7.1 2.15

Red Hat Enterprise Linux
(RHEL) 6.x

x 2.6.32-358.el6.i686 (RH
6.4)

4.4.7 2.12

RHEL 5.5+ x 2.6.18-238.el5 4.1.2 2.5

SUSE SLES 11 SP2 x 3.0.13-0.27-pae 4.3.4 2.11.3

SUSE SLES 11 SP1 x 2.6.32.12-0.7-pae 4.3.4 2.11.1

Ubuntu 12.10 x x 3.5.0-17-generic 4.7.2 2.15

Ubuntu 12.04 x x 2.6.35-23-generic 4.6 2.15

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 11

Distribution 32 64 Kernel GCC GLIBC

Ubuntu 10.04 x x 2.6.35-23-generic 4.4.5 2.12.1

Table 4 Linux Distributions No Longer Supported as of CUDA 5.5

Distribution 32 64 Kernel GCC GLIBC

Fedora 16 x x 3.1.0-7.fc16.i686.pae 4.6.2 2.14.90

Ubuntu 11.10 x x 3.0.0-19-generic-pae 4.6.1 2.13

1.5.3. Mac OS X
These Mac operating systems are supported in CUDA 5.5: Mac OS X 10.8.x (64-bit) and
Mac OS X 10.7.5+.

1.6. Installation Notes

1.6.1. Windows
For silent installation:

‣ To install, use msiexec.exe from the shell, passing these arguments:

msiexec.exe /i <cuda_toolkit_filename>.msi /qn

‣ To uninstall, use /x instead of /i.

1.6.2. Linux
‣ In order to run CUDA applications, the CUDA module must be loaded and the

entries in /dev created. This may be achieved by initializing X Windows, or by
creating a script to load the kernel module and create the entries. An example script
(to be run at boot time) follows.
#!/bin/bash

/sbin/modprobe nvidia

if ["$?" -eq 0]; then

 # Count the number of NVIDIA controllers found.
 N3D=`/sbin/lspci | grep -i NVIDIA | grep "3D controller" | wc -l`
 NVGA=`/sbin/lspci | grep -i NVIDIA | grep "VGA compatible controller" \
 | wc -l`

 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i;
 done

 mknod -m 666 /dev/nvidiactl c 195 255

else
 exit 1

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 12

fi

‣ On some Linux releases, due to a GRUB bug in the handling of upper memory
and a default vmalloc too small on 32-bit systems, it may be necessary to pass this
information to the bootloader:
vmalloc=256MB, uppermem=524288

Here is an example of GRUB conf:
title Red Hat Desktop (2.6.9-42.ELsmp)
root (hd0,0)
uppermem 524288
kernel /vmlinuz-2.6.9-42.ELsmp ro root=LABEL=/1 rhgb quiet vmalloc=256MB
pci=nommconf
initrd /initrd-2.6.9-42.ELsmp.img

1.7. Deprecated Features
The following features are deprecated. The features still work in the current release,
but their documentation may have been removed, and they will become officially
unsupported in a future release of the CUDA software. We recommend that developers
employ alternate solutions to these features in their software.
Ubuntu 10.04 LTS

We recommend upgrading to the Ubuntu 12.04 LTS. Support for this operating
system will be removed in the next release of the CUDA software.

CUSPARSE "Legacy" API
We recommend using the new CUSPARSE API in cusparse_v2.h, introduced in
CUDA v4.1. Any APIs that are unique to the legacy API in cusparse.h will become
officially unsupported in a future release of the CUDA Toolkit. Further information
on the new CUSPARSE API can be found in the CUSPARSE library documentation.

CUDA Profiling Tools Interface
The CUPTI activity buffering API is deprecated and will be removed in
a future release of the CUDA toolkit. We recommend that CUPTI users
adopt the new asynchronous activity buffering API implemented by
cuptiActivityRegisterCallbacks(), cuptiActivityFlush(), and
cuptiActivityFlushAll(). See #unique_25.

1.8. New Features

1.8.1. General CUDA
‣ MPS (Multi-Process Service) is a runtime service designed to let multiple MPI

(Message Passing Interface) processes using CUDA run concurrently on a single
GPU in a way that's transparent to the MPI program. A CUDA program runs in
MPS mode if the MPS control daemon is running on the system. When a CUDA
program starts, it connects to the MPS control daemon (if possible), which then
creates an MPS server for the connecting client if one does not already exist for the
user (UID) that launched the client. See the nvidia-cuda-mps-control man page for
more information on how to configure an MPS environment.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 13

‣ The CUDA 5.5 Toolkit adds support for Linux on the ARMv7 Architecture. The
toolkit comes with a comprehensive set of tools to develop applications for Linux
on ARMv7, either natively or cross-platform. Note that only the ARM hard-float
floating point ABI is supported.

‣ With the CUDA 5.5 Toolkit, there are some restrictions that are now enforced that
may cause existing projects that were building on CUDA 5.0 to fail. For projects
that use -Xlinker with nvcc, you need to ensure the arguments after -Xlinker are
quoted. In CUDA 5.0, -Xlinker -rpath /usr/local/cuda/lib would succeed;
in CUDA 5.5 -Xlinker "-rpath /usr/local/cuda/lib" is now necessary.

‣ The Toolkit is using a new installer on Windows. The installer is able to install any
selection of components and to customize the installation locations per user request.

‣ The CUDA Sample projects have makefiles that are now more self-contained and
robust. If some dependent libraries are not present on Linux, the top-level makefile
does not build them.

‣ The CUDA Toolkit and the CUDA Driver are now available for installation as .rpm
and .deb installation packages for all the supported Linux distributions, except
Ubuntu 10.04 and RHEL 5.5. Those files are accessible on the CUDA Toolkit package
repositories. The RPM and Debian package installations support installation of
multiple versions. Installations can be updated when a new version of the CUDA
Toolkit is available.

‣ The following documents are now available in the CUDA toolkit documentation
portal:

‣ Programming guides: CUDA Video Encoder, CUDA Video Decoder, Developer Guide
to Optimus, Parallel Thread Execution (PTX) ISA, Using Inline PTX Assembly in
CUDA, NPP Library Programming Guide.

‣ Tools manuals: CUDA Binary Utilities.
‣ White papers: Floating-Point and IEEE 754 Compliance, Incomplete-LU and Cholesky

Preconditioned Iterative Methods.
‣ Compiler SDK: libNVVM API, libdevice Users's Guide, NVVM IR Specification.
‣ General: CUDA Toolkit Release Notes, End-User License Agreements.

1.8.2. CUDA Libraries

1.8.2.1. CUBLAS

‣ The routines cublas{S,D,C,Z}getriBatched() and
cublas{S,D,C,Z}matinvBatched() have been added to the CUBLAS Library.
Routine cublas{S,D,C,Z}getriBatched() must be called after the LU batched
factorization routine, cublas{S,D,C,Z}getrfBatched(), to obtain the inverse
matrices. The routine cublas{S,D,C,Z}matinvBatched() does a direct inversion
with pivoting based on the Gauss-Jordan algorithm but is limited to matrices of
dimension <= 32×32.

‣ The limitation on the dimension n of the routine cublas<T>getrfbatched() has
been removed. However, for performance reasons it is still recommended to use this
routine for small values of n, typically n < 256.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 14

1.8.2.2. CUFFT

‣ CUFFT 5.5 extends the existing API. The new calls allow creation of a CUFFT plan
handle separate from the actual creation of the plan, allow insertion of new calls
to set plan attributes before the work of plan creation is done, and allow advanced
users more control over memory space allocation. Details can be found in the CUFFT
Library User's Guide.

‣ CUFFT 5.5 provides FFTW3 interfaces that enables applications using FFTW to
gain performance with NVIDIA CUFFT with minimal changes to program source
code. The CUFFT Library User's Guide documents which FFTW3 API features are
supported.

1.8.2.3. CURAND
CURAND 5.5 introduces support for the random number generator Philox4x32-10.

1.8.2.4. CUSPARSE

‣ The routine cusparse{S,D,C,Z)crsmm2() is an API extension of
cusparse{S,D,C,Z}csrmm() which allows the matrix B to be passed in a
transposed form. This can bring up to a 2× speedup in performance due to the better
memory access efficiency of transposed matrix B.

‣ The cublas<T>gtsv() routines have been replaced with a version that supports
pivoting. The previous version has been renamed cublas<T>gtsv_nopivot()
to better reflect that it does not support pivoting. The new algorithm has been
developed by Liwen Wang from the Impact Group of the University of Illinois.

‣ The routine cusparse<T>brsrxmv() is an extension of the routine
cusparse<T>bsrmv() that allows the matrix vector product to be performed on a
submatrix. This routine also works for block of dimension 1 (CSR format).

1.8.2.5. Thrust
The version of Thrust included with the current CUDA toolkit was upgraded from
version 1.5.3 to version 1.7.0. A summary of included updates can be found here: https://
github.com/thrust/thrust/blob/1.7.0/CHANGELOG.

1.8.3. CUDA Tools

1.8.3.1. CUDA Compiler

‣ The following changes have been made to the CUDA Compiler SDK:

‣ An optimizing compiler library (libnvvm.so, nvvm.dll/nvvm.lib,
libnvvm.dylib) and its header file nvvm.h are provided for compiler
developers who want to generate PTX from a program written in NVVM IR,
which is a compiler internal representation based on LLVM.

‣ A set of libraries, libdevice.*.bc, that implement the common math
functions for devices in the LLVM bitcode format are provided.

https://github.com/thrust/thrust/blob/1.7.0/CHANGELOG
https://github.com/thrust/thrust/blob/1.7.0/CHANGELOG

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 15

‣ A set of samples that illustrate the use of the compiler SDK are provided.

‣ Documents for the CUDA Compiler SDK (including the specification for LLVM
IR, an API document for libnvvm, and an API document for libdevice) are
provided.

‣ The default nvcc.profile no longer includes -lcudart (on Linux and Mac OS
X) and cudart.lib (on Windows), and the use of the CUDA runtime is now
controlled by the option --cudart (-cudart). Consequently, the option --
dont-use-profile (-noprof) no longer prevents nvcc from linking the object
files against the CUDA runtime when the default nvcc.profile is used, and
the option --cudart=none (-cudart=none) needs to be used instead. If the
option --cudart=none (-cudart=none) is not specified, --cudart=static (-
cudart=static) is assumed, and nvcc links the object files against the static CUDA
runtime.

‣ CUDA 5.5 adds support for JIT linking. This can be done explicitly by using the
driver API (see the cuLink* routines in the CUDA Driver API documentation);
alternatively, runtime apps that use separate compilation will automatically JIT to
a newer architecture if needed (see the Separate Compilation chapter in the CUDA
Compiler Driver NVCC document). JIT linking requires rebuilding all objects with the
5.5 toolkit.

1.8.3.2. CUDA-GDB

‣ CUDA-GDB can now be used to debug a CUDA application on the same GPU
that is rendering the desktop GUI. This feature is available on Linux with
devices of compute capability 3.5 and can be enabled using the set cuda
software_preemption on command prior to running an application.

‣ Debugging of long-running or indefinite CUDA kernels that would otherwise
encounter a launch timeout is now possible. This feature is available on Linux
with devices of compute capability 3.5 and can be enabled using the set cuda
software_preemption on command prior to running an application

‣ Multiple CUDA-GDB sessions can simultaneously debug CUDA applications on
the same GPU. This feature is available on Linux with devices of compute capability
3.5 and can be enabled using the set cuda software_preemption on command
prior to running an application.

‣ To represent the parent/child kernel information, two commands were added. The
info cuda launch trace command shows the trace of kernel launches that leads
to the kernel in focus by default. It is the equivalent of the backtrace command
for function calls. The info cuda launch children shows the list of kernels
launched by the kernel in focus (by default).

‣ CUDA-GDB now supports remote debugging. The application must run on a Linux
target (or server) machine. The debugger can run on either a Linux or Mac host
(or client) machine. Remote debugging is enabled using the standard GDB remote
commands.

‣ Multiple CUDA-GDB instances can be now used for debugging ranks of an MPI
application that uses a separate GPU for each rank. Each CUDA-GDB instance
should be invoked with the option --cuda-use-lockfile=0, which allows
multiple CUDA-GDB instances to exist simultaneously.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 16

‣ The list of threads returned by the info cuda threads can now be narrowed to
the threads currently at a breakpoint. To enable the filter, the keyword breakpoint
can simply be added as an option to the info cuda threads command.

‣ The info cuda contexts command was added. The command lists all the CUDA
contexts the debugger is aware of and their respective status (active or not).

1.8.3.3. CUDA-MEMCHECK

‣ Return code cudaErrorNotReady can be returned by cudaStreamQuery() and
cudaEventQuery() in the case where the stream/event being waited on is still busy.
This return code is not an error condition and is used by user programs to poll until
the stream/event is ready. CUDA-MEMCHECK will no longer report the following
conditions as errors when CUDA API call checking is enabled:

‣ cudaErrorNotReady returned by CUDA Run Time API calls
‣ CUDA_ERROR_NOT_READY returned by CUDA Driver API calls

‣ The racecheck tool in CUDA-MEMCHECK now has support for SM 3.5 devices.
‣ The racecheck-report mode option of the racecheck tool can be used to enable

the generation of analysis records.
‣ CUDA-MEMCHECK now supports displaying error information as errors occur

during program execution instead of waiting for program termination to display
output.

1.8.3.4. CUDA Profiler

‣ The NVIDIA Visual Profiler now supports applications that use CUDA Dynamic
Parallelism. The application timeline includes both host-launched and device-
launched kernels, and shows the parent-child relationship between kernels.

‣ The application analysis performed by the NVIDIA Visual Profiler has been
enhanced. A guided analysis mode has been added that provides step-by-step
analysis and optimization guidance. Also, the analysis results now included
graphical visualizations to more clearly indicate the optimization opportunities.

‣ The NVIDIA Visual Profiler and the command-line profiler, nvprof, now support
power, thermal, and clock profiling.

‣ The NVIDIA Visual Profiler and the command-line profiler, nvprof, now support
metrics that report the floating-point operations performed by a kernel. These
metrics include both single-precision and double-precision counts for adds,
multiplies, multiply-accumulates, and special floating-point operations.

‣ The NVIDIA command-line profiler, nvprof, now supports collection of any
number of events and metrics during a single run of a CUDA application. It uses
kernel replay to execute each kernel as many times as necessary to collect all the
requested profile data.

‣ The NVIDIA command-line profiler, nvprof, now supports profiling of all CUDA
processes executed on a system. In this "profile all processes" mode, a user starts
nvprof on a system and all CUDA applications subsequently launched by that user
are profiled.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 17

1.8.3.5. Debugger API

‣ Two new symbols are introduced to control the behavior of the application:
CUDBG_ENABLE_LAUNCH_BLOCKING and CUDBG_ENABLE_INTEGRATED_MEMCHECK.
The two symbols, when set to 1, have the same effect as setting the environment
variables CUDA_LAUNCH_BLOCKING and CUDA_MEMCHECK to 1. Both symbols also
have the same restriction: the change takes effect on the next run of the application.

‣ Software preemption is available as a BETA. The option is enabled by setting the
symbol CUDBG_ENABLE_PREEMPTION_DEBUGGING to 1. The option is used to debug
a CUDA application on the same GPU that is rendering the desktop GUI.

‣ Software preemption (BETA) enables debugging of long-running or indefinite
CUDA kernels that would otherwise encounter a launch timeout.

‣ Software preemption (BETA) allows multiple debugger sessions can simultaneously
debug CUDA applications on the same GPU. This feature is available on Linux with
devices of compute capability of 3.5.

‣ The parent grid information for each kernel is now available as either a new field in
the kernelReady event, or as a field in the newly created CUDBGGridInfo struct,
which is retrievable via the new getGridInfo() call. Both models, push and pull,
complement each other and should be used hand-in-hand to get the most accurate
and recent information about the status of a kernel in the application.

‣ To reduce the number of times the debugger stops and resumes the application, the
debugger API can be made to defer non-essential host kernel launch notifications
instead of producing events in the the synchronous event queue. This behavior
is controlled with the new setKernelLaunchNotificationMode() function
call. When set to CUDBG_KNL_LAUNCH_NOTIFY_DEFER, the debugger will not
receive kernelReady events for every kernel launch. Instead, the debugger must
reconstruct this information by calling getGridInfo for every previously unseen
grid present on the device the next time it stops.

‣ The gridId is now available as a 64-bit value. New fields and new API functions
were added to cover the new type. The old 32-bit values are still accessible but are
now deprecated. Whenever possible the 64-bit gridId should be used.

1.8.3.6. Nsight Eclipse Edition

‣ Nsight Eclipse Edition now provides remote debugging of CUDA applications for
Linux targets. The host system running Nsight may be Mac OS X or Linux, and the
target system being debugged may be any supported version of Linux and may
have a different CPU architecture. Nsight can upload a locally built application to
the target system or can use an executable already available on the remote system. .

‣ The Nsight Eclipse Edition debugger now provides a memory viewer for both host
and device memory. The memory viewer supports a number of different data types,
including floating point.

‣ Nsight Eclipse Edition now provides CUDA Dynamic Parallelism support for both
new and existing projects.

‣ For applications that use CUDA Dynamic Parallelism, the Nsight Eclipse Edition
debugger now shows the parent/child launch trace for device-launched kernels.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 18

‣ Nsight Eclipse Edition now includes the Remote System Explorer plug-in. This
plug-in enables accessing of remote systems for file transfer, shell access, and listing
running processes.

‣ Nsight Eclipse Edition is updated to use Eclipse Platform 3.8.2 and Eclipse CDT
8.1.2, introducing a number of new features and enhancements to existing features.

1.9. Performance Improvements

1.9.1. CUDA Libraries

1.9.1.1. CUBLAS
The cublas<T>trsv() routines have been significantly optimized with the work
of Jonathan Hogg from The Science and Technology Facilities Council (STFC).
Subsequently, cublas<T>trsm() was updated to use some of these optimizations in
some cases.

1.9.1.2. Math
The performance of the double-precision functions fmod(), remainder(), and
remquo() has been significantly improved for sm_30.

1.10. Resolved Issues

1.10.1. General CUDA
‣ In CUDA 5.5 the library versioning has been changed on Mac and Windows. Please

refer to section 15.4, Distributing the CUDA Runtime and Libraries, in the CUDA C Best
Practices Guide.

‣ Extracting the Linux installer via the -extract=<path> option currently requires
root permissions.

‣ When the default CUDA 5.0 Windows installer option to silently install the NVIDIA
display driver is used, an error message like "display driver has failed to install"
may be displayed for certain hardware configurations. If this error message occurs,
the installation can be completed by installing the display driver separately using
the setup.exe saved under C:\NVIDIA\DisplayDriver\....

‣ In certain hardware configurations, the CUDA 5.0 installer on Windows may
fail to install the display driver. This failure occurs when the user disables silent
installation of the display driver and instead chooses to interactively select the
components of the display driver from the installer UI that appears after the CUDA
toolkit and samples are installed. If the UI for interactive selection of the display
driver components fails to appear, please reinstall just the display driver by running
setup.exe saved under C:\NVIDIA\DisplayDriver\....

‣ On Mac OS X, cuda-gdb is not required to be a member of the procmod group, and
the task-gated process does not need to be reconfigured anymore.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 19

1.10.2. CUDA Libraries

1.10.2.1. NPP
The NPP ColorTwist_32f_8u_P3R primitive does not work properly for line strides
that are not 64-byte aligned. This issue can be worked around by using the image
memory allocators provided by the NPP library.

1.10.3. CUDA Tools
‣ All user-loaded modules, as well as modules containing system calls, are exposed

via the debug API to retain backwards compatibility with existing CUDA toolkits.
Other driver internal modules are not exposed.

‣ The hardware counter (event) values may be incorrect in some cases on GPUs
with compute capability (SM type) 3.5. Incorrect event values also result in
incorrect metric values. These errors are more likely to occur when the same GPU
is used for display and compute, or when other graphics applications are running
simultaneously on the GPU.

‣ Old-style cubin support in cuobjdump has been deprecated by removing the -
cubin and -fname options, and removing support for fatbin versions less than 4.

1.10.3.1. CUDA-GDB

‣ Conditional breakpoints can now be set before the device ELF image is loaded. The
conditions may include built-in variables such as threadIdx and blockIdx. The
conditional device breakpoints will be marked as pending until they can be resolved
to a device code address.

‣ A new error, CUDBG_ERROR_NO_DEVICE_AVAILABLE, will be returned at
initialization time if no CUDA-capable device can be found.

1.10.3.2. Debugger API
A new error, CUDBG_ERROR_NO_DEVICE_AVAILABLE, will be returned at initialization
time if no CUDA-capable device can be found.

1.11. Known Issues

1.11.1. Linux on ARMv7 Specific Issues
‣ Mapping host memory to device memory is not allowed on ARM. Because

of this, cudaMemHostRegister is not supported by the CUDA driver on
the ARMv7 Linux platform. In general, any call to cudaMemHostAlloc()
with the flag CU_MEMHOSTALLOC_DEVICEMAP is expected to return
CUDA_ERROR_NOT_SUPPORTED.

‣ The native ARMv7 compiler does not support code generation for sm_1X-style
GPUs. The default target is sm_20.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 20

‣ Support for NPP is still in beta since the results have not been verified for all inputs.

1.11.2. General CUDA
‣ The 32-bit Windows CUDA Toolkit can no longer be installed on a 64-bit Windows

machine. The 32-bit libraries are now part of the 64-bit Windows installation, and
32-bit applications can be compiled from the 64-bit installation.

‣ The CUDA reference manual incorrectly describes the type of CUdeviceptr as an
unsigned int on all platforms. On 64-bit platforms, a CUdeviceptr is an unsigned
long long, not an unsigned int.

‣ On GPUs that are not in Tesla Compute Cluster (TCC) mode under Windows,
CUDA streams may not achieve as much concurrency as they did in prior releases.

1.11.3. CUDA Libraries

1.11.3.1. NPP
Although NPP routines are expected to behave properly when running on an ARM
system, not all routines have been validated when run on ARM. Please report any
functional errors via the CUDA/GPU Computing Registered Developer Program
website.

1.11.4. CUDA Tools

1.11.4.1. CUDA Compiler

‣ The nvcc compiler doesn't accept Unicode characters in any filename or path
provided as a command-line parameter.

‣ A CUDA program may not compile correctly if a type or typedef T is private to a
class or a structure, and at least one of the following is satisfied:

‣ T is a parameter type for a __global__ function.
‣ T is an argument type for a template instantiation of a __global__ function.

This restriction will be fixed in a future release.
‣ (Mac OS) The documentation surrounding the use of the flag -malign-double

suggests it be used to make the struct size the same between host and device code.
We know now that this flag causes problems with other host libraries. The CUDA
documentation will be updated to reflect this.

The work around for this issue is to manually add padding so that the structs
between the host compiler and CUDA are consistent.

1.11.4.2. CUDA Profiler
Due to hardware limitations some metrics are not available on all devices.

NVIDIA CUDA Toolkit v5.5 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 21

1.12. Source Code for Open64 and CUDA-GDB
‣ The Open64 and CUDA-GDB source files are controlled under terms of the GPL

license. Current versions are located here: http://github.com/nvidia. Previously
released versions can be found here: ftp://download.nvidia.com/CUDAOpen64/.

‣ Linux users can refer to the following:

‣ The Release Notes and Known Issues sections in the CUDA-GDB User Manual
(CUDA_GDB.pdf)

‣ The CUDA_Memcheck.pdf for notes on supported error detection and known
issues

1.13. More Information
‣ For more information, please visit http://www.nvidia.com/cuda and http://

docs.nvidia.com/cuda.
‣ Please refer to the LLVM Release License text in EULA.txt for details on LLVM

licensing.

http://github.com/nvidia
ftp://download.nvidia.com/CUDAOpen64/
http://www.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 22

Chapter 2.
NVIDIA CUDA TOOLKIT V5.0 RELEASE
NOTES

2.1. Errata

2.1.1. Known Issues

2.1.1.1. General CUDA

‣ Extracting the Linux installer via the -extract=<path> option currently requires
root permissions.

‣ When the default CUDA 5.0 Windows installer option to silently install the NVIDIA
display driver is used, an error message like "display driver has failed to install"
may be displayed for certain hardware configurations. If this error message occurs,
the installation can be completed by installing the display driver separately using
the setup.exe saved under C:\NVIDIA\DisplayDriver\....

‣ In certain hardware configurations, the CUDA 5.0 installer on Windows may
fail to install the display driver. This failure occurs when the user disables silent
installation of the display driver and instead chooses to interactively select the
components of the display driver from the installer UI that appears after the CUDA
toolkit and samples are installed. If the UI for interactive selection of the display
driver components fails to appear, please reinstall just the display driver by running
setup.exe saved under C:\NVIDIA\DisplayDriver\....

‣ On GPUs that are not in Tesla Compute Cluster (TCC) mode under Windows,
CUDA streams may not achieve as much concurrency as they did in prior releases.

‣ When running the Linux installer in silent mode without root permissions, the -
toolkitpath=<PATH> and -samplespath=<PATH> flags must be passed.

‣ The CUDA 5.0 toolkit and samples require the associated CUDA driver version to
be at least 304.54 on Linux and at least 306.94 on Windows. Make sure that such a
CUDA driver is installed on your system before attempting to run the CUDA 5.0
samples or any CUDA applications.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 23

‣ On certain Windows configuration installing Visual Studio integration files
may not get updated, this could result in a build error when building CUDA
application. To fix this problem follow these steps: The windows CUDA
Toolkit installers installs a duplicate copy of the Visual Studio integration
files into <ProgramFiles>\NVIDIA GPU Computing Toolkit\CUDA
\v5.0\extras\visual_studio_integration\MSBuildExtensions
for the CUDA Toolkit feature. Copy Nvda.Build.CudaTasks.v5.0.dll
from this folder into the MSBuild Build Customization folder at C:\Program
Files\MSBuild\Microsoft.Cpp\v4.0\BuildCustomizations on 32 bit
operating systems or C:\Program Files (x86)\MSBuild\Microsoft.Cpp
\v4.0\BuildCustomizations on 64 bit operating systems.

‣ On Linux and Mac OS X, the CUDA Toolkit 5.0 Samples do not generate PTX
code required for forward compatibility with future GPU architectures. It is
highly recommended to always compile CUDA applications with the PTX code
associated with the latest available PTX generation supported by the compiler.
To do so, the -gencode arch=compute_35,code=sm_35 line in the CUDA
Samples Makefiles must be replaced with -gencode arch=compute_35,code=
\"sm_35,compute_35\". For additional information, please consult the compiler
documentation at http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
index.html#extended-notation

2.1.1.2. CUDA Libraries

‣ The cublas<T>geam() routine provides undefined results if the pointer mode
is set to CUBLAS_POINTER_MODE_DEVICE and the value pointed to by alpha
is zero. There are two possible workarounds for this issue. The first is to use
CUBLAS_PONTER_MODE_HOST instead of CUBLAS_POINTER_MODE_DEVICE, but this
may require an extra device-to-host memory copy, depending on the situation. The
second is to swap the (transa, alpha, A, lda) parameters with the (transb, beta, B, ldb)
parameters, which would make the value pointed to by beta equal to 0.

‣ The routine cublasCsyrk() may produce incorrect results on GPUs that
implement the sm_30 architecture when the size of matrix parameter A exceeds
(128M - 512) total elements.

‣ The CUSPARSE library routines csrsv_analysis(), csrsv_solve(),
csrsm_analysis(), and csrsm_solve() support the
CUSPARSE_MATRIX_TYPE_GENERAL matrix type in addition to the supported
matrix types already listed in the documentation.

2.1.1.3. CUDA Tools

‣ The hardware counter (event) values may be incorrect in some cases on GPUs
with compute capability (SM type) 3.5. Incorrect event values also result in
incorrect metric values. These errors are more likely to occur when the same GPU
is used for display and compute, or when other graphics applications are running
simultaneously on the GPU.

‣ Beginning with CUDA 5.0, the ptxas portion of the compiler generates a warning
when the command line option "-abi=no" is used that indicates the option may be
deprecated in a future release.

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#extended-notation
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#extended-notation

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 24

‣ The current 5.0 linker will not support JIT to future architectures; objects will have to
re-linked for each architecture.

‣ Source-level analysis in NVIDIA Nsight Eclipse Edition and NVIDIA Visual Profiler
is not available for kernels accessed through static function pointers.

2.2. Documentation
‣ For a list of documents supplied with this release, please refer to the doc directory

of your CUDA Toolkit installation. PDF documents are available in the doc/pdf
folder. Several documents are now also available in HTML format and are found in
the doc/html folder.

‣ The HTML documentation is now fully available from a single entry page available
both locally in the CUDA Toolkit installation folder under doc/html/index.html
and online at http://docs.nvidia.com/cuda/index.html.

‣ The license information for the toolkit portion of this release can be found at doc/
EULA.txt.

‣ The CUDA Occupancy Calculator spreadsheet can be found at tools/
CUDA_Occupancy_Calculator.xls.

‣ The CHM documentation has been removed.

2.3. List of Important Files

2.3.1. Core Files
bin/
 nvcc CUDA C/C++ compiler
 cuda-gdb CUDA Debugger
 cuda-memcheck CUDA Memory Checker
 nsight Nsight Eclipse Edition (Linux and Mac OS)
 nvprof NVIDA Command-Line Profiler
 nvvp NVIDIA Visual Profiler (Located in libnvvp/
 on Windows)

include/
 cuda.h CUDA driver API header
 cudaGL.h CUDA OpenGL interop header for driver API
 cudaVDPAU.h CUDA VDPAU interop header for driver API
 (Linux)
 cuda_gl_interop.h CUDA OpenGL interop header for toolkit API
 (Linux)
 cuda_vdpau_interop.h CUDA VDPAU interop header for toolkit API
 (Linux)
 cudaD3D9.h CUDA DirectX 9 interop header (Windows)
 cudaD3D10.h CUDA DirectX 10 interop header (Windows)
 cudaD3D11.h CUDA DirectX 11 interop header (Windows)
 cufft.h CUFFT API header
 cublas_v2.h CUBLAS API header
 cublas.h CUBLAS Legacy API header
 cusparse_v2.h CUSPARSE API header
 cusparse.h CUSPARSE Legacy API header
 curand.h CURAND API header
 curand_kernel.h CURAND device API header
 thrust/* Thrust headers
 npp.h NPP API header

http://docs.nvidia.com/cuda/index.html

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 25

 nvToolsExt*.h NVIDIA Tools Extension headers (Linux and Mac)
 nvcuvid.h CUDA Video Decoder header (Windows and Linux)
 cuviddec.h CUDA Video Decoder header (Windows and Linux)
 NVEncodeDataTypes.h CUDA Video Encoder header (Windows; C-library
 or DirectShow)
 NVEncoderAPI.h CUDA Video Encoder header (Windows; C-library)
 INvTranscodeFilterGUIDs.h CUDA Video Encoder header (Windows; DirectShow)
 INVVESetting.h CUDA Video Encoder header (Windows; DirectShow)

extras/
 CUPTI CUDA Performance Tool Interface API
 Debugger CUDA Debugger API

src/
 fortran.{c,h} FORTRAN interface files for CUBLAS and CUSPARSE

2.3.2. Windows lib Files
(Corresponding 32-bit or 64-bit DLLs are in bin/.)
lib/{Win32,x64}/
 cuda.lib CUDA driver library
 cudart.lib CUDA runtime library
 cudadevrt.lib CUDA runtime device library
 cublas.lib CUDA BLAS library
 cublas_device.lib CUDA BLAS device library
 cufft.lib CUDA FFT library
 cusparse.lib CUDA Sparse Matrix library
 curand.lib CUDA Random Number Generation library
 npp.lib NVIDIA Performance Primitives library
 nvcuvenc.lib CUDA Video Encoder library
 nvcuvid.lib CUDA High-level Video Decoder library

 OpenCL.lib OpenCL library

2.3.3. Linux lib Files
lib{64}/
 libcudart.so CUDA runtime library
 libcuinj.so CUDA internal library for profiling
 libcublas.so CUDA BLAS library
 libcublas_device.a CUDA BLAS device library
 libcufft.so CUDA FFT library
 libcusparse.so CUDA Sparse Matrix library
 libcurand.so CUDA Random Number Generation library
 libnpp.so NVIDIA Performance Primitives library

2.3.4. Mac OS X lib Files
lib/
 libcudart.dylib CUDA runtime library
 libcuinj.dylib CUDA internal library for profiling
 libcublas.dylib CUDA BLAS library
 libcublas_device.a CUDA BLAS device library
 libcufft.dylib CUDA FFT library
 libcusparse.dylib CUDA Sparse Matrix library
 libcurand.dylib CUDA Random Number Generation library
 libnpp.dylib NVIDIA Performance Primitives library
 libtlshook.dylib NVIDIA internal library

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 26

2.4. Supported NVIDIA Hardware
See http://www.nvidia.com/object/cuda_gpus.html.

2.5. Supported Operating Systems

2.5.1. Windows
‣ Supported Windows Operating Systems

Windows 8
Windows 7
Windows Vista
Windows XP
Windows Server 2012
Windows Server 2008 R2

Table 5 Windows Compilers Supported in 5.0

Compiler IDE

Visual C++ 10.0 Visual Studio 2010

Visual C++ 9.0 Visual Studio 2008

2.5.2. Linux
‣ The CUDA development environment relies on tight integration with the host

development environment, including the host compiler and C runtime libraries, and
is therefore only supported on distribution versions that have been qualified for this
CUDA Toolkit release.

Table 6 Linux Distributions Supported in 5.0

Distribution 32 64 Kernel GCC GLIBC

Fedora 16 x x 3.1.0-7.fc16 4.6.2 2.14.90

ICC Compiler 12.x x

OpenSUSE 12.1 x 3.1.0-1.2-desktop 4.6.2 2.14.1

Red Hat RHEL 6.x x 2.6.32-131.0.15.el6 4.4.5 2.12

Red Hat RHEL 5.5+ x 2.6.18-238.el5 4.1.2 2.5

SUSE SLES 11 SP2 x 3.0.13-0.27-pae 4.3.4 2.11.3

SUSE SLES 11.1 x x 2.6.32.12-0.7-pae 4.3.4 2.11.1

Ubuntu 11.10 x x 3.0.0-19-generic-pae 4.6.1 2.13

http://www.nvidia.com/object/cuda_gpus.html

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 27

Distribution 32 64 Kernel GCC GLIBC

Ubuntu 10.04 x x 2.6.35-23-generic 4.4.5 2.12.1

Table 7 Linux Distributions Not Supported in 5.0

Distribution 32 64 Kernel GCC GLIBC

Fedora 14 x x 2.6.35.6-45 4.5.1 2.12.90

ICC Compiler 11.1 x

OpenSUSE 11.2 x x 2.6.31.5-0.1 4.4.1 2.10.1

Red Hat RHEL 6.x x 2.6.32-131.0.15.el6 4.4.5 2.12

Red Hat RHEL 5.5+ x 2.6.18-238.el5 4.1.2 2.5

Ubuntu 11.04 x x 2.6.38-8-generic 4.5.2 2.13

2.5.3. Mac OS X
‣ Supported Mac Operating Systems

Mac OS X 10.8.x
Mac OS X 10.7.x

2.6. Installation Notes

2.6.1. Windows
For silent installation:

‣ To install, use msiexec.exe from the shell, passing these arguments:

msiexec.exe /i <cuda_toolkit_filename>.msi /qn

‣ To uninstall, use /x instead of /i.

2.6.2. Linux
‣ In order to run CUDA applications, the CUDA module must be loaded and the

entries in /dev created. This may be achieved by initializing X Windows, or by
creating a script to load the kernel module and create the entries. An example script
(to be run at boot time) follows.
#!/bin/bash

/sbin/modprobe nvidia

if ["$?" -eq 0]; then

 # Count the number of NVIDIA controllers found.
 N3D=`/sbin/lspci | grep -i NVIDIA | grep "3D controller" | wc -l`
 NVGA=`/sbin/lspci | grep -i NVIDIA | grep "VGA compatible controller" \
 | wc -l`

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 28

 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i;
 done

 mknod -m 666 /dev/nvidiactl c 195 255

else
 exit 1
fi

‣ On some Linux releases, due to a GRUB bug in the handling of upper memory
and a default vmalloc too small on 32-bit systems, it may be necessary to pass this
information to the bootloader:
vmalloc=256MB, uppermem=524288

Here is an example of GRUB conf:
title Red Hat Desktop (2.6.9-42.ELsmp)
root (hd0,0)
uppermem 524288
kernel /vmlinuz-2.6.9-42.ELsmp ro root=LABEL=/1 rhgb quiet vmalloc=256MB
pci=nommconf
initrd /initrd-2.6.9-42.ELsmp.img

2.7. New Features

2.7.1. General CUDA
‣ Support compatibility between CUDA driver and CUDA toolkit is as follows:

‣ Any nvcc generated PTX code is forward compatible to newer GPU
architectures. This means any CUDA binaries that include PTX code will
continue to run on newer GPUs and newer CUDA drivers released from
NVIDIA; as the PTX code gets JIT compiled at runtime to the newer GPU
architecture.

‣ CUDA drivers are backward compatible with CUDA toolkit. This means
systems can be upgraded to newer drivers independent of upgrading to newer
toolkit. Apps built using old toolkit will load and run with the newer drivers
however if they require PTX JIT compilation to run on a newer GPU architecture
(SM version) then such apps cannot be used with CUDA tools from old toolkit.
Any JIT compiled code implies using the newer compiler and thus a new ABI
which requires upgrading to the matching newer toolkit and associated tools.

‣ Any separately compiled NVCC binaries (enabled in 5.0) require that all device
objects follow the same ABI, and must target the same GPU architecture (SM
version). Any CUDA tools usage on these binaries must match the associated
toolkit version of the compiler.

‣ The CUDA 4.2 toolkit for sm_30 implicitly increased a -maxrregcount that was less
than 32 to 32. The CUDA 5.0 toolkit does not implicitly increase the -maxrregcount
unless it is less than 16 (because the ABI requires at least 16 registers). Note that 32
is the "best minimum" for sm_3x, and the libcublas_device library is compiled for 32
registers.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 29

‣ Any PTX code generated by NVCC is forward compatible with newer GPU
architectures. CUDA binaries that include PTX code will continue to run on newer
GPUs with newer NVIDIA CUDA drivers because the PTX code is JIT compiled at
runtime to the newer GPU architectures.

‣ CUDA drivers are backward compatible with the CUDA toolkit. This means systems
can be upgraded to newer drivers independently of upgrading to a newer toolkit.
Applications built using an older toolkit will load and run with the newer drivers;
however, if the applications require PTX JIT compilation to run on a newer GPU
architecture (SM version) then they cannot be used with tools from an older CUDA
toolkit. Any JIT-compiled code requires using the newer compiler and thus a
new ABI, which, in turn, requires upgrading to the matching newer toolkit and
associated tools.

‣ Any separately compiled NVCC binaries (enabled in 5.0) require that all device
objects must follow the same ABI and must target the same GPU architecture (SM
version). Any CUDA tool used with these binaries must match the associated toolkit
version of the compiler.

‣ Using flag cudaStreamNonBlocking with cudaStreamCreateWithFlags()
specifies that the created stream will run currently with stream 0 (the NULL stream)
and will perform no synchronization with the NULL stream. This flag is functional
in the CUDA 5.0 release.

‣ The cudaStreamAddCallback() routine introduces a mechanism to perform work
on the CPU after work is finished on the GPU, without polling.

‣ The cudaStreamCallbackNonblocking option for cudaStreamAddCallback()
and cuStreamAddCallback() has been removed from the CUDA 5.0 release.
Option cudaStreamCallbackBlocking is supported and is the default behavior
when no flags are specified.

‣ CUDA 5.0 introduces support for Dynamic Parallelism, which is a significant
enhancement to the CUDA programming model. Dynamic Parallelism allows a
kernel to launch and synchronize with new grids directly from the GPU using
CUDA's standard <<< >>> syntax. A broad subset of the CUDA runtime API is
now available on the device, allowing launch, synchronization, streams, events, and
more. For complete information, please see the CUDA Dynamic Parallelism appendix
in the CUDA C Programming Guide. CUDA Dynamic Parallelism is available only on
SM 3.5 architecture GPUs.

‣ The use of a character string to indicate a device symbol, which was possible with
certain API functions, is no longer supported. Instead, the symbol should be used
directly.

2.7.1.1. Linux

‣ Added the cuIpc functions, which are designed to allow efficient shared memory
communication and synchronization between CUDA processes. Functions
cuIpcGetEventHandle() and cuIpcGetMemHandle() get an opaque handle
that can be freely copied and passed between processes on the same machine. The
accompanying cuIpcOpenEventHandle() and cuIpcOpenMemHandle() functions
allow processes to map handles to resources created in other processes.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 30

2.7.2. CUDA Libraries

2.7.2.1. CUBLAS

‣ In addition to the usual CUBLAS Library host interface that supports all
architectures, the CUDA toolkit now delivers a static CUBLAS library
(cublas_device.a) that provides the same interface but is callable from the device
from within kernels. The device interface is only available on Kepler II because it
uses the Dynamic Parallelism feature to launch kernels internally. More details can
be found in the CUBLAS Documentation.

‣ The CUBLAS library now supports routines cublas{S,D,C,Z}getrfBatched(),
for batched LU factorization with partial pivoting, and
cublas{S,D,C,Z}trsmBatched() a batched triangular solver. Those two routines
are restricted to matrices of dimension <= 32x32.

‣ The cublasCsyr(), cublasZsyr(), cublasCsyr2(), and cublasZsyr2()
routines were added to the CUBLAS library to compute complex and double-
complex symmetric rank 1 updates and complex and double-complex
symmetric rank 2 updates respectively. Note, cublasCher(), cublasZher(),
cublasCher2(), and cublasZher2() were already supported in the library and
are used for Hermitian matrices.

‣ The cublasCsymv() and cublasZsymv() routines were added to the CUBLAS
library to compute symmetric complex and double-complex matrix-vector
multiplication. Note, cublasChemv() and cublasZhemv() were already supported
in the library and are used for Hermitian matrices.

‣ A pair of utilities were added to the CUBLAS API for all data types. The
cublas{S,C,D,Z}geam() routines compute the weighted sum of two optionally
transposed matrices. The cublas{S,C,D,Z}dgmm() routines compute the
multiplication of a matrix by a purely diagonal matrix (represented as a full matrix
or with a packed vector).

2.7.2.2. CURAND

‣ The Poisson distribution has been added to CURAND, for all of the base
generators. Poisson distributed results may be generated via a host function,
curandGeneratePoisson(), or directly within a kernel via a device function,
curand_poisson(). The internal algorithm used, and therefore the number
of samples drawn per result and overall performance, varies depending on the
generator, the value of the frequency parameter (lambda), and the API that is used.

2.7.2.3. CUSPARSE

‣ Routines to achieve addition and multiplication of two sparse matrices in CSR
format have been added to the CUSPARSE Library.

The combination of the routines cusparse{S,D,C,Z}csrgemmNnz() and
cusparse{S,C,D,Z}csrgemm() computes the multiplication of two sparse
matrices in CSR format. Although the transpose operations on the matrices
are supported, only the multiplication of two non-transpose matrices has been

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 31

optimized. For the other operations, an actual transpose of the corresponding
matrices is done internally.

The combination of the routines cusparse{S,D,C,Z}csrgeamNnz() and
cusparse{S,C,D,Z}csrgeam() computes the weighted sum of two sparse
matrices in CSR format.

‣ The location of the csrVal parameter in the cusparse<t>csrilu0() and
cusparse<t>csric0() routines has changed. It now corresponds to the parameter
ordering used in other CUSPARSE routines, which represent the matrix in CSR-
storage format (csrVal, csrRowPtr, csrColInd).

‣ The cusparseXhyb2csr() conversion routine was added to the CUSPARSE library.
It allows the user to verify that the conversion to HYB format was done correctly.

‣ The CUSPARSE library has added support for two preconditioners that
perform incomplete factorizations: incomplete LU factorization with no fill
in (ILU0), and incomplete Cholesky factorization with no fill in (IC0). These
are supported by the new functions cusparse{S,C,D,Z}csrilu0() and
cusparse{S,C,D,Z}csric0(), respectively.

‣ The CUSPARSE library now supports a new sparse matrix storage format called
Block Compressed Sparse Row (Block-CSR). In contrast to plain CSR which
encodes all non-zero primitive elements, the Block-CSR format divides a matrix
into a regular grid of small 2-dimensional sub-matrices, and fully encodes all sub-
matrices that have any non-zero elements in them. The library supports conversion
between the Block-CSR format and CSR via cusparse{S,C,D,Z}csr2bsr() and
cusparse{S,C,D,Z}bsr2csr(), and matrix-vector multiplication of Block-CSR
matrices via cusparse{S,C,D,Z}bsrmv().

2.7.2.4. Math

‣ Single-precision normcdff() and double-precision normcdf() functions were
added. They calculate the standard normal cumulative distribution function.

Single-precision normcdfinvf() and double-precision normcdfinv() functions
were also added. They calculate the inverse of the standard normal cumulative
distribution function.

‣ The sincospi(x) and sincospif(x) functions have been added to the math
library to calculate the double- and single-precision results, respectively, for both
sin(x * PI) and cos(x * PI) simultaneously. Please see the CUDA Toolkit
Reference Manual for the exact function prototypes and usage, and the CUDA C
Programmer's Guide for accuracy information. The performance of sincospi{f}(x)
should generally be faster than calling sincos{f}(x * PI) and should generally
be faster than calling sinpi{f}(x) and cospi{f}(x) separately.

‣ Intrinsic __frsqrt_rn(x) has been added to compute the reciprocal square root of
single-precision argument x, with the single-precision result rounded according to
the IEEE-754 rounding mode nearest or even.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 32

2.7.2.5. NPP

‣ The NPP library in the CUDA 5.0 release contains more than 1000 new basic image
processing primitives, which include broad coverage for converting colors, copying
and moving images, and calculating image statistics.

‣ Added support for a new filtering-mode for Rotate primitives:

NPPI_INTER_CUBIC2P_CATMULLROM

This filtering mode uses cubic Catumul-Rom splines to compute the weights for
reconstruction. This and the other two CUBIC2P filtering modes are based on
the 1988 SIGGRAPH paper: Reconstruction Filters in Computer Graphics by Don P.
Mitchell and Arun N. Netravali. At this point NPP only supports the Catmul-Rom
filtering for Rotate.

2.7.3. CUDA Tools

2.7.3.1. CUDA Compiler

‣ The separate compilation culib format is not supported in the CUDA 5.0 release.
‣ From this release, the compiler checks the execution space compatibility among

multiple declarations of the same function and generates warnings or errors based
on the three rules described below.

‣ Generates a warning if a function that was previously declared as __host__
(either implicitly or explicitly) is redeclared with __device__ or with
__host__ __device__. After the redeclaration the function is treated as
__host__ __device__.

‣ Generates a warning if a function that was previously declared as __device__
is redeclared with __host__ (either implicitly or explicitly) or with __host__
__device__. After the redeclaration the function is treated as __host__
__device__.

‣ Generates an error if a function that was previously declared as __global__ is
redeclared without __global__, or vice versa.

‣ With this release, nvcc allows more than one command-line switch that specifies a
compilation phase, unless there is a conflict. Known conflicts are as follows:

‣ lib cannot be used with --link or --run.
‣ --device-link and --generate-dependencies cannot be used with other

options that specify final compilation phases.

When multiple compilation phases are specified, nvcc stops processing upon the
completion of the compilation phase that is reached first. For example, nvcc --
compile --ptx is equivalent to nvcc --ptx, and nvcc --preprocess --
fatbin equivalent to nvcc --preprocess.

‣ Separate compilation and linking of device code is now supported. See the Using
Separate Compilation in CUDA section of the nvcc documentation for details.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 33

2.7.3.2. CUDA-GDB

‣ (Linux and Mac OS) CUDA-GDB fully supports Dynamic Parallelism, a new feature
introduced with the 5.0 Toolkit. The debugger is able to track kernels launched from
another kernel and to inspect and modify their variables like any CPU-launched
kernel.

‣ When the environment variable CUDA_DEVICE_WAITS_ON_EXCEPTION is used,
the application runs normally until a device exception occurs. The application then
waits for the debugger to attach itself to it for further debugging.

‣ Inlined subroutines are now accessible from the debugger on SM 2.0 and above. The
user can inspect the local variables of those subroutines and visit the call frame stack
as if the routines were not inlined.

‣ Checking the error codes of all CUDA driver API and CUDA runtime API function
calls is vital to ensure the correctness of a CUDA application. Now the debugger is
able to report, and even stop, when any API call returns an error. See the CUDA-
GDB documentation on set cuda api_failures for more information.

‣ It is now possible to attach the debugger to a CUDA application that is already
running. It is also possible to detach it from the application before letting it run to
completion. When attached, all the usual features of the debugger are available to
the user, just as if the application had been launched from the debugger.

2.7.3.3. CUDA-MEMCHECK

‣ CUDA-MEMCHECK, when used from within the debugger, now displays the
address space and the address of the faulty memory access.

‣ CUDA-MEMCHECK now displays the backtrace on the host and device when an
error is discovered.

‣ CUDA-MEMCHECK now detects double free() and invalid free() on the
device.

‣ The precision of the reported errors for local, shared, and global memory
accesses has been improved.

‣ CUDA-MEMCHECK now reports leaks originating from the device heap.
‣ CUDA-MEMCHECK now reports error codes returned by the runtime API and the

driver API in the user application.
‣ CUDA-MEMCHECK now supports reporting data access hazards in shared

memory. Use the --tool racecheck command-line option to activate.

2.7.3.4. NVIDIA Nsight Eclipse Edition

‣ (Linux and Mac OS) Nsight Eclipse Edition is an all-in-one development
environment that allows developing, debugging, and optimizing CUDA code in an
integrated UI environment.

2.7.3.5. NVIDIA Visual Profiler, Command Line Profiler

‣ As mentioned in the Release Highlights, the tool, nvprof, is now available in release
5.0 for collecting profiling information from the command-line.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 34

2.8. Performance Improvements

2.8.1. CUDA Libraries

2.8.1.1. CUBLAS

‣ On Kepler architectures, shared-memory access width can be
configured for 4-byte banks (default) or 8-byte banks using the routine
cudaDeviceSetSharedMemConfig(). The CUBLAS and CUSPARSE libraries do
not affect the shared-memory configuration, although some routines might benefit
from it. It is up to users to choose the best shared-memory configuration for their
applications prior to calling the CUBLAS or CUSPARSE routines.

‣ In CUDA Toolkit 5.0, cublas<S,D,C,Z>symv() and cublas<C/Z>chemv() have
an alternate, faster implementation that uses atomics. The regular implementation,
which gives predictable results from one run to another, is run by default. The
routine cublasSetAtomicsMode() can be used to choose the alternate, faster
version.

2.8.1.2. CURAND

‣ In CUDA CURAND for 5.0, the Box-Muller formula, used to generate double-
precision normally distributed results, has been optimized to use sincospi()
instead of individual calls to sin() and cos() with multipliers to scale the
parameters. This results in a 30% performance improvement on a Tesla C2050, for
example, when generating double-precision normal results.

2.8.1.3. Math

‣ The performance of the double-precision fmod(), remainder(), and remquo()
functions has been significantly improved for sm_13.

‣ The sin() and cos() family of functions [sin(), sinpi(), cos(), and cospi()]
have new implementations in this release that are more accurate and faster.
Specifically, all of these functions have a worst-case error bound of 1 ulp, compared
to 2 ulps in previous releases. Furthermore, the performance of these functions has
improved by 25% or more, although the exact improvement observed can vary from
kernel to kernel. Note that the sincos() and sincospi() functions also inherit any
accuracy improvements from the component functions.

‣ Function erfcinvf() has been significantly optimized for both the Tesla and Fermi
architectures, and the worst case error bound has improved from 7 ulps to 4 ulps.

2.9. Resolved Issues

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 35

2.9.1. General CUDA
‣ When PTX JIT is used to execute sm_1x- or sm_2x-native code on Kepler, and when

the maximum grid dimension is selected based on the grid-size limits reported by
cudaGetDeviceProperties(), a conflict can occur between the grid size used and
the size limit presumed by the JIT'd device code.

The grid size limit on devices of compute capability 1.x and 2.x is 65535 blocks per
grid dimension. If an application attempts to launch a grid with >= 65536 blocks in
the x dimension on such devices, the launch fails outright, as expected. However,
because Kepler increased the limit (for the x dimension) to 231-1 blocks per grid,
previous CUDA Driver releases allowed such a grid to launch successfully; but
this grid exceeds the number of blocks that can fit into the 16-bit grid size and 16-
bit block index assumed by the compiled device code. Beginning in CUDA release
5.0, launches of kernels compiled native to earlier GPUs and JIT'd onto Kepler now
return an error as they would have with the earlier GPUs, avoiding the silent errors
that could otherwise result.

This can still pose a problem for applications that select their grid launch
dimensions based on the limits reported by cudaGetDeviceProperties(), since
this function reports 231-1 for the grid size limit in the x dimension for Kepler GPUs.
Applications that correctly limited their launches to 65535 blocks per grid in the
x dimension on earlier GPUs may attempt bigger launches on Kepler--yet these
launches will fail. To work around this issue for existing applications that were
not built with Kepler-native code, a new environment variable has been added for
backward compatibility with earlier GPUs: setting CUDA_GRID_SIZE_COMPAT =
1 causes cudaGetDeviceProperties() to conservatively underreport 65535 as
the maximum grid dimension on Kepler, allowing such applications to work as
expected.

‣ Functions cudaGetDeviceProperties(), cuDeviceGetProperties(), and
cuDeviceGetAttribute() may return the incorrect clock frequency for the SM
clock on Kepler GPUs.

2.9.2. CUDA Libraries

2.9.2.1. CURAND

‣ In releases prior to CUDA 5.0, the CURAND pseudorandom generator MRG32k3a
returned integer results in the range 1 through 4294967087 (the larger of two primes
used in the generator). CUDA 5.0 results have been scaled to extend the range
to 4294967295 (232 - 1). This causes the generation of integer sequences that are
somewhat different from previous releases. All other distributions (that is, uniform,
normal, log-normal, and Poisson) were already correctly scaled and are not affected
by this change.

2.9.2.2. CUSPARSE

‣ An extra parameter (int * nnzTotalDevHostPtr) was added to the
parameters accepted by the functions cusparseXcsrgeamNnz() and

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 36

cusparseXcsrgemmNnz(). The memory pointed to by nnzTotalDevHostPtr can
be either on the device or host, depending on the selected CUBLAS_POINTER_MODE.
On exit, *nnzTotalDevHostPtr holds the total number of non-zero elements in the
resulting sparse matrix C.

2.9.2.3. NPP

‣ The nppiLUT_Linear_8u_C1R and all other LUT primitives that existed in
NPP release 4.2 have undergone an API change. The pointers provided for the
parameters pValues and pLevels have to be device pointers from version 5.0
onwards. In the past, those two values were expected to be host pointers, which was
in violation of the general NPP API guideline that all pointers to NPP functions are
device pointers (unless explicitly noted otherwise).

‣ The implementation of the nppiWarpAffine*() routines in the NPP library have
been completely replaced in this release. This fixes several outstanding bugs related
to these routines.

‣ Added these two primitives, which were temporarily removed from release 4.2:

nppiAbsDiff_8u_C3R
nppiAbsDiff_8u_C4R

2.9.2.4. Thrust

‣ The version of Thrust included with the current CUDA toolkit was upgraded to
version 1.5.3 in order to address several minor issues.

2.9.3. CUDA Tools
‣ (Windows) The file fatbinary.h has been released with the CUDA 5.0 Toolkit.

The file, which replaces __cudaFatFormat.h, describes the format used for all fat
binaries since CUDA 4.0.

2.9.3.1. CUDA Compiler

‣ The CUDA compiler driver, nvcc, predefines the macro __NVCC__. This macro
can be used in C/C++/CUDA source files to test whether they are currently being
compiled by nvcc. In addition, nvcc predefines the macro __CUDACC__, which can
be used in source files to test whether they are being treated as CUDA source files.
The __CUDACC__ macro can be particularly useful when writing header files.

‣ It is to be noted that the previous releases of nvcc also predefined the __CUDACC__
macro; however, the description in the document The CUDA Compiler Driver NVCC
was incorrect. The document has been corrected in the CUDA 5.0 release.

2.9.3.2. CUDA Occupancy Calculator

‣ There was an issue in the CUDA Occupancy Calculator that caused it to be overly
conservative in reporting the theoretical occupancy on Fermi and Kepler when the
number of warps per block was not a multiple of 2 or 4.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 37

2.10. Known Issues

2.10.1. General CUDA
‣ The CUDA reference manual incorrectly describes the type of CUdeviceptr as an

unsigned int on all platforms. On 64-bit platforms, a CUdeviceptr is an unsigned
long long, not an unsigned int.

‣ Individual GPU program launches are limited to a run time of less than 5 seconds
on a GPU with a display attached. Exceeding this time limit usually causes a launch
failure reported through the CUDA driver or the CUDA runtime. GPUs without a
display attached are not subject to the 5 second runtime restriction. For this reason it
is recommended that CUDA be run on a GPU that is NOT attached to a display and
does not have the Windows desktop extended onto it. In this case, the system must
contain at least one NVIDIA GPU that serves as the primary graphics adapter.

2.10.1.1. Linux, Mac OS

‣ Device code linking does not support object files that are in Mac OS fat-file
format. As a result, the device libraries included in the toolkit (libcudadevrt.a and
libcublas_device.a) do not use the fat file format and only contain code for a 64-bit
architecture. In contrast, the other libraries in the toolkit on the Mac OS platform do
use the fat file format and support both 32-bit and 64-bit architectures.

‣ At the time of this release, there are no Mac OS configurations available that support
GPUs that implement the sm_35 architecture. Code that targets this architecture
can be built, but cannot be run or tested on a Mac OS platform with the CUDA 5.0
toolkit.

‣ The Linux kernel provides a mode where it allows user processes to overcommit
system memory. (Refer to kernel documentation for /proc/sys/vm/ for details).
If this mode is enabled (the default on many distros) the kernel may have to kill
processes in order to free up pages for allocation requests. The CUDA driver
process, especially for CUDA applications that allocate lots of zero-copy memory
with cuMemHostAlloc() or cudaMallocHost(), is particularly vulnerable to
being killed in this way. Since there is no way for the CUDA SW stack to report
an OOM error to the user before the process disappears, users, especially on 32-
bit Linux, are encouraged to disable memory overcommit in their kernel to avoid
this problem. Please refer to documentation on vm.overcommit_memory and
vm.overcommit_ratio for more information.

‣ When compiling with GCC, special care must be taken for structs that contain 64-
bit integers. This is because GCC aligns long longs to a 4-byte boundary by default,
while nvcc aligns long longs to an 8-byte boundary by default. Thus, when using
GCC to compile a file that has a struct/union, users must give the -malign-double
option to GCC. When using nvcc, this option is automatically passed to GCC.

‣ (Mac OS) When CUDA applications are run on 2012 MacBook Pro models, allowing
or forcing the system to go to sleep causes a system crash (kernel panic). To prevent
the computer from automatically going to sleep, set the Computer Sleep option
slider to Never in the Energy Saver pane of the System Preferences.

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 38

‣ (Mac OS) To save power, some Apple products automatically power down the
CUDA- capable GPU in the system. If the operating system has powered down the
CUDA-capable GPU, CUDA fails to run and the system returns an error that no
device was found. In order to ensure that your CUDA-capable GPU is not powered
down by the operating system do the following:

 1. Go to System Preferences.
 2. Open the Energy Saver section.
 3. Uncheck the Automatic graphics switching box in the upper left.

2.10.1.2. Windows

‣ Individual kernels are limited to a 2-second runtime by Windows Vista. Kernels
that run for longer than 2 seconds will trigger the Timeout Detection and Recovery
(TDR) mechanism. For more information, see http://www.microsoft.com/whdc/
device/display/wddm_timeout.mspx.

‣ The maximum size of a single memory allocation created by cudaMalloc() or
cuMemAlloc() on WDDM devices is limited to

MIN((System Memory Size in MB - 512 MB) / 2,
PAGING_BUFFER_SEGMENT_SIZE).

For Vista, PAGING_BUFFER_SEGMENT_SIZE is approximately 2 GB.

2.10.2. CUDA Libraries

2.10.2.1. NPP

‣ The NPP ColorTwist_32f_8u_P3R primitive does not work properly for line
strides that are not 64-byte aligned. This issue can be worked around by using the
image memory allocators provided by the NPP library.

2.10.3. CUDA Tools
With separate compiled binaries the values of the local variables may be incorrect in the
debugger, please use fully compiled binaries while debugging.

2.10.3.1. CUDA Compiler

‣ (Windows) Because Microsoft changed the declaration of the hypot() function
between MSVC v9 and MSVC v10, users of Microsoft Visual Studio 2010 who link
with the new cublas_device.lib and cudadevrt.lib device-code libraries may
encounter an error. Specifically, performing device- and host-linking in a single
pass using NVCC on a system with Visual Studio 2010 gives the error unresolved
external symbol hypot. Users who encounter this error can avoid it by linking
in two stages: first device-link with nvcc -dlink and then host-link using cl. This
error should not arise from the VS2010 IDE when using the CUDA plug-in, as that
plug-in already links in two stages.

‣ A CUDA program may not compile correctly if a type or typedef T is private to a
class or a structure, and at least one of the following is satisfied:

http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx
http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 39

‣ T is a parameter type for a __global__ function.
‣ T is an argument type for a template instantiation of a __global__ function.

This restriction will be fixed in a future release.
‣ (Linux) The __float128 data type is not supported for the gcc host compiler.
‣ (Mac OS) The documentation surrounding the use of the flag -malign-double

suggests it be used to make the struct size the same between host and device code.
We know now that this flag causes problems with other host libraries. The CUDA
documentation will be updated to reflect this.

The work around for this issue is to manually add padding so that the structs
between the host compiler and CUDA are consistent.

‣ (Windows) When the PATH environment variable contains double quotes ("), nvcc
may fail to set up the environment for Microsoft Visual Studio 2010, generating an
error. This is because nvcc runs vcvars32.bat or vcvars64.bat to set up the
environment for Microsoft Visual Studio 2010 and these batch files are not always
able to process PATH if it contains double quotes.

One workaround for this issue is as follows:

 1. Make sure that PATH does not contain any double quotes.
 2. Run vcvars32.bat or vcvars64.bat, depending on the system.
 3. Add the directories that need to be added to PATH with double quotes.
 4. Run NVCC with the --use-local-env switch.

2.10.3.2. NVIDIA Visual Profiler, Command Line Profiler

‣ On Mac OS X systems with NVIDIA drivers earlier than version 295.10.05, the
Visual Profiler may fail to import session files containing profile information
collected from GPUs with compute capability 3.0 or later.

‣ If required, a Java installation is triggered the first time the Visual Profiler is
launched. If this occurs, the Visual Profiler must be exited and restarted.

‣ Visual Profiler fails to generate events or counter information. Here are a couple of
reasons why Visual Profiler may fail to gather counter information.

More than one tool is trying to access the GPU. To fix this issue please make
sure only one tool is using the GPU at any given point. Tools include the CUDA
command line profiler, Parallel NSight Analysis Tools and Graphics Tools, and
applications that use either CUPTI or PerfKit API (NVPM) to read counter values.

More than one application is using the GPU at the same time Visual Profiler is
profiling a CUDA application. To fix this issue please close all applications and
just run the one with Visual Profiler. Interacting with the active desktop should be
avoided while the application is generating counter information. Please note that for
some types of counters Visual Profiler gathers counters for only one context if the
application is using multiple contexts within the same application.

‣ Enabling certain counters can cause GPU kernels to run longer than the driver's
watchdog time-out limit. In these cases the driver will terminate the GPU kernel
resulting in an application error and profiling data will not be available. Please

NVIDIA CUDA Toolkit v5.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 40

disable the driver watchdog time out before profiling such long running CUDA
kernels.

‣ On Linux, setting the X Config option Interactive to false is recommended.
‣ For Windows, detailed information on disabling the Windows TDR is available

at

http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2
‣ Enabling counters on GPUs with compute capability (SM type) 1.x can result in

occasional hangs. Please disable counters on such runs.
‣ The warp serialize counter for GPUs with compute capability 1.x is known to

give incorrect and high values for some cases.
‣ To ensure that all profile data is collected and flushed to a file,

cudaDeviceSynchronize() followed by either cudaDeviceReset() or
cudaProfilerStop() should be called before the application exits.

‣ Counters gld_incoherent and gst_incoherent always return zero on GPUs
with compute capability (SM type) 1.3. A value of zero doesn't mean that all load/
stores are 100% coalesced.

‣ Use Visual Profiler version 4.1 onwards with NVIDIA driver version 285 (or later).
Due to compatibility issues with profile counters, Visual Profiler 4.0 (or earlier) must
not be used with NVIDIA driver version 285 (or later).

2.11. Source Code for Open64 and CUDA-GDB
‣ The Open64 and CUDA-GDB source files are controlled under terms of the GPL

license. Current and previously released versions are located here:

ftp://download.nvidia.com/CUDAOpen64/.
‣ Linux users:

‣ Please refer to the Release Notes and Known Issues sections in the CUDA-GDB
User Manual (CUDA_GDB.pdf).

‣ Please refer to CUDA_Memcheck.pdf for notes on supported error detection and
known issues.

2.12. More Information
‣ For more information and help with CUDA, please visit http://www.nvidia.com/

cuda.
‣ Please refer to the LLVM Release License text in EULA.txt for details on LLVM

licensing.

http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2
ftp://download.nvidia.com/CUDAOpen64/
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 41

Chapter 3.
NVIDIA CUDA TOOLKIT V4.2 RELEASE
NOTES

3.1. Errata

3.1.1. Known Issues
‣ Functions cudaGetDeviceProperties, cuDeviceGetProperties, and

cuDeviceGetAttribute may return the incorrect clock frequency for the SM clock
on Kepler GPUs. [Windows and Linux]

‣ In CUDA Toolkit 4.2, the functions cudaDeviceGetSharedMemConfig() and
cudaDeviceSetSharedMemConfig() were added for Kepler. However, the CUDA
Reference Manual included with CUDA Toolkit 4.2 was not regenerated to include
documentation for these functions. The functions are documented in the Doxygen
comments in the file include/cuda_runtime_api.h in the toolkit installation
directory.

‣ If required, a Java installation is triggered the first time the Visual Profiler is
launched. If this occurs, the Visual Profiler must be exited and restarted.

‣ GraphCut is not supported on GPUs with less than compute capability 1.1.
‣ In the CUDA C Programming Guide for CUDA Toolkit 4.2, some of the instruction

throughputs listed for compute capability 3.0 in Table 5.1 are incorrect. The table has
been corrected in the externally linked document on DevZone and will be corrected
in the next version of the CUDA C Programming Guide.

3.2. Release Highlights
‣ Added support for GK10x Kepler GPUs.
‣ This release contains the following:

‣ NVIDIA CUDA Toolkit documentation
‣ NVIDIA OpenCL documentation

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 42

‣ NVIDIA CUDA compiler (nvcc) and supporting tools
‣ NVIDIA CUDA runtime libraries
‣ NVIDIA CUDA-GDB debugger
‣ NVIDIA CUDA-MEMCHECK
‣ NVIDIA Visual Profiler
‣ NVIDIA CUBLAS, CUFFT, CUSPARSE, CURAND, Thrust, and NPP libraries

3.3. Documentation
For a list of documents supplied with this release, please refer to the /doc directory of
your CUDA Toolkit installation.

The NVML development package is not shipped with CUDA 4.2. For changes related
to nvidia-smi and NVML, please refer to the nvidia-smi man page and the Tesla
Deployment Kit package located on the developer site http://developer.nvidia.com/
tesla-deployment-kit; NVML documentation and the SDK are included.

3.4. List of Important Files
bin/
 nvcc CUDA C/C++ compiler
 cuda-gdb CUDA Debugger
 cuda-memcheck CUDA Memory Checker
 nvvp NVIDIA Visual Profiler
 (On Windows, nvvp is located in libnvvp/)

include/
 cuda.h CUDA driver API header
 cudaGL.h CUDA OpenGL interop header for driver API
 cudaVDPAU.h CUDA VDPAU interop header for driver API
 (Linux only)
 cuda_gl_interop.h CUDA OpenGL interop header for toolkit API
 (Linux only)
 cuda_vdpau_interop.h CUDA VDPAU interop header for toolkit API
 (Linux only)
 cudaD3D9.h CUDA DirectX 9 interop header (Windows only)
 cudaD3D10.h CUDA DirectX 10 interop header (Windows only)
 cudaD3D11.h CUDA DirectX 11 interop header (Windows only)
 cufft.h CUFFT API header
 cublas_v2.h CUBLAS API header
 cublas.h CUBLAS Legacy API header
 cusparse_v2.h CUSPARSE API header
 cusparse.h CUSPARSE Legacy API header
 curand.h CURAND API header
 curand_kernel.h CURAND device API header
 thrust/* Thrust Headers
 npp.h NPP API Header
 nvcuvid.h CUDA Video Decoder header (Windows and Linux)
 cuviddec.h CUDA Video Decoder header (Windows and Linux)
 NVEncodeDataTypes.h CUDA Video Encoder (C-library or DirectShow)
 (Windows only)
 NVEncodeAPI.h CUDA Video Encoder (C-library) (Windows only)
 INvTranscodeFilterGUIDs.h CUDA Video Encoder (DirectShow) (Windows only)
 INVVESetting.h CUDA Video Encoder (DirectShow) (Windows only)

extras/

http://developer.nvidia.com/tesla-deployment-kit
http://developer.nvidia.com/tesla-deployment-kit

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 43

 CUPTI CUDA Profiling APIs
 Debugger CUDA Debugger APIs

3.4.1. Windows lib Files
lib/
 cuda.lib CUDA driver library
 cudart.lib CUDA runtime library
 cublas.lib CUDA BLAS library
 cufft.lib CUDA FFT library
 cusparse.lib CUDA Sparse Matrix library
 curand.lib CUDA Random Number Generation library
 npp.lib NVIDIA Performance Primitives library
 nvcuvenc.lib CUDA Video Encoder library
 nvcuvid.lib CUDA Video Decoder library

3.4.2. Linux lib Files
lib/
 libcuda.so CUDA driver library
 libcudart.so CUDA runtime library
 libcublas.so CUDA BLAS library
 libcufft.so CUDA FFT library
 libcusparse.so CUDA Sparse Matrix library
 libcurand.so CUDA Random Number Generation library
 libnpp.so NVIDIA Performance Primitives library

3.4.3. Mac OS X lib Files
lib/
 libcudart.dylib CUDA runtime library
 libcuinj.dylib CUDA internal library for profiling
 libcublas.dylib CUDA BLAS library
 libcublas_device.a CUDA BLAS device library
 libcufft.dylib CUDA FFT library
 libcusparse.dylib CUDA Sparse Matrix library
 libcurand.dylib CUDA Random Number Generation library
 libnpp.dylib NVIDIA Performance Primitives library
 libtlshook.dylib NVIDIA internal library

3.5. Supported NVIDIA Hardware
See http://www.nvidia.com/object/cuda_gpus.html.

3.6. Supported Operating Systems

3.6.1. Windows
‣ Supported Operating Systems

Windows 7
Windows Vista
Windows XP
Windows Server 2008

http://www.nvidia.com/object/cuda_gpus.html

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 44

Table 8 Windows Compilers Supported in 4.2

Compiler IDE

MSVC8 (14.00) VS 2005

MSVC9 (15.00) VS 2008

MSVC2010 (16.00) VS 2010

3.6.2. Linux
The CUDA development environment relies on tight integration with the host
development environment, including the host compiler and C runtime libraries, and
is therefore only supported on distro versions that have been qualified for this CUDA
Toolkit release.

Table 9 Linux Distributions Supported in 4.2

Distribution 32 64 Kernel GCC GLIBC

Fedora 14 x x 2.6.35.6-45 4.5.1 2.12.90

ICC Compiler 11.1 x x

OpenSUSE-11.2 x x 2.6.31.5-0.1 4.4.1 2.10.1

RHEL-5.>=5 (5.5, 5.6, 5.7) x x 2.6.18-238.el5 4.1.2 2.5

RHEL-6.X (6.0, 6.1) x 2.6.32-131.0.15.el6 4.4.5 2.12

SLES 11.1 x x 2.6.32.12-0.7-pae 4.3-62.198 2.11.1-0.17.4

Ubuntu-10.04 x x 2.6.35-23-generic 4.4.5 2.12.1

Ubuntu-11.04 x x 2.6.38-8-generic 4.5.2 2.13

Table 10 Linux Distributions Not Supported in 4.2

Distribution 32 64 Kernel GCC GLIBC

Fedora 13 x x 2.6.33.3-85 4.4.4 2.12

RHEL-4.8 x 2.6.9-89.ELsmpl 3.4.6 2.3.4

Ubuntu-10.10 x x 2.6.35-23-generic 4.4.5 2.12.1

32-bit versions of RHEL 4.8 and RHEL 6.0 have not been tested with this release and
are therefore not supported in this CUDA Toolkit release.

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 45

3.6.3. Mac OS X

Table 11 Mac OS X Platforms Supported in 4.2

Platform 32 64 GCC

Mac OS X 10.7 x x 4.2.1 (build 5646)

Mac OS X 10.6 x x 4.2.1 (build 5646)

3.7. Installation Notes

3.7.1. Windows
For silent installation:

‣ To install, use msiexec.exe from the shell, passing these arguments:

msiexec.exe /i cudatoolkit.msi /qn

‣ To uninstall, use /x instead of /i.

3.7.2. Linux
‣ In order to run CUDA applications, the CUDA module must be loaded and the

entries in /dev created. This may be achieved by initializing X Windows, or by
creating a script to load the kernel module and create the entries. An example script
(to be run at boot time):
#!/bin/bash

/sbin/modprobe nvidia

if ["$?" -eq 0]; then

 # Count the number of NVIDIA controllers found.
 N3D=`/sbin/lspci | grep -i NVIDIA | grep "3D controller" | wc -l`
 NVGA=`/sbin/lspci | grep -i NVIDIA | grep "VGA compatible controller" \
 | wc -l`

 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i;
 done

 mknod -m 666 /dev/nvidiactl c 195 255

else
 exit 1
fi

‣ On some Linux releases, due to a GRUB bug in the handling of upper memory
and a default vmalloc too small on 32-bit systems, it may be necessary to pass this
information to the bootloader:
vmalloc=256MB, uppermem=524288

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 46

Example of GRUB conf:
title Red Hat Desktop (2.6.9-42.ELsmp)
root (hd0,0)
uppermem 524288
kernel /vmlinuz-2.6.9-42.ELsmp ro root=LABEL=/1 rhgb quiet vmalloc=256MB
pci=nommconf
initrd /initrd-2.6.9-42.ELsmp.im

‣ Pinned memory in CUDA is only supported on Linux kernel versions >= 2.6.18.
Host side memory allocations pinned for CUDA using cudaHostRegister()
API can be passed to 3rd party drivers. Pinned memory allocations returned from
cudaHostAlloc() and cudaMallocHost() can also be passed to 3rd party drivers
and starting with 4.1, CUDA_NIC_INTEROP is no longer needed on these APIs; thus
this flag is now deprecated.

3.8. New Features
Support for GK10x Kepler GPUs.

3.9. Resolved Issues
‣ In the routines cusparse<T>csr2hyb and cusparse<T>dense2hyb, upon the

occurrence of an error (typically a device memory allocation problem), the handle
to the hybrid format descriptor (cusparseHybMat_t) was wrongly destroyed using
cusparseDestroyHybMat. A subsequent call to cusparseDestroyHybMat by the
user would then result in an error. This issue has been fixed in the 4.2 toolkit and
now the user can and should call cusparseDestroyHybMat to clean up, either after
an error or when the matrix is no longer needed.

‣ CUDA-MEMCHECK now explicitly reports calls to assert() inside a CUDA kernel.
‣ The version of Thrust included with the CUDA toolkit has been upgraded from 1.5.1

to 1.5.2.
‣ Rotate primitives falsely used to enforce that the source image's pitch (nSrcStep)

was large enough to accommodate the destination ROI's size. This bug was fixed
and the restriction no longer exists.

‣ Starting with CUDA Toolkit 4.0, cublasDestroy did not properly free all of the
GPU resources, leading to a GPU memory leak of about 256 KB per CUBLAS
handle. This could also lead to GPU memory fragmentation when the unreleased
resources were scattered over the GPU memory. This issue has been resolved in the
4.2 Toolkit.

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 47

3.10. Known Issues

3.10.1. Windows
‣ In the NPP library, the nppiGraphcut_32s8u() and nppiGraphcut8_32s8u()

primitives may fail with an error while running on a GPU that supports the sm1.0
architecture, especially on systems with a 64-bit operating system.

‣ Individual kernels are limited to a 2-second runtime by Windows Vista. Kernels that
run for longer than 2 seconds will trigger the Timeout Detection and Recovery (TDR)
mechanism. For more information, see http://www.microsoft.com/whdc/device/
display/wddm_timeout.mspx

‣ The maximum size of a single memory allocation created by cudaMalloc
or cuMemAlloc on WDDM devices is limited to: MIN((System Memory
Size in MB - 512 MB) / 2, PAGING_BUFFER_SEGMENT_SIZE) For Vista,
PAGING_BUFFER_SEGMENT_SIZE is approximately 2GB.

‣ (Windows and Linux): Individual GPU program launches are limited to a run time
of less than 5 seconds on a GPU with a display attached. Exceeding this time limit
usually causes a launch failure reported through the CUDA driver or the CUDA
runtime. GPUs without a display attached are not subject to the 5 second runtime
restriction. For this reason it is recommended that CUDA be run on a GPU that is
NOT attached to a display and does not have the Windows desktop extended onto
it. In this case, the system must contain at least one NVIDIA GPU that serves as the
primary graphics adapter.

3.10.2. Linux & Mac
‣ In the NPP library, the nppiGraphcut_32s8u() and nppiGraphcut8_32s8u()

primitives may fail with an error while running on a GPU that supports the sm1.0
architecture, especially on systems with a 64-bit operating system.

‣ The Linux kernel provides a mode where it allows user processes to overcommit
system memory. (Refer to kernel documentation for /proc/sys/vm/ for details).
If this mode is enabled (the default on many distros) the kernel may have to kill
processes in order to free up pages for allocation requests. The CUDA driver
process, especially for CUDA applications that allocate lots of zero-copy memory
with cuMemHostAlloc or cudaMallocHost, is particularly vulnerable to being
killed in this way. Since there is no way for the CUDA SW stack to report an OOM
error to the user before the process disappears, users, especially on 32-bit Linux, are
encouraged to disable memory overcommit in their kernel to avoid this problem.
Please refer to documentation on vm.overcommit_memory and vm.overcommit_ratio for
more information.

‣ When compiling with GCC, special care must be taken for structs that contain 64-
bit integers. This is because GCC aligns long longs to a 4 byte boundary by default,
while NVCC aligns long longs to an 8 byte boundary by default. Thus, when using
GCC to compile a file that has a struct/union, users must give the -malign-double
option to GCC. When using NVCC, this option is automatically passed to GCC.

http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx
http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 48

3.10.3. Mac
To save power, some Apple products automatically power-down the CUDA-capable
GPU in the system. If the operating system has powered down the CUDA-capable GPU,
CUDA fails to run and the system returns an error that no device was found. In order to
ensure that your CUDA-capable GPU is not powered down by the operating system do
the following:

‣ Go to System Preferences
‣ Open the Energy Saver section
‣ Un-check the Automatic graphics switching check box in the upper left.

3.10.4. Visual Profiler and Command Line Profiler
‣ Visual Profiler fails to generate events or counter information. There are several

reasons why Visual Profiler may fail to gather counter information:

‣ If more than one tool is trying to access the GPU. To fix this issue please make
sure only one tool is using the GPU at any given point. Tools include the CUDA
command line profiler, Parallel NSight Analysis Tools and Graphics Tools,
and applications that use either CUPTI or PerfKit API (NVPM) to read counter
values.

‣ If more than one application is using the GPU at the same time when Visual
Profiler is profiling a CUDA application. To fix this issue please close all
applications and just run the one with Visual Profiler. Interacting with the
active desktop should be avoided while the application is generating counter
information. Please note that Visual Profiler gathers counters for only one
context if the application is using multiple contexts within the same application.

‣ Enabling {gld|gst} instructions {8|16|32|64|128}bit counters can cause
GPU kernels to run longer than the driver's watchdog timeout limit. In these cases
the driver will terminate the GPU kernel resulting in an application error and
profiling data will not be available. Please disable driver watchdog timeout before
profiling such long running CUDA kernels.

‣ On Linux, setting the X Config option 'Interactive' to false is recommended.
‣ For Windows, detailed information on disabling the Windows TDR is available

at: http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2
‣ On Windows Vista/Win7 profiling an application which makes more than

32K CUDA kernel launch, memory copy, or memory set API calls without
a synchronization call can result in an application hang. To work around
this issue add synchronization calls like cudaDeviceSynchronize() or
cudaStreamSynchronize().

‣ Enabling counters on GPUs with compute capability (SM type) 1.x can result in
occasional hangs. Please disable counters on such runs.

‣ The warp serialize counter for GPUs with compute capability 1.x is known to give
incorrect and high values for some cases.

‣ Prof triggers are not supported on GPUs with compute capability (SM type) 1.0.

http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2

NVIDIA CUDA Toolkit v4.2 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 49

‣ Profiler data gets flushed to a file only at synchronization calls like
cudaDeviceSynchronize() and cudaStreamSynchronize() or when the
profiler buffer gets full. If an app terminates without these sync calls then profiler
data may be lost.

‣ Counters gld_incoherent and gst_incoherent always return zero on GPUs
with compute capability (SM type) 1.3. A value of zero doesn't mean that all load/
stores are 100% coalesced.

‣ Use Visual Profiler version 4.1 onwards with driver version 285 (or later).Due to
compatibility issues with profile counters, Visual Profiler 4.0 (or earlier) must not be
used with driver version 285 (or later).

3.11. Source Code for Open64 and CUDA-GDB
‣ The Open64 and CUDA-GDB source files are controlled under terms of the

GPL license. Current and previously released versions are located at: ftp://
download.nvidia.com/CUDAOpen64

‣ Linux users:

‣ Please refer to the Release Notes and Known Issues sections in the CUDA-GDB
User Manual (CUDA_GDB.pdf).

‣ Please refer to CUDA_Memcheck.pdf for notes on supported error detection and
known issues.

3.12. More Information
‣ For more information and help with CUDA, please visit http://www.nvidia.com/

cuda.
‣ Please refer to the LLVM Release License text in EULA.txt for details on LLVM

licensing.

ftp://download.nvidia.com/CUDAOpen64
ftp://download.nvidia.com/CUDAOpen64
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 50

Chapter 4.
NVIDIA CUDA TOOLKIT V4.1 RELEASE
NOTES

4.1. Release Highlights
This release contains:

‣ NVIDIA CUDA Toolkit documentation
‣ NVIDIA OpenCL documentation
‣ NVIDIA CUDA compiler (nvcc) and supporting tools
‣ NVIDIA CUDA runtime libraries
‣ NVIDIA CUBLAS, CUFFT, CUSPARSE, CURAND, Thrust, and NPP libraries

Visual Profiler release notes and ChangeLog information are now consolidated into
this release notes documents.

NVIDA CUDA Toolkit version 4.1 has the following new features:

‣ Advanced application development features

‣ New LLVM-based compiler delivers up to 10% faster performance for many
applications

‣ Access to 3D surfaces and cube maps from device code
‣ Peer-to-peer communication between processes
‣ Support for resetting a GPU in nvidia-smi, without rebooting the system

‣ New and improved drop-in acceleration with GPU-Accelerated Libraries

‣ Over 1000 new image processing functions in the NPP library
‣ New cuSPARSE tri-diagonal solver up to 10x faster than MKL on a 6 core CPU
‣ Up to 2x faster sparse matrix vector multiply using ELL hybrid format
‣ New support in cuRAND for MRG32k3a and Mersenne Twister (MTGP11213)

RNG algorithms

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 51

‣ Bessel functions now supported in the CUDA standard Math library (j0, j1, jn,
y0, y1, yn)

‣ Learn more about GPU-Accelerated Libraries at: http://developer.nvidia.com/
gpu-accelerated-libraries

‣ Enhanced and redesigned developer tools

‣ Redesigned Visual Profiler with automated performance analysis and expert
guidance

‣ CUDA-GDB support for multi-context debugging and assert() in device code
‣ CUDA-MEMCHECK now detects out of bounds access for memory allocated in

device code
‣ Learn more about debugging and performance analysis tools for GPU

developers at: http://developer.nvidia.com/cuda-tools-ecosystem

4.2. Documentation
For a list of documents supplied with this release, please refer to the /doc directory of
your CUDA Toolkit installation.

The NVML development package is no longer shipped with CUDA 4.1. For changes
related to nvidia-smi and NVML, please refer to nvidia-smi man page and the Tesla
Deployment Kit package located on the developer site; NVML documentation and the
SDK are included.

4.3. List of Important Files
bin/
 nvcc CUDA C/C++ compiler
 cuda-gdb CUDA Debugger
 cuda-memcheck CUDA Memory Checker
 nvvp NVIDIA Visual Profiler

include/
 cuda.h CUDA driver API header
 cudaGL.h CUDA OpenGL interop header for driver API
 cudaVDPAU.h CUDA VDPAU interop header for driver API
 (Linux only)
 cuda_gl_interop.h CUDA OpenGL interop header for toolkit API
 (Linux only)
 cuda_vdpau_interop.h CUDA VDPAU interop header for toolkit API
 (Linux only)
 cudaD3D9.h CUDA DirectX 9 interop header (Windows only)
 cudaD3D10.h CUDA DirectX 10 interop header (Windows only)
 cudaD3D11.h CUDA Directx 11 interop header (Windows only)
 cufft.h CUFFT API header
 cublas_v2.h CUBLAS API header
 cublas.h CUBLAS Legacy API header
 cusparse_v2.h CUSPARSE API header
 cusparse.h CUSPARSE Legacy API header
 curand.h CURAND API header
 curand_kernel.h CURAND device API header
 thrust/* Thrust Headers
 npp.h NPP API Header

http://developer.nvidia.com/gpu-accelerated-libraries
http://developer.nvidia.com/gpu-accelerated-libraries
http://developer.nvidia.com/cuda-tools-ecosystem

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 52

 nvcuvid.h CUDA Video Decoder header (Windows and Linux)
 cuviddec.h CUDA Video Decoder header (Windows and Linux)
 NVEncodeDataTypes.h CUDA Video Encoder (C-library or DirectShow)
 required for projects (Windows only)
 NVEncodeAPI.h CUDA Video Encoder (C-library) required for
 projects (Windows only)
 INvTranscodeFilterGUIDs.h CUDA Video Encoder (DirectShow) required for
 projects (Windows only)
 INVVESetting.h CUDA Video Encoder (DirectShow) required for
 projects (Windows only)

extras/
 CUPTI CUDA Profiling APIs
 Debugger CUDA Debugger APIs

4.3.1. Windows lib Files
lib/
 cuda.lib CUDA driver library
 cudart.lib CUDA runtime library
 cublas.lib CUDA BLAS library
 cufft.lib CUDA FFT library
 cusparse.lib CUDA Sparse Matrix library
 curand.lib CUDA Random Number Generation library
 npp.lib NVIDIA Performance Primitives library
 nvcuvenc.lib CUDA Video Encoder library
 nvcuvid.lib CUDA Video Decoder library

4.3.2. Linux lib Files
lib/
 libcuda.so CUDA driver library
 libcudart.so CUDA runtime library
 libcublas.so CUDA BLAS library
 libcufft.so CUDA FFT library
 libcusparse.so CUDA Sparse Matrix library
 libcurand.so CUDA Random Number Generation library
 libnpp.so NVIDIA Performance Primitives library

4.3.3. Mac OS X lib Files
lib/
 libcuda.dylib CUDA driver library
 libcudart.dylib CUDA runtime library
 libcublas.dylib CUDA BLAS library
 libcufft.dylib CUDA FFT library
 libcusparse.dylib CUDA Sparse Matrix library
 libcurand.dylib CUDA Random Number Generation library
 libnpp.dylib NVIDIA Performance Primitives library

4.4. Supported NVIDIA Hardware
See http://www.nvidia.com/object/cuda_gpus.html.

http://www.nvidia.com/object/cuda_gpus.html

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 53

4.5. Supported Operating Systems

4.5.1. Windows
‣ Supported Operating Systems (32-bit and 64-bit)

WinServer 2008
WinXP
Vista/Win7

Table 12 Windows Compilers Supported in 4.1

Compiler IDE

MSVC8 (14.00) VS 2005

MSVC9 (15.00) VS 2008

MSVC2010 (16.00) VS 2010

4.5.2. Linux
The CUDA development environment relies on tight integration with the host
development environment--including the host compiler and C runtime libraries, and
is therefore only supported on distro versions that have been qualified for this CUDA
Toolkit release.

Table 13 Linux Distributions Supported in 4.1

Distribution 32 64 Kernel GCC GLIBC

Fedora 14 x x 2.6.35.6-45 4.5.1 2.12.90

ICC Compiler 11.1 x x

OpenSUSE-11.2 x x 2.6.31.5-0.1 4.4.1 2.10.1

RHEL-5.>=5 (5.5, 5.6, 5.7) x x 2.6.18-238.el5 4.1.2 2.5

RHEL-6.X (6.0, 6.1) x 2.6.32-131.0.15.el6 4.4.5 2.12

SLES 11.1 x x 2.6.32.12-0.7-pae 4.3-62.198 2.11.1-0.17.4

Ubuntu-10.04 x x 2.6.35-23-generic 4.4.5 2.12.1

Ubuntu-11.04 x x 2.6.38-8-generic 4.5.2 2.13

Table 14 Linux Distributions Not Supported in 4.1

Distribution 32 64 Kernel GCC GLIBC

Fedora 13 x x 2.6.33.3-85 4.4.4 2.12

RHEL-4.8 x 2.6.9-89.ELsmpl 3.4.6 2.3.4

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 54

Distribution 32 64 Kernel GCC GLIBC

Ubuntu-10.10 x x 2.6.35-23-generic 4.4.5 2.12.1

32-bit versions of RHEL 4.8 and RHEL 6.0 have not been tested with this release and
are therefore not supported in this CUDA Toolkit release.

4.5.3. Mac OS X

Table 15 Mac OS X Platforms Supported in 4.1

Platform 32 64 Kernel GCC

Mac OS X 10.7 x x 10.0.0 4.2.1 (build 5646) XCode 4.1

Mac OS X 10.6 x x 10.0.0 4.2.1 (build 5646)

4.6. Installation Notes

4.6.1. Windows
For silent installation:

‣ To install, use msiexec.exe from the shell, passing these arguments:

msiexec.exe /i cudatoolkit.msi /qn

‣ To uninstall, use /x instead of /i.

4.6.2. Linux
‣ In order to run CUDA applications, the CUDA module must be loaded and the

entries in /dev created. This may be achieved by initializing X Windows, or by
creating a script to load the kernel module and create the entries. An example script
(to be run at boot time):
#!/bin/bash

/sbin/modprobe nvidia

if ["$?" -eq 0]; then

 # Count the number of NVIDIA controllers found.
 N3D=`/sbin/lspci | grep -i NVIDIA | grep "3D controller" | wc -l`
 NVGA=`/sbin/lspci | grep -i NVIDIA | grep "VGA compatible controller" \
 | wc -l`

 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i;
 done

 mknod -m 666 /dev/nvidiactl c 195 255

else

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 55

 exit 1
fi

‣ On some Linux releases, due to a GRUB bug in the handling of upper memory
and a default vmalloc too small on 32-bit systems, it may be necessary to pass this
information to the bootloader:
vmalloc=256MB, uppermem=524288

Example of GRUB conf:
title Red Hat Desktop (2.6.9-42.ELsmp)
root (hd0,0)
uppermem 524288
kernel /vmlinuz-2.6.9-42.ELsmp ro root=LABEL=/1 rhgb quiet vmalloc=256MB
pci=nommconf
initrd /initrd-2.6.9-42.ELsmp.img

‣ CUDA Requirements for using Pinned Memory on Linux: Pinned memory in
CUDA is only supported on Linux kernel version >= 2.6.18. Host side memory
allocations pinned for CUDA using cudaHostRegister() API can be passed to
3rd party drivers. Pinned memory allocations returned from cudaHostAlloc()
and cudaMallocHost() can also be passed to 3rd party drivers and starting with
4.1 CUDA_NIC_INTEROP is no longer needed on these APIs, thus this flag is now
deprecated.

4.7. Upgrading from Previous CUDA Toolkit 4.0
Please refer to the CUDA_4.1_Readiness_Tech_Brief.pdf document.

4.7.1. Vista, Server 2008 and Windows 7 Related
‣ Individual kernels are limited to a 2-second runtime by Windows Vista. Kernels that

run for longer than 2 seconds will trigger the Timeout Detection and Recovery (TDR)
mechanism. For more information, see http://www.microsoft.com/whdc/device/
display/wddm_timeout.mspx.

‣ The maximum size of a single memory allocation created by cudaMalloc or
cuMemAlloc on WDDM devices is limited to:

MIN ((System Memory Size in MB - 512 MB) / 2,
PAGING_BUFFER_SEGMENT_SIZE).
For Vista, PAGING_BUFFER_SEGMENT_SIZE is approximately 2GB.

‣ (Windows and Linux): Individual GPU program launches are limited to a run time
of less than 5 seconds on a GPU with a display attached. Exceeding this time limit
usually causes a launch failure reported through the CUDA driver or the CUDA
runtime. GPUs without a display attached are not subject to the 5 second runtime
restriction. For this reason it is recommended that CUDA be run on a GPU that is
NOT attached to a display and does not have the Windows desktop extended onto
it. In this case, the system must contain at least one NVIDIA GPU that serves as the
primary graphics adapter.

‣ The Linux kernel provides a mode where it allows user processes to overcommit
system memory. (Refer to kernel documentation for /proc/sys/vm/ for details).
If this mode is enabled- the default on many distros- the kernel may have to kill
processes in order to free up pages for allocation requests. The CUDA driver

http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx
http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 56

process, especially for CUDA applications that allocate lots of zero-copy memory
with cuMemHostAlloc or cudaMallocHost, is particularly vulnerable to being
killed in this way. Since there is no way for the CUDA SW stack to report an
OOM error to the user before the process disappears, users, especially on 32bit
Linux, are encouraged to disable memory overcommit in their kernel to avoid
this problem. Please refer to documentation on vm.overcommit_memory and
vm.overcommit_ratio for more information.

4.7.2. Linux and Mac
When compiling with GCC, special care must be taken for structs that contain 64-bit
integers. This is because GCC aligns long longs to a 4 byte boundary by default, while
NVCC aligns long longs to an 8 byte boundary by default. Thus, when using GCC to
compile a file that has a struct/union, users must give the -malign-double option to
GCC. When using NVCC, this option is automatically passed to GCC.

4.7.3. Mac Related
To save power, some Apple products automatically power-down the CUDA-capable
GPU in the system. If the operating system has powered down the CUDA-capable GPU,
CUDA fails to run and the system returns an error that no device was found. In order to
ensure that your CUDA-capable GPU is not powered down by the operating system do
the following:

 1. Go to System Preferences.
 2. Open the Energy Saver section.
 3. Un-check the Automatic graphics switching check box in the upper left.

4.8. CUDA Toolkit Known Issues

4.8.1. SDK Related
‣ The SDK sample- boxFilter, provided with the CUDA 4.1 SDK package for Linux

and Mac may crash upon exit. The SDK sample incorrectly tries to device Memory
using free(). The correct code should use cudaFree() instead for the device
memory. This is a known issue and can be fixed. To fix the sample so that it does not
crash upon exit, update boxFilter.cpp, lines 568-569 as follows: Replace:

free(d_img);
free(d_temp);

With:

cudaFree(d_img);
cudaFree(d_temp);

‣ Please note that although the Linux and Mac SDK packages include
DirectCompute documentation, the DirectCompute API is only supported

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 57

on Windows Vista and Windows 7, and will not work with Linux and Mac OS
environments.

‣ String-based API functions (referencing static variables) are being deprecated in this
release.

‣ cudaHostUnregister returns previous errors after kernel synchronization and
cudaGetLastError

‣ The CUDA driver creates worker threads on all platforms, and this can cause issues
at process cleanup in some multithreaded applications on all supported operating
systems. On Linux, for example, if an application spawns multiple host pthreads,
calls into CUDART, and then exits all user-spawned threads with pthread_exit(),
the process may never terminate. Driver threads will not automatically exit once the
user's threads have gone down.

The proper solution is to either:

 1. call cudaDeviceReset() on all used devices before termination of host threads,
or,

 2. trigger process termination directly (i.e, with exit()) rather than relying on the
process to die after only user-spawned threads have been individually exited.

‣ Assertions in device code are not supported on OS X. If kernel code can call
into assert on these platforms, all calls into runtime functions will fail with
cudaErrorOperatingSystem, indicating that the device code cannot be loaded.
Kernel code which references assert, but disables it at compile time with the NDEBUG
define can still be loaded.

‣ Windows7-x64: Building project yields path not found errors for missing include
and library files.

Problem: Environment variables written by the installer may have mistakenly
included an extra slash in the path specification.

Solution: Remove the extra backslash at the end of the environment variable
CUDA_PATH. Original value: ...\NVIDIA GPU Computing Toolkit\CUDA\v4.1\.

New value: ...\NVIDIA GPU Computing Toolkit\CUDA\v4.1.
‣ MAC 10.7: cuda-gdb is not supported on compute capability (SM type) 1.x on MAC

OS 10.7
‣ The host linker on Mac OS 10.7 generates position-independent executables by

default. As CUDA does not support position-independent executable currently,
the linker must generate position-dependent executable by passing in the -no_pie
option. If nvcc is being used to link the application, this option will be passed to the
linker by default. To override the default behavior, the -Xlinker -pie option can
be passed to nvcc.

4.8.2. Visual Profiler and Command Line Profiler
‣ Visual Profiler fails to generate events or counter information. There are several

reasons due to which Visual Profiler may fail to gather counter information:

 1. If more than one tool is trying to access the GPU. To fix this issue please make
sure only one tool is using the GPU at any given point. Tools include the CUDA
command line profiler, Parallel NSight Analysis Tools and Graphics Tools, and

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 58

applications that use either CUPTI or PerfKit API (NVPM) to read counter
values.

 2. If more than one application is using the GPU at the same time when Visual
Profiler is profiling a CUDA application. To fix this issue please close all
applications and just run the one with Visual Profiler. Interacting with the
active desktop should be avoided while the application is generating counter
information. Please note that Visual Profiler gathers counters for only one
context if the application is using multiple contexts within the same application.

 3. On Windows platform if anytime the attach feature in Parallel NSight was
enabled even on an older installation of Parallel NSight. To fix this issue:

 a. Please disable attach feature in Parallel NSight by right clicking on your
Monitor tray icon then hit Properties, and go to the CUDA section, and
disable Use this Monitor for CUDA attach.

 b. If disabling Attach in the Nsight Monitor does not fix the problem then
you can go to the Windows Advanced System Settings, Environment
variables, System Variables and delete CUDA_INJECTION32_PATH and/
or CUDA_INJECTION64_PATH if these exist. The simplest way to get to the
Windows Advanced System Settings is press <windows+break> buttons on
your keyboard which takes you to the Windows Control Panel from where
you can select Advanced System Settings in the left pane.

‣ Enabling {gld|gst} instructions {8|16|32|64|128}bit counters can
cause GPU kernels to run longer than the driver's watchdog timeout limit. In these
cases the driver will terminate the GPU kernel resulting in an application error
and profiling data will not be available. Please disable driver watchdog timeout
before profiling such long running CUDA kernels. On Linux, setting the X Config
option Interactive to false is recommended. For Windows, detailed information
on disabling the Windows TDR is available at: http://msdn.microsoft.com/en-us/
windows/hardware/gg487368.aspx#E2

‣ On Windows Vista/Win7, profiling an application which makes more than
32K CUDA kernel launch, memory copy, or memory set API calls without
a synchronization call can result in an application hang. To work around
this issue add synchronization calls like cudaDeviceSynchronize() or
cudaStreamSynchronize().

‣ Enabling counters on GPUs with compute capability (SM type) 1.x can result in
occasional hangs. Please disable counters on such runs.

‣ On Windows Vista/Win7 systems occasional Timeout Detection and Recovery (TDR)
can be hit when profiling with counters enabled. Please disable TDR before profiling
such long running CUDA kernels. Detail information on disabling Windows
TDR can be found at http://msdn.microsoft.com/en-us/windows/hardware/
gg487368.aspx#E2

‣ The warp serialize counter for GPUs with compute capability 1.x is known to give
incorrect and high values for some cases.

‣ Prof triggers are not supported on GPUs with compute capability (SM type) 1.0.
‣ Profiler data gets flushed to a file only at synchronization calls like

cudaDeviceSynchronize() and cudaStreamSynchronize() or when the
profiler buffer gets full. If an app terminates without these sync calls then profiler

http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 59

data may be lost. Similarly for OpenCL apps the OpenCL resources like the contexts,
events should be freed before the app terminates.

‣ Counters gld_incoherent and gst_incoherent always return zero on GPUs
with compute capability (SM type) 1.3. A value of zero doesn't mean that all load/
stores are 100% coalesced.

‣ Use Visual Profiler version 4.1 onwards with driver version 285 (or later). Due to
compatibility issues with profile counters, Visual Profiler 4.0 (or earlier) must not be
used with driver version 285 (or later).

4.8.3. CUDA-MEMCHECK
‣ The --device option for cuda-memcheck in CUDA Toolkit v4.1 does not have any

effect. This option is always silently ignored.
‣ CUDA-MEMCHECK may report an unknown error when running applications which

call assert() in the CUDA kernel.

4.9. New Features in CUDA Release 4.1
‣ Cross process P2P is now supported.
‣ Added the ability to use assert() within kernels. This feature is supported only on

the Fermi architecture.

4.9.1. CUDA Runtime
The cuIpc functions are designed to allow efficient shared memory communication
and synchronization between CUDA processes. cuIpcGetEventHandle and
cuIpcGetMemHandle get an opaque handle that can be freely copied and passed
between processes on the same machine. The accompanying cuIpcOpenEventHandle
and cuIpcOpenMemHandle functions allow processes to map handles to resources
created in other processes. Equivalent runtime API functions are available.

4.9.2. Compiler Related
‣ The nvcc compiler switch, --fmad (short name: -fmad), to control the contraction

of floating-point multiplies and add/subtracts into floating-point multiply-add
operations (FMAD, FFMA, or DFMA) has been added: --fmad=true and --fmad=false
enables and disables the contraction respectively. This switch is supported only
when the --gpu-architecture option is set with compute_20, sm_20, or
higher. For other architecture classes, the contraction is always enabled. The --
use_fast_math option implies --fmad=true, and enables the contraction.

‣ For target architecture sm_2x, a new compiler component cicc is used instead of
nvopencc.

‣ PTX version 3.0 is used for target architectures sm_2x. PTX version 1.4 is used for
target architectures sm_1x.

‣ nvcc --cuda compiles the .cu input files to output files with the .cu.cpp.ii
(instead of .cu.cpp) file extension in this release. This change has been made in
order to avoid triggering an implicit rule in GNU Make which deletes the .cu files.

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 60

Note also that nvcc --keep produces the .cu.cpp.ii as one of the intermediate
files, instead of the .cu.cpp output.

The nvcc option -Xopencc is deprecated.

4.9.3. CUDA Libraries
‣ In CUDA Toolkit version 4.1, the Thrust library supports the version of transform_if

that does not require a stencil range. This was missing in previous releases.
‣ In previous releases of the CUDA toolkit, the CUFFT library included compiled

kernel PTX and compiled kernel binaries for compute capability 1.0, 1.3 and 2.0.
Starting with this release, the compiled kernel PTX will only be shipped for the
highest supported compute capability (i.e., 2.0 for this release). This results in a
significant reduction of file size for the dynamically linked libraries for all platforms.

There is no change to the compiled kernel binaries.

‣ The CUFFT Library now supports the advanced data layout parameters
inembed, istride, idist, onembed, ostride and odist, as accepted by the
cufftPlanMany() API, for real-to-complex (R2C) and complex-to-real (C2R)
transforms. The previous release only supported these parameters for complex-
to-complex (C2C) transform. Please refer to the CUFFT documentation for more
details.

‣ The CURAND library supports the MTGP32 pseudo-random number generator,
which is a member of the Mersenne Twister family of generators.

‣ The CUSPARSE library now provides a routine (csrsm) to perform a triangular
solve with multiple right-hand-sides. This routine will generally perform better than
calling a single triangular solve multiple times, once for each right-hand-side.

‣ The sparse triangular solve (csrsv_analysis and csrsv_solve routines) can now
accept a general sparse matrix and work only on its triangular part. In the previous
release, the csrsv routines would only accept matrices where the MatrixType was
set to TRIANGULAR. Now, it can accept matrices of type GENERAL, but only
operate on the triangular portion indicated by the FillMode setting (UPPER or
LOWER). In addition, the sparse triangular solve can now ignore the diagonal
elements by assuming that they are unity. The diagonal elements must be always
present in the matrix, but will be assumed to be unity when the user sets the
DiagType field in the matrix descriptor to be UNIT. This is particularly useful when
processing sparse matrices where the lower and upper triangular parts have been
stored together in a single general matrix.

‣ The cusparseXgtsv() and cusparseXgtsvStridedBatch() routines have
been added to the CUSPARSE library in order to support solving linear systems
represented by tri-diagonal sparse matrices.

‣ The CUSPARSE library now supports a Hybrid matrix storage format based on
the ELL and COO formats. This format usually provides a significant speedup for
the sparse matrix-vector multiplication operation compared to the CSR matrix
storage format. Since the format is implemented using an opaque datatype

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 61

(cusparseHybMat_t), users cannot directly view nor operate on matrices in this
format. The dense2hyb and csr2hyb conversion functions are provided to convert
an existing matrix into the Hybrid format. Matrix-vector multiplication can be
performed on Hybrid matrices using the hybmv routine and a triangular solve can
be performed using the hybsv routine.

‣ The CUSPARSE Library now supports a new API for certain routines that allows an
application to more easily take advantage of parallelism using streams. In particular,
the new API accepts and returns certain scalar parameters by reference to device
or host memory instead of by value on the host. This allows these APIs to execute
asynchronously without blocking the caller host thread.

The new APIs are exposed in the header file cusparse_v2.h. The older forms of the
APIs are still supported and are exposed in the header file cusparse.h.

Existing applications that use the CUSPARSE library can be recompiled and linked
against the legacy version of CUSPARSE without any changes to the existing
application source code. Furthermore, the binary interface for these older routines
are still available as entry points into the CUSPARSE .so and .dll.

NVIDIA recommends that new applications use the new API and that existing
applications that need maximum stream parallelism be converted to the new API.
Refer to CUSPARSE Library documentation (doc/CUSPARSE_Library.pdf) which has
been rewritten to focus on the new APIs. Some treatment of the older APIs is still
included.

‣ The CUBLAS library now supports a batched matrix multiply routine,
cublas{S,D,C,Z}gemmBatched, that multiplies two arrays of matrices and
produces another array of matrices. This API will multiply all of the matrices in a
single launch and can improve performance compared to multiplying each pair of
matrices with a separate call to the GEMM routine, especially for smaller matrices.

‣ Added new Graphcut that supports regular 8-neighborhood graphs to enable
higher fidelity computations (nppiGraphcut8_32s8u). In addition, the existing
primitive that supports 4-neighborhood graphs (nppiGraphcut_32s8u) has
been significantly optimized. This release also changes the way scratch-memory
(device buffer) is passed to the GraphCut primitives. This change is not backwards
compatible.

‣ In previous releases of the CUDA Toolkit, the NPP library included compiled kernel
PTX and compiled kernel binaries for compute capability 1.0, 1.3 and 2.0. Starting
with this release, the compiled kernel PTX will only be shipped for the highest
supported compute capability (i.e., 2.0 for this release). This results in a significant
reduction of file size for the dynamically linked libraries for all platforms.

There is no change to the compiled kernel binaries.

‣ Almost 1,000 new image processing primitives have been added to the NPP library
(in nppi.h) for arithmetic and logical operations. As of this release, the NPP
library has broad coverage for these types of image operations on formats that
have 1 component, 2 components with alpha, 3 components, 4 components, and 4
components with alpha, where the component sizes are 8-, 16-, and 32-bit integer or
32-bit floating point.

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 62

‣ The CURAND library now supports L'Ecuyer's MRG32k3 a pseudo-random number
generator.

‣ The CURAND library in the previous releases would dynamically allocate memory
for internal usage within the curandCreateGenerator() API when it would
create an XORWOW generator, and it would deallocate the memory for that
generator within the curandDestroyGenerator() API. Starting with this
release, the memory is allocated and deallocated dynamically each time the
curandGenerateSeeds() API is called on an XORWOW generator, so that the
dynamically allocated memory is not tied up for the entire life of an XORWOW
generator.

‣ The CUDA math library now supports Bessel functions of the first and second kinds
of orders 0, 1, and n, both in single and double precision. These can be accessed
via the j0f, j1f, jnf, y0f, y1f, and ynf functions in single precision and j0, j1, jn, y0,
y1, and yn functions in double precision. Please refer to Appendix C in the CUDA
C Programming Guide and the relevant entries in the CUDA Toolkit Reference Manual
(Cuda_Toolkit_Reference_Manual.pdf) for more information.

‣ The scaled complementary error function has been added to math.h. This is
equivalent to exp(x*x)*erfc(x). The double-precision routine is exposed as
erfcx() and the single-precision routine as erfcxf().

‣ New functions for halving addition and rounded halving addition for 32-bit
signed and unsigned integers have been added to the math header files. These new
functions perform the addition and halving without overflow in the intermediate
sum. They are available as __{u}{r}hadd(). Please refer to the CUDA C
Programming Guide for more details.

4.9.4. CUDA Driver
‣ For 2D texture references bound to pitched memory, the pitch has to be aligned to

the HW specific texture pitch alignment attribute. This value can be queried using
the device attribute:

‣ CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT in the driver API
‣ cudaDeviceProp::texturePitchAlignment in the runtime API.

If a misaligned pitch is specified the following error will be returned:

‣ CUDA_ERROR_INVALID_VALUE in the driver API
‣ cudaErrorInvalidValue in the runtime API.

‣ In the CUDA Driver, cuMemHostRegister and cudaHostRegister now accept
memory ranges with arbitrary size and alignment; cuMemHostRegister and
cudaHostRegister are still restricted to non-overlapping memory ranges.

‣ Cubemaps can be created by specifying the flag cudaArrayCubemap during CUDA
array creation. Cubemap Layered CUDA arrays can be created by specifying two
flags - cudaArrayCubemap and cudaArrayLayered. New intrinsics have been
added to perform texture fetches. e.g. calling texCubemap(texRef, x, y, z)
fetches from a cubemap texture.

‣ For changes related to NVSMI and NVML, please refer to nvidia-smi man page
and the Tesla Deployment Kit package (found on the developer site) which includes
NVML documentation and the SDK.

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 63

‣ CUDA-OpenGL interop API now allows querying the device on which OpenGL is
running. If SLI is enabled, the application can query the current rendering device
on a per-frame basis. For more information, refer to the CUDA API Reference Manual
and the CUDA C Programming Guide.

‣ 1D Layered, 2D Layered and 3D surfaces can now be bound to surface references.
New intrinsics have been added to perform loads/stores to such surfaces . For
example, surf3Dread(data, surfref, x, y, z) reads from a location (x, y, z)
of a 3D surface.

‣ Texture gather operations can now be performed on 2D CUDA arrays by specifying
a flag cudaArrayTextureGather during CUDA array creation. Texture gather
allows obtaining the bilerp footprint of a regular texture fetch. New intrinsics of the
form tex2Dgather(texref, x, y, comp) have been added, where comp can be
one of {0,1,2,3} to indicate the component to be fetched.

4.10. Performance Improvements in CUDA Release
4.1
‣ Various performance improvements have been made to the device reduction

and host sorting algorithms in the Thrust library. A new CUDA reduce_by_key
implementation provides up to 3x faster performance. A faster host sort provides
up to 10x faster performance for sorting arithmetic types on (single-threaded) CPUs.
A new OpenMP sort provides up to 3x speedup over the single-threaded host sort
using a quad-core CPU. When sorting arithmetic types with the OpenMP backend
the combined performance improvement is ~6x for 32-bit integers and ranges from
3x (64-bit types) to more than 10x (8-bit types).

‣ The performance of double precision floating-point square-root has been
significantly optimized for the Tesla and Fermi architectures for the default
rounding mode (IEEE round-to-nearest), accessible via the sqrt() math function
or the __dsqrt_rn() intrinsic.

‣ The double-precision cosh() math library routine has been optimized for both the
Tesla and Fermi architectures.

‣ Single-precision floating-point reciprocal has been optimized significantly for the
Fermi architecture for all four IEEE rounding modes. This improvement applies
to the 1/x operator in C, when compiled with the compiler defaults, or when -
prec-div=true is explicitly specified on the nvcc command-line. In addition, this
improvement applies to the __frcp_{rn,rz,ru,rd}() intrinsics.

‣ Single-precision square-root has been optimized significantly for the Fermi
architecture for all four IEEE rounding modes. This improvement applies to the
sqrtf() math function when compiled with the compiler defaults, or when -
prec-sqrt=true is explicitly specified on the nvcc command-line. In addition, this
improvement applies to the __fsqrt_{rn,rz,ru,rd}() intrinsics.

‣ IEEE-754 compliant single-precision floating-point division for the default rounding
mode (round-to-nearest-or-even) has been accelerated significantly for the Fermi
architecture. This operation is generated for the single-precision division operator /
when building with the compiler defaults, or when -prec-div=true is explicitly

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 64

specified on the nvcc command line. In addition it is accessible via the __fdiv_rn()
intrinsic."

‣ The erfcf() function has been optimized for the Fermi architecture. With the
compiler defaults for Fermi (-prec-div=true and -no-ftz=true), the function
executes at twice the speed of the previous implementation, although exact observed
performance improvement will depend on the specific application code that calls
erfcf().

‣ The accuracy of the double-precision erfinv() math library routine has been
improved from a worst-case error bounds of 8 ULPs (units in the last place) over the
full range of inputs to only 5 ULPs.

‣ The cublasXgemv() routines in the CUBLAS library have been optimized,
specifically for non-square matrices when the number of columns is much greater
than the number of rows.

4.11. Resolved Issues
‣ In the NPP library, the two quantization-table initialization functions

used for JPEG compression, nppiQuantFwdTableInit_JPEG_8u16u()
and nppiQuantInvTableInit_JPEG_8u16u(), expect an input
quantization table in a zigzaged format as described in the JPEG standard.
However, now the resulting tables are de-zigzaged; this was not true
in previous versions. The de-zigzaged result tables are in the proper
format for use with the nppiDCTQuantFwd8x8LS_JPEG_8u16s_C1R()
or nppiDCTQuantInv8x8LS_JPEG_16s8u_C1R() routines. User
programs should not see any functional difference if they never
inspect the output of nppiQuantFwdTableInit_JPEG_8u16u() or
nppiQuantInvTableInit_JPEG_8u16u(), and simply pass the output to the DCT
functions listed earlier.

‣ In previous versions of the NPP Library, the Rotate primitives set pixel values inside
the destination ROI to 0 (black) if there is no pixel value from the source image that
corresponds to a particular destination pixel. This incorrect behavior has been fixed.
Now, these destination pixels are left untouched so that they stay at the original
background color.

‣ In previous releases of the NPP Library, the Signal primitives in the Arithmetic,
Logical and Shift, and Vector Initialization families would fail for signals beyond
a certain size. In this release, these primitives should be function correctly for
signals of any size - assuming of course that the input and output signals have been
successfully allocated within the available GPU memory.

‣ In the previous release, the NPP Color Conversion primitives did not work properly
for line strides that were not 64 byte aligned. In particular the P3R, P3P2R, P3C3
variants of those primitives were affected. This issue is now fixed.

‣ In the previous release of the NPP library, the nppiMinMax_8u_C4R function would
erroneously provide copies of the result from the first channel in the 2nd, 3rd,
and 4th channels. So the result would be {min(channel1), min(channel1),
min(channel1), min(channel1)} and not {min(channel1),
min(channel2), min(channel3), min(channel4)}, and similar for the
maximums. This bug has been fixed in this release of the NPP library.

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 65

‣ This production release of the CUDA 4.1 Toolkit has been upgraded to include
v1.5.1 of Thrust, which includes several bugfixes identified during earlier CUDA
Toolkit v4.1 release candidates. Please see the Thrust CHANGELOG for a complete
list.

‣ The Thrust library is now thread-safe, and hence the various Thrust APIs can all be
called safely from multiple concurrent host threads.

‣ The device_ptr<void> datatype in Thrust now requires an explicit case
to convert to device_ptr<T>, where T != void. Use the expression
device_pointer_cast(static_cast<int*>(void_ptr.get())) to convert,
for example, device_ptr<void> to device_ptr<int>. Existing code that used to
unsafely convert without an explicit case will no longer compile.

‣ The previous version of the cublasXnrm2() routines in the CUBLAS library could
produce NaNs in the output incorrectly in some cases when the input contained at
least one denormal value. This has been fixed in the current release.

‣ For certain cases related to the CUSPARSE library, in the previous version of the
CUDA Toolkit (v4.0), cusparse{S,D,C,Z}csrmv could return an erroneous result
due to a race condition if at least one of following conditions is verified:

‣ Trans parameter is NOT set to CUSPARSE_OPERATION_NON_TRANSPOSE and the
sparse matrix A had an average number of non-zeros per row above 32,

‣ matrix A type is set to CUSPARSE_MATRIX_TYPE_SYMMETRIC or
CUSPARSE_MATRIX_TYPE_HERMITIAN This issue is now fixed in this version
(v4.1) of CUSPARSE.

‣ Useful error codes added:

‣ CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED
(cudaErrorHostMemoryAlreadyRegistered) will be returned when user
calls cuMemHostRegister (cudaHostRegister) on memory registered by a
previous call to cuMemHostRegister (cudaHostRegister).

‣ CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED
(cudaErrorHostMemoryNotRegistered) will be returned when user calls
cuMemHostUnregister (cudaHostUnregister) on memory not registered by
any previous call to cuMemHostRegister (cudaHostRegister).

‣ In the earlier CUDA Toolkit version 4.1 release candidates (RC), the function
curandSetGeneratorOffset() had no impact on the generated results for the
CURAND_RNG_PSEUDO_MRG32K3A generator. This issue is fixed in this production
release of CUDA Toolkit version 4.1.

‣ In previous releases, the curand_precalc.h header file described a large array in
a single line with no newlines, which can cause problems with some source control
systems. In this release, newlines have been added periodically throughout the file.

‣ In previous releases cuMemsetD2D16/32 failed in some corner cases. This has been
fixed in this release.

‣ In the previous version (v4.0) of the CUBLAS library, the routine cublas_Xgemv()
with the trans parameter NOT set to CUBLAS_OP_N, returned incorrect numeric
results for the output vector y, if the number of columns of the input matrix A
exceeded 2097120 for cublas_Sgemv() or 1048560 for the other datatypes. The
issue is now resolved in this version (v4.1) of CUBLAS.

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 66

‣ The CUBLAS library in v4.0 of the CUDA Toolkit had added support for a new
API. The older API was still supported via a header file, but the entry points were
removed from the CUBLAS .so and .dll. While existing source code written
in C/C++ was still backwards compatible after a simple recompile, compatibility
was broken for projects that were directly using the entry points (i.e., the binary
interface) of the .so and .dll. In this release, the old entry points have been added
back into the .so and .dll to provide better compatibility for such projects. Now
the .so and .dll contain entry points for both the new and old APIs.

‣ In certain cases, the thrust::adjacent_difference() operation in the previous
release would produce incorrect results when operating in-place. This has been fixed
in the Thrust library in the current release.

‣ Previous releases of the CUFFT library were not thread-safe, and hence could not
be accessed concurrently from multiple threads in the same process. This has been
fixed in the current release. Once created, any plan can be accessed safely from any
thread in the same process until the plan is destroyed.

‣ In previous releases of the CUFFT Library, certain configurations would produce
slightly different results for the same input when ECC is on versus when ECC is off
(though both were within the expected tolerance compared to the infinite precision
mathematically correct reference). In this release, the results are now identical for
the same configuration whether ECC is on or off.

‣ A possible bug associated with cuFFT occurred if GTX480 and GT240 are both
present in system. This is no longer the case.

‣ The host linker on Mac OS X generates position-independent executables by default,
unless the target platform is Mac OS X 10.6 or earlier. Since cuda-gdb does not
support position-independent executables, nvcc passes -no_pie to the host linker
and generates position-dependent executables. With this release, users can force
nvcc to produce position-independent executables by specifying -Xlinker -pie as
an nvcc option.

4.12. Source Code for Open64 and CUDA-GDB
The Open64 and CUDA-GDB source files are controlled under terms of the GPL license.
Current and previously released versions are located at: ftp://download.nvidia.com/
CUDAOpen64

Linux users:

‣ Please refer to the Release Notes and Known Issues sections in the CUDA-GDB User
Manual (CUDA_GDB.pdf).

‣ Please refer to CUDA_Memcheck.pdf for notes on supported error detection and
known issues.

4.13. More Information
For more information and help with CUDA, please visit http://www.nvidia.com/cuda.

Please refer to the LLVM Release License text in EULA.txt for details on LLVM licensing.

ftp://download.nvidia.com/CUDAOpen64
ftp://download.nvidia.com/CUDAOpen64
http://www.nvidia.com/cuda

NVIDIA CUDA Toolkit v4.1 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 67

4.14. Acknowledgements
NVIDIA extends thanks to Professor Mike Giles of Oxford University for providing
the initial code for the optimized version of the device implementation of the double-
precision erfinv() function found in this release of the CUDA toolkit.

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 68

Chapter 5.
NVIDIA CUDA TOOLKIT V4.0 RELEASE
NOTES

5.1. Release Highlights
This release contains:

‣ NVIDIA CUDA Toolkit documentation
‣ NVIDIA OpenCL documentation
‣ NVIDIA CUDA compiler (nvcc) and supporting tools
‣ NVIDIA CUDA runtime libraries
‣ NVIDIA CUBLAS, CUFFT, CUSPARSE, CURAND, Thrust, and NPP libraries

NVIDA CUDA Toolkit version 4.0 has the following new features:

‣ NVIDIA cuda-gdb debugger
‣ NVIDIA Visual Profiler for CUDA C/C++ and OpenCL applications
‣ Easier application porting

‣ Share GPUs across multiple threads
‣ Single thread access to GPUs
‣ No-copy pinning of system memory
‣ New CUDA C/C++ language features
‣ Thrust templated primitives library
‣ NPP image/video processing library
‣ Layered Textures

‣ Faster multi-GPU programming

‣ Unified virtual addressing
‣ GPUDirect v2.0 with peer-to-peer communication

‣ New and improved developer tools

‣ Automated performance analysis
‣ C++ debugging

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 69

‣ Debugger cuda-gdb for Mac OS
‣ GPU binary disassembler

5.2. Documentation
For a list of documents supplied with this release, please refer to the /doc directory of
your CUDA Toolkit installation.

For issues related to the Visual Profiler, please refer to the Visual Profiler release notes for
the specific platform. Refer the Visual Profiler change log - "Changelog.txt" - for changes in
Visual Profiler with respect to the previous version.

5.3. Errata for Windows, Linux, and Mac OS X

5.3.1. Linux
CUDA Requirements for Using Pinned Memory on Linux:

Pinned memory in CUDA is only supported on Linux kernel version >= 2.6.18. Host side
memory allocations pinned for CUDA using cudaHostRegister() API can be passed
to 3rd party drivers. Pinned memory allocations returned from cudaHostAlloc()
and cudaMallocHost() can also be passed to 3rd party drivers and starting with 4.1
CUDA_NIC_INTEROP is no longer needed on these APIs, thus this flag is now deprecated.

5.3.2. Resolved Issues
Previous version of the Errata reported that for applications using multiple streams
CUDA Visual Profiler can drop profiler data rows and that the following error is
reported: In this profiling session some profiler output rows are dropped due to
incorrect gpu time stamp values and the profiler output is incomplete.

This issue has been fixed with a patch for Linux toolkits. You can download the patches
from the main download page: http://developer.nvidia.com/cuda-toolkit-40 Each
patch is associated with its appropriate Linux package; the description section in the
Downloads column specifies Visual Profiler Patch in parentheses

5.3.3. Known Issues
‣ Visual Profiler incorrectly treats kernels with names that start with memcpy as being

memory copies. As a result, profiling data reported for these kernels is incorrect. To
workaround this issue the kernel name should be changed so that it does not start
with memcpy.

‣ A 64-bit application, with the OS configured as 32-bit kernel running on driver
versions prior to the CUDA 4.0.31, may crash.

Follow these steps to determine your default OS kernel configuration:

 1. Choose About This Mac from the Apple menu.

http://developer.nvidia.com/cuda-toolkit-40

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 70

 2. Click on More Info.
 3. Select Software in the Contents pane.
 4. Look for 64-bit Kernel and Extensions: Yes (or No) under the System Software

Overview heading.

With the CUDA driver 4.0.31 driver for Mac, a CUDA context cannot be created in
this mode- 32-bit kernel, 64-bit CUDA application. If a 64-bit CUDA application tries
to create a CUDA context in this mode, cuInit() will return a CUDA error.

The CUDA driver 4.0.31 on Mac OSX 10.7 supports the following configurations:

32-bit Kernel running with 32-bit CUDA application.
64-bit Kernel running with 64-bit CUDA application.

Support for 32-bit OS kernel with 64-bit CUDA applications will require a future
CUDA driver update in conjunction with a Lion Software Update.

If your system is running as a 32-bit kernel, and you want to run a 64-bit CUDA
application, one option is to set your OS to run in 64-bit kernel mode. This requires
the Apple system hardware to support the OS running in 64-bit kernel; please refer
to the Apple website for a detailed list of supported hardware.

You can enable your OS to run in 64-bit kernel mode using one of the following
ways:

‣ At startup time, if 32-bit kernel is your default configuration, holding 6 and 4
keys during startup will boot into 64-bit kernel mode.

‣ To change the default configuration for the current startup disk (persistent),

- to 64-bit kernel, open a Terminal Window with the command: sudo
systemsetup -setkernelbootarchitecture x86_64

- to 32-bit kernel, open a Terminal Window with the command: sudo
systemsetup -setkernelbootarchitecture i386

Any OSX using XCODE4.0 or higher will be supported starting with CUDA 4.1 due
for release late this year. Any pre-built CUDA applications will work with the
released CUDA driver for 10.7 but there is no tool chain support to create new
CUDA applications on 10.7 or XCODE version 4.0 or higher until CUDA 4.1.

The CUDA 4.0 SDK code samples for Windows platforms have been updated from
version 4.0.17 to 4.0.19 to address the following issues:

 1. Problems with building DEBUG targets using Visual Studio 2010.

Specifically, the Visual Studio 2010 cutil project solution file did not build
correctly when a DEBUG configuration was chosen. The .sln/.vcxproj
solution and project files have been updated to resolve this.

 2. The CUDA 4.0 SDK projects build using the last installed CUDA Toolkit instead
of the latest one.

In some cases, where a developer had both CUDA 3.2 or 4.0 Toolkit installed,
Visual Studio 2010 SDK projects would choose the last installed toolkit, instead

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 71

of the newest one. CUDA project files previously specified the include paths to
be $(CUDA_PATH)\include. To address this, SDK sample projects now specify
either $(CudaToolkitIncludeDir) or $(CudaToolkitDir)\include.

 3. Individual SDK solutions from VS2005, VS2008, VS2010 do not build properly.

Each SDK sample solution may depend on cutil, shrUtils, or oclUtils
libraries which are also part of the SDK. In order to build with the proper
dependencies, developers needed to open the release_vs200?.sln solution
file for all dependencies to work. The individual SDK sample solutions
for CUDA, CUDALibraries, and OpenCL now include dependencies from
individual solution files.

‣ In some cases, Visual Profiler global memory derived statistics and hints may be
incorrect. If the kernel has local memory accesses, the derived statistics- global
memory excess load % and global memory excess store % can yield
incorrect results. This is because the L2 throughput that is used to calculate these
values include local memory accesses too. As a result, the hints which use these
statistics are incorrect as well since the excess loads given by this formula are caused
due to the local memory accesses (in addition to possibly uncoalesced memory
access pattern)

‣ In a multi-gpu setup, when compute mode is set to compute prohibited for
some GPUs, the Visual Profiler cannot profile a CUDA runtime application; Visual
Profiler reports an error and profiling data is not shown.

‣ CudaHostRegister() is not supported in RHEL4. Please refer to the NVIDIA
CUDA C Programming Guide for details on CudaHostRegister()

5.3.4. More Information
For more information and help with CUDA, please visit http://www.nvidia.com/cuda.

5.4. List of Important Files
bin/nvcc Command line compiler

include/
 cuda.h CUDA driver API header
 cudaGL.h CUDA OpenGL interop header for driver API
 cudaVDPAU.h CUDA VDPAU interop header for driver API
 (Linux only)
 cuda_gl_interop.h CUDA OpenGL interop header for toolkit API
 (Linux only)
 cuda_vdpau_interop.h CUDA VDPAU interop header for toolkit API
 (Linux only)
 cudaD3D9.h CUDA DirectX 9 interop header (Windows only)
 cudaD3D10.h CUDA DirectX 10 interop header (Windows only)
 cudaD3D11.h CUDA Directx 11 interop header (Windows only)
 cufft.h CUFFT API header
 cublas.h CUBLAS API header
 cusparse.h CUSPARSE API header
 curand.h CURAND API header
 curand_kernel.h CURAND device API header
 thrust/* Thrust Headers
 npp.h NPP API Header
 nvcuvid.h CUDA Video Decoder header (Windows and Linux)
 cuviddec.h CUDA Video Decoder header (Windows and Linux)

http://www.nvidia.com/cuda

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 72

 NVEncodeDataTypes.h CUDA Video Encoder (C-library or DirectShow)
 required for
 projects (Windows only)
 NVEncodeAPI.h CUDA Video Encoder (C-library) required for
 projects
 (Windows only)
 INvTranscodeFilterGUIDs.h CUDA Video Encoder (DirectShow) required for
 projects
 (Windows only)
 INVVESetting.h CUDA Video Encoder (DirectShow) required for
 projects (Windows only)

5.4.1. Windows lib Files
lib/
 cuda.lib CUDA driver library
 cudart.lib CUDA runtime library
 cublas.lib CUDA BLAS library
 cufft.lib CUDA FFT library
 cusparse.lib CUDA Sparse Matrix library
 curand.lib CUDA Random Number Generation library
 npp.lib NVIDIA Performance Primitives library
 nvcuvenc.lib CUDA Video Encoder library
 nvcuvid.lib CUDA Video Decoder library

5.4.2. Linux lib Files
lib/
 libcuda.so CUDA driver library
 libcudart.so CUDA runtime library
 libcublas.so CUDA BLAS library
 libcufft.so CUDA FFT library
 libcusparse.so CUDA Sparse Matrix library
 libcurand.so CUDA Random Number Generation library
 libnpp.so NVIDIA Performance Primitives library

5.4.3. Mac OS X lib Files
lib/
 libcuda.dylib CUDA driver library
 libcudart.dylib CUDA runtime library
 libcublas.dylib CUDA BLAS library
 libcufft.dylib CUDA FFT library
 libcusparse.dylib CUDA Sparse Matrix library
 libcurand.dylib CUDA Random Number Generation library
 libnpp.dylib NVIDIA Performance Primitives library

5.5. Supported NVIDIA Hardware
See http://www.nvidia.com/object/cuda_gpus.html.

http://www.nvidia.com/object/cuda_gpus.html

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 73

5.6. Supported Operating Systems for Windows,
Linux, and Mac OS X

5.6.1. Windows
‣ Supported Operating Systems (32-bit and 64-bit)

‣ Windows 7
‣ Windows Vista
‣ Windows XP
‣ Windows Server 2008 R2
‣ Windows Server 2008
‣ Windows Server 2003

Table 16 Windows Compilers Supported in 4.0

Compiler IDE

MSVC8 (14.00) VS 2005

MSVC9 (15.00) VS 2008

MSVC2010 (16.00) VS 2010

5.6.2. Linux
The CUDA development environment relies on tight integration with the host
development environment--including the host compiler and C runtime libraries, and
is therefore only supported on distro versions that have been qualified for this CUDA
Toolkit release. For example, since the CUDA Toolkit 4.0 was not tested with any Linux
distros that use the GNU C Compiler (GCC) version 4.5, it is not supported on those
distros.

Table 17 Linux Distributions Supported in 4.0

Distribution 32 64 Kernel GCC GLIBC

SLES11-SP1 X X 2.6.32.12-0.7-pae 4.3-62.198 2.11.1-0.17.4

RHEL-6.0 X 2.6.32-71.el6 4.4.4 2.12

Ubuntu-10.10 X X 2.6.35-23-generic 4.4.5 2.12.1

OpenSUSE-11.2 X X 2.6.31.5-0.1 4.4.1 2.10.1

Fedora13 X X 2.6.33.3-85 4.4.4 2.12

RHEL-4.8 X 2.6.9-89.ELsmpl 3.4.6 2.3.4

RHEL-5.5 X X 2.6.18-194.el5 4.1.2 2.5

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 74

Table 18 Linux Distributions Not Supported in 4.0

Distribution 32 64 Kernel GCC GLIBC

RHEL-4.8 X 2.6.9-89.ELsmpl 3.4.6 2.3.4

Ubuntu-10.04 X X 2.6.32-21-generic 4.4.3 2.11.1

SLED11-SP1 X X 2.6.32.12.0.7 4.3.4 2.11.1

32-bit versions of RHEL 4.8 and RHEL 6.0 have not been tested with this release and
are therefore not supported in the CUDA Toolkit 4.0 release.

5.6.3. Mac OS X

Table 19 Mac OS X Platforms Supported in 4.0

Platform 32 64 Kernel GCC Status

Mac OS X 10.6 X X 10.0.0 4.2.1 (build 5646) Continued

Mac OS X 10.5.2+ X X Removed

Mac OS X 10.5.7 X X 9.7.0 4.0.1 (build 5490) Removed

5.7. Installation Notes

5.7.1. Windows

Silent Installation:
Install using msiexec.exe from the shell and pass the following arguments:

msiexec.exe /i cudatoolkit.msi /qn

To uninstall:
Use /x instead of /i

5.7.2. Linux
On some Linux releases, due to a GRUB bug in the handling of upper memory
and a default vmalloc too small on 32-bit systems, it may be necessary to pass this
information to the bootloader:
vmalloc=256MB, uppermem=524288

Example of grub conf:
title Red Hat Desktop (2.6.9-42.ELsmp)
root (hd0,0)
uppermem 524288
kernel /vmlinuz-2.6.9-42.ELsmp ro root=LABEL=/1 rhgb quiet vmalloc=256MB

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 75

pci=nommconf
initrd /initrd-2.6.9-42.ELsmp.img

5.8. Upgrading from Previous CUDA Toolkit 3.2
Please refer to the CUDA_4.0_Readiness_Tech_Brief.pdf document.

Mac-related Note

CUDA 4.0 does not have support for XCODE4.0.

5.9. Notes on New Features and Performance
Improvements

5.9.1. CUDA Driver Features
‣ cudaMemcpyAsync works with non pinned heap memory. The asynchronous copy

APIs (cudaMemcpyAsync et al in the runtime API and cuMemcpyHtoDAsync et al in
the driver API) may take ordinary pageable host memory as its source or destination
argument.

This is in contrast to CUDA 3.2 where host memory could only be used if it was
allocated through CUDA (using cudaMallocHost et al through the runtime API or
cuMemAllocHost through the driver API).

While using pageable host memory is now permitted for use with the
asynchronous copy APIs, using pageable host memory will result in the copies
being performed synchronously.

‣ cudaMemcpy is supported across contexts. The ability to copy memory between
devices in the runtime API (and between context in the driver API) has been added.

When using unified addressing, the function cudaMemcpy (and its variants) with
the copy direction cudaMemcpyDefault may be used to copy between devices in
the runtime API (the function cuMemcpy may be used in the driver API). When not
using unified addressing, the function cudaMemcpyPeer in the runtime API (and
cuMemcpyPeer in the driver API) and its variants may be used to copy between
devices.

This functionality is supported on all platforms and all devices. This functionality
will take advantage of direct peer access where it is enabled.

This functionality may not be optimal on compute level 1.0 devices and across
non-SLI-linked devices using the WDDM driver model on Vista and Win7.

‣ cudaStreamWaitEvent supported across contexts. The function
cudaStreamWaitEvent (or cuStreamWaitEvent in the driver API) may be used

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 76

to effect cross-device (or cross-context, in the driver API) synchronization. An event
recorded on one device may be waited on by a stream created by another device.

The dependency added will be resolved asynchronously, and this will be very
efficient.

This may not be optimally efficient yet for compute 1.0 devices or for devices
that are not in SLI on Windows Vista/7, using the WDDM driver model.

‣ Added flag for property Concurrent Data Transfer to indicate two simultaneous DMA
transfers.

The ability of the device to concurrently pull data (from host or a peer device) and
push data (to host or a peer) may be queried.

In the runtime API, this may be done by examining the device property
asyncEngineCount will be set to 1 if only one direction of a transfer may be active
at a time and 2 if both directions may be active at a time.

The driver API device property query is
CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT.

‣ (Windows and Linux) Added support for unified virtual address space.

Devices supporting 64-bit and compute 2.0 ahd higher capability now share a single
unified address space between the host and all devices. This means that the pointer
used to access memory on the host is the same as the pointer to used to access
memory on the device. Therefore, the location of memory may be queried directly
from its pointer value; the direction of a memory copy need not be specified.

The function cudaPointerGetAttribute in the runtime API (and
cuPointerGetAttribute in the driver API) may be used to query attributes about
a pointer. The copy direction cudaMemcpyDefault in the runtime API (and the
functions cuMemcpy, its variants, and the memory type CU_MEMORYTYPE_UNIFIED
in the driver API) may be used to copy data without specifying the direction.

This functionality is available only on Linux-64, Windows XP-64, and Windows
Vista/7 using the TCC driver model.

‣ The ability of directly accessing memory on peer devices has been added.

If direct access of memory on the peer device is possible (which can
be queried by runtime API cudaDeviceCanAccessPeer or driver
API cuDeviceCanAccessPeer), this functionality can be enabled by
cudaDeviceEnablePeerAccess (or cuCtxEnablePeerAccess).

This functionality is supported on all NVIDIA CUDA devices with compute level 2.0
and up running 64-bit Linux, XP, and TCC drivers.

Peer access is not supported on WDDM.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 77

‣ (Linux) DX and OGL textures (shared through interop), mapped as CUDA arrays,
can now be bound to surface references in CUDA. In order to be able to do so, the
DX/OGL resource should be registered with the appropriate register flag as follows:

For the driver api, it's CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST.

For the runtime api, it's cudaGraphicsRegisterFlagsSurfaceLoadStore.

Surface has smaller width/height restrictions than textures. If the texture is
registered with the surface load/store flag, and the size is too big, then that will
generate an error.

‣ Removed alignment requirments from cuMemcpy* functions.

All restrictions on the alignment of the source and destination pointer and pitch for
all 2D and 3D copies (using cudaMemcpy3D et al in the runtime API and cuMemcpy3D
et al in the driver API) have been removed.

Using unaligned operands for a copy may result in poorer performance than using
aligned operands.

‣ Added 64-bit support to WinXP-64
‣ (Windows and Linux) CUDA-OpenGL interop currently supports the following set of

texture formats:

{GL_R, GL_RG, GL_RGBA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA,
GL_INTENSITY} X {,8,16,16F,32F,8UI,16UI,32UI,8I,16I,32I}

These formats are also supported for OpenCL-OpenGL interop.

For further details on these texture formats, please refer to the OpenGL specification.
‣ Event and stream creation/destruction improved in this version.

The functions cudaStreamDestroy and cudaEventDestroy (cuStreamDestroy
and cuEventDestroy) are now asynchronous and light-weight. Destroying a
stream or event will return immediately, even if there is still pending work in the
stream or pending work behind the event. The stream or event's resources will be
released asynchronous once the stream or event has completed its work.

‣ Added device attributes for memory clock and number of threads per SM.

The following new device attributes are supported in the CUDA driver API:

CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE: gives the peak memory clock
frequency in kilohertz.
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH: gives the global
memory bus width in bits.
CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE: gives the size of the L2 cache in
bytes.
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR: gives
the number of maximum threads that can be resident at one time on a
multiprocessor.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 78

‣ (Windows) This version allows a single CUcontext to be current to multiple threads
simultaneously.

‣ A kernel that is compiled with a __launch_bounds__ directive will have the
max threads/block taken into account when querying the max thread count via
cuFuncGetAttribute(&i, CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK,
f). Also cuFuncSetBlockShape(f, x, y, z) will reject block shapes that exceed
the max threads/block set via a __launch_bounds__. These changes in behavior
will be likewise be visible in the CUDART counterparts to these CUDA APIs.

‣ Querying the maximum grid Z dimension on Fermi and later architectures will now
return values greater than 1 (on Fermi it is 65535). Methods for querying the max
grid Z dimension are as follows:

‣ CUDART:

 1. call cudaGetDeviceProperties(&prop, dev) and check
prop.maxGridSize[2]

‣ CUDA driver:

 1. call cuDeviceGetProperties(&devProps, hDev) and check
devProps.maxGridSize[2]

 2. call cuDeviceGetAttribute(&i,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, hDev)

Launching 3D grids is accomplished in CUDART by passing in a 3rd grid dimension
in <<< >>> or in cudaConfigureCall(). Launching 3D grids with the CUDA driver
requires the use of the new cuLaunchKernel API, which has gridDimX, gridDimY
and gridDimZ parameters.

It is important to note that only on Fermi and later architectures will an app be able
to actually use 3D grid launches.

‣ (Windows) Layered Textures (2D)implemented.

Note: Layered textures are currently not supported on the Tesla architecture
(sm_1x).

Layered textures are better known as array textures in graphics APIs. A layered texture
is a collection of either 1D or 2D textures of identical size and format, arranged in
layers. Such textures can be created as follows:

‣ by specifying the flag CUDA_ARRAY3D_LAYERED when creating the CUDA
array using the driver API.

‣ by specifying the flag cudaArrayLayered when creating the CUDA array using
the runtime API.

Kernels can access any texel from any particular layer using a new set of intrinsics
that have the following format:

‣ tex1DLayered(texref, float x, int layer)
‣ tex2DLayered(texref, floay x, float y, int layer)

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 79

In a 2D layered texture, no filtering is performed between layers i.e. there is
no trilinear filtering done like it is done for 3D textures. Similarly, for 1D layered
texture, there is no bilinear filtering done like the way it is for 2D textures.

The second argument in the template for texture references now means texture
type instead of dim. i.e. instead of texture<returnType, dim, readMode>, it is
texture<returnType, textureType, readMode> The textureType arguments can be one of
the following #defines:
#define cudaTextureType1D 0x01
#define cudaTextureType2D 0x02
#define cudaTextureType3D 0x03
#define cudaTextureType1DLayered 0xF1
#define cudaTextureType2DLayered 0xF2

Backward compatibility for the existing 1D, 2D and 3D textures is maintained by
aliasing the corresponding #defines to their dim value. As a reult, sample texture
references would look like:
texture<float4, cudaTextureType3D> texRef3D;
texture<float4, cudaTextureType1DLayered> texRef1DLayered;

‣ This version has a new launching API called cuLaunchKernel. This API offers
many improvements over previous launching APIs:

 1. All function state associated with a launch is specified via one API call. This
makes multithreaded launching of kernels feasible.

 2. Support for 3D dimensional grid launches on h/w that supports it (see
associated NVbug 599870 - 3D grid launches)

 3. Kernel parameter passing can either be done via an easy to use method where
addresses of parameters are passed in and the driver worries about packing the
parameters together, or an expert mode (much like cuParamSetv) where all
parameters are pre-packed by the application in one chunk.

‣ Added mechanism for registering system memory for DMA.

5.9.2. CUDA Compiler Features
Among the new features added in the CUDA 4.0 compiler are:

‣ Support for inline PTX: much like an __asm__ directive, PTX can now be inlined
with CUDA C/C++.

‣ Support for driver-loadable fatbins: fatbin files can contain multiple PTX and cubin
files targeted at different architectures. In previous releases, only applications that
used the runtime API were able to use fatbin files. Now with CUDA 4.0, driver API
applications can use them too.

For more details on these features, please consult the nvcc documentation (nvcc.pdf) that
comes with the release.

Starting with CUDA 4.0 release, the compiler implements enhanced error checks for
function calls. The compiler checks that the calling function and the called function have
compatible __host__, __device__ and __global__ attributes. The compatibility
rules for calls between functions with such attributes are documented in the CUDA
Programming Guide.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 80

If the compiler detects an incompatible call, it will generate error or warning messages.
Warnings may be turned into errors in a future release. Additional error checks may
be implemented in a future release. It is recommended that the user modify the calling
function or the called function to ensure compatibility with the function call restrictions
documented in the CUDA Programming Guide.

5.9.3. CUDA Libraries Features
‣ The CUBLAS Library now supports a new API that is thread-safe and allows the

application to more easily take advantage of parallelism using streams (especially
for functions with scalar return parameters). Because this new API is thread-safe,
the CUBLAS library will work cleanly with applications that use the new multi-
threading features of the CUDA Runtime Library (CUDART) in the CUDA Toolkit
v4.0.

The legacy CUBLAS API is still supported, but it is not thread-safe and does not
offer as many opportunities for parallelism with streams as the new API. Existing
applications that use CUBLAS should work without any changes to the existing
code, they only need to explicitly link to the CUDART dynamic library during
compilation. Note that this link requirement was not necessary with the previous
versions of CUBLAS if the application only used CUBLAS entry points (and hence
did not use any explicit CUDART entry points).

We recommend that new applications use the new API. In addition, we recommend
that you convert to the new API for exisiting applications that need maximum
stream parallelism or correct operation in a multi-threaded scenario.

The documentation in doc/CUBLAS_Library.pdf has been rewritten to focus on the
new API; some treatment of the legacy API is still included.

‣ The TRMM routines in the CUBLAS Library can selectively operate either out-of-
place or in-place (the traditional BLAS interface only operates in-place). The out-
of-place option, which is new in this release, offers a significant speedup, up to 3x,
on the Fermi architecture compared to the previous release, and a modest speedup
on the Tesla architecture compared to the previous release. In general, as the input
matrix sizes get larger, the performance of the TRMM routine can now approach
the performance of the corresponding raw GEMM routines when operating out-of-
place.

‣ The performance of the ZGEMM routine in the CUBLAS library, specifically
for input matrices larger than about 100x100, has been optimized for the Fermi
architecture.

‣ Added the cublasGetVersion() function to the CUBLAS Library.
‣ Performance has significantly improved (>1.5x) for double-precision power-of-2

transforms up to size 2048, especially on the Fermi architecture. Certain API features
such as non-standard element strides, etc. will not trigger these new kernels,
therfore performance is improved only in some cases.

‣ In the previous release candidate, the CUFFT Library had a performance regression
for some 2D FFT sizes as compared to the 3.2 release. These regressions have been
fixed.

‣ Added the cufftGetVersion() function to the CUFFT Library.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 81

‣ In the previous version of the CUFFT Library, the Bluestein or chirp FFT algorithm
was used to accelerate transforms for sizes that cannot be factored into a
combination of powers-of-2, -3, -5, or -7 for 1D transforms only. This release employs
the Bluestein algorithm to accelerate 2-D and 3-D transforms as well.

‣ The CUFFT Library APIs now support multiple batches for all 1D, 2D and 3D
transforms. The previous release had limited support for multiple batches for 2D
and 3D transforms.

‣ In this version of the CUDA Toolkit (v4.0), the CUFFT Library now supports more
complex input and output data layouts via the advanced data layout parameters
inembed, istride, idist, onembed, ostride and odist, as accepted by the
cufftPlanMany() API. In this release, these parameters are supported only for
complex-to-complex (C2C) transforms. This feature allows transforming a subset
of an input array, or outputting to only a portion of a larger data structure. If the
user sets inembed or onembed to NULL, then the CUFFT Library will function
as it did in the previous releases and assume a basic data layout and ignore the
other advanced parameters. If the user intends to use the advanced parameters,
then all of the advanced interface parameters should be specified correctly.
Advanced parameters are defined in units of the relevant data type (cufftReal,
cufftDoubleReal, cuComplex, cuDoubleComplex).

‣ The CUSPARSE library now provides a solver for triangular sparse linear systems,
via the cusparse*csrsv_analysis() and cusparse*csrsv_solve() APIs.
Refer to the document, CUSPARSE_Library.pdf for detailed usage information.

‣ The cusparse*csrmv() and cusparse*csrmm() routines in the CUSPARSE
library now support symmetric (CUSPARSE_MATRIX_TYPE_SYMMETRIC) and
Hermitian (CUSPARSE_MATRIX_TYPE_HERMITIAN) matrix types.

‣ Renamed cudaDeviceBlockingSync to cudaDeviceScheduleBlockingSync
‣ The cospi() routine has been added for single-precision and double-precision

floating-point datatypes. The function cospi(x) implements cos(x * PI). No special
include file is required to access this routine. Note: the sinpi() routine has already
been available in previous releases.

‣ In previous releases of the CUDA toolkit, the CUBLAS and CUSPARSE libraries
included compiled kernel PTX and compiled kernel binaries for compute capability
1.0, 1.3 and 2.0. Starting with this release, the compiled kernel PTX will only be
shipped for the highest supported compute capability (i.e., 2.0 for this release).
This results in a significant reduction of file size for the CUBLAS and CUSPARSE
dynamically linked libraries for all platforms. Note: there is no change to the
compiled kernel binaries.

‣ The CURAND library now supports generation of double-precision floating
point Sobol' quasi-random sequences with 53 bits of randomness, as well as
64 bit integer Sobol' quasi-random sequences. These are accessed via the
CURAND_RNG_QUASI_SOBOL64 and CURAND_RNG_QUASI_SCRAMBLED_SOBOL64
generator types in the host API and the curandStateSobol64_t and
curandStateScrambledSobol64_t generator structures in the device API.

‣ The CURAND library now supports generation of log-normally
distributed random numbers, via the curandGenerateLogNormal()
and curandGenerateLogNormalDouble() host API functions
and the curand_log_normal(), curand_log_normal2(),

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 82

curand_log_normal_double() and curand_log_normal2_double() device
API functions.

‣ The CURAND library now supports generation of scrambled Sobol' quasi-
random numbers, via the CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 and
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 generator types in the host API and
the curandStateScrambledSobol32_t and curandStateScrambledSobol64_t
generator structures in the device API.

‣ The CURAND library documentation (doc/CURAND_Library.pdf) now contains a
summary and selected detailed results of the statistical quality tests run against the
generators provided by CURAND.

‣ Beginning with this release, the NVIDIA Performance Primitives (NPP) library is
included directly within the CUDA Toolkit. Currently, the NPP library supports a
variety of basic signal and image processing primitives that are optimized across the
range of CUDA capable GPUs. Documentation is found at doc/NPP_Library.pdf and
the public header file is at include/npp.h.

‣ Added a complete set of Arithmetic and Logical Signal Processing Primitives.
‣ NPP has added Beta support for asynchronous operation using CUDA streams via

the nppSetStream() and nppGetStream() functions. This feature is provided in
an early form in this release and will be provided in a non-Beta fully tested form in a
future release.

‣ The Thrust CUDA library is now included with the CUDA Toolkit in
the /include/thrust directory. A Quick Start document is available at doc/
Thrust_Quick_Start_Guide.pdf. Additionally, several code samples in the NVIDIA
GPU Computing SDK now employ Thrust. The Thrust library source code, additional
detailed documentation, example programs and a discussion group will continue to
be available at the project's original home at http://code.google.com/p/thrust/.

‣ This version of Thrust introduces discard_iterator, an output iterator which
ignores values assigned to it. discard_iterator is useful for discarding
unnecessary output from algorithms with multiple output ranges (such as
reduce_by_key), and measuring in advance the total size of the result of algorithms
which produce variably-sized output (such as set_intersection).

‣ The Thrust library now provides set operations for sorted ranges, including union,
difference and symmetric difference. These new operations are exposed via thrust/
set_operations.h.

‣ Added CUDA runtime API functions to control profiling:

cudaProfilerInitialize() - Initialize profiling
cudaProfilerStart() - Start profiling
cudaProfilerStop() - Stop profiling

A new header file "cuda_profiler_api.h" has been added for these runtime API
functions. The corresponding driver APIs are cuProfilerInitialize(), cuProfilerStart(),
cuProfilerStop() and the header file is "cudaProfiler.h".

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 83

5.9.4. CUDA Libraries Performance
‣ The performance of transforms in the CUFFT library that are pure powers of 3,

5, and 7 have been optimized significantly in this release, especially for double
precision.

‣ In version 3.2 of CUSPARSE, the csrmv() and csrmm() functions ran slower when
the beta parameter was =0 than when it was =1. In this version, the performance
variation has been removed, and csrmv() and csrmm() should run slightly faster
when beta =0.

‣ The GEMV routines, for all datatypes, in the CUBLAS library have been significantly
optimized for the case in which the input matrix, A, is transposed. Performance has
improved up to 2x, especially when the input matrix, A, is large. The performance
improvements apply to both the Tesla (GT200) and Fermi (GF100) architectures.

‣ The performance of the TRSM routines in the CUBLAS library for large matrices has
been significantly improved on Fermi and Tesla architecture platforms.

‣ The performance of the double-precision hyperbolic sine function, sinh(), has
been improved significantly on GF100 (Fermi architecture) and GT200 (Tesla
architecture). The exact improvement achieved for end applications using sinh will
vary based on the specific characteristics of each application.

‣ Improved performance of CUFFT on R2C and C2R transforms whose input data size
along the X (or, least significant) dimension is a multiple of 2 but not a multiple of 4.
In the previous release, the performance was much better when this size was a full
multiple of 4; now, both cases should run at the same higher performance.

‣ The performance of double-precision floating point division on the Fermi
architecture has been significantly optimized for the round-to-nearest-even case,
which is the default rounding mode employed when using the / operator in CUDA-
C device code. The round-to-nearest-even mode can be explicitly employed in
CUDA using the __ddiv_rn() intrinsic. The exact improvement achieved for end
applications that perform double precision divides will vary based on the specific
characteristics of each application.

‣ CURAND supports a new ordering technique for pseudo-random generators
(CURAND_ORDERING_PSEUDO_SEEDED) that significantly reduces the state setup
time. However, since this ordering technique uses a different starting seed for each
thread on the device, it may result in statistical weaknesses of the pseudorandom
output for some user seed values.

‣ The performance of the SYR2K and HER2K routines in the CUBLAS library has been
optimized for the Fermi architecture.

‣ The SYMM and HEMM routines in CUBLAS have been significantly optimized for
the Fermi architecture. For instance, in some cases there is a 3x performance
improvement over the previous version of these routines, both for single and for
double precision.

‣ The performance of the double-precision reciprocal square-root function, rsqrt(),
has been improved significantly for GT200 (the Tesla architecture) and GF100 (the
Fermi architecture). The exact improvement achieved for end applications that use
rsqrt will vary based on the specific characteristics of each application.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 84

‣ The performance and accuracy of the double-precision erfc() function have
been improved. This function is now accurate to 4 ulps, and the performance
has significantly improved on both the Tesla and Fermi architectures. The exact
improvement achieved for end applications that use erfc will vary based on the
specific characteristics of each application.

5.10. Known Issues
‣ In the current release, the TCC driver cannot be run under a guest account; admin

privileges are needed to run TCC. This requirement will be removed in a future
release.

‣ GPUs without a display attached are not subject to the 2 second runtime restriction.
For this reason it is recommended that CUDA be run on a GPU that is NOT attached
to a display and does not have the Windows desktop extended onto it. In this
case, the system must contain at least one NVIDIA GPU that serves as the primary
graphics adapter. Thus, for devices like S1070 that do not have an attached display,
users may disable the Windows TDR timeout. Disabling the TDR timeout will allow
kernels to run for extended periods of time without triggering an error.

The following is an example .reg script:
Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\GraphicsDrivers]
"TdrLevel"=dword:00000000

‣ The header file search locations and the order that they are visited have been
revised.

Until CUDA 3.2, nvcc searched the following locations, in order:

 1. The toolkit include paths,
 2. The current working directory,
 3. The paths specified with -I,
 4. The paths specified with -isystem, and
 5. The system include paths.

The header files in the toolkit include path could not be overridden as the toolkit
include paths were always visited first.

From CUDA 4.0, nvcc searches through the include paths in the following order:

 1. The paths specified with -I,
 2. The toolkit include paths,
 3. The paths specified with -isystem, and
 4. The system include paths.

The current working directory is not added to the include paths by default anymore,
adhering to the C/C++ compiler convention. That is, to add the current working
directory to the include search paths, -I. or -isystem. must be given to nvcc,
depending on the desired search order. Alternatively, the #include directives can
be used in the quoted form, instead of the angle-bracket form, to include header files
in the current working directory.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 85

‣ A CUDA program may not compile correctly if a type or typedef T is private to a
class or a structure, and at least one of the following is satisfied:

‣ T is a parameter type for a __global__ function.
‣ T is an argument type for a template instantiation of a __global__ function.

This restriction will be fixed in a future release.
‣ (Windows) Structure and union types with bit fields may not work correctly in

device code on the Windows platform.

In addition:

‣ Transferring variables that contain such types, from host to device or from
device to host, may not work correctly.

‣ Use of variables with such types in device code may not work correctly.

This issue will be addressed in a future release.
‣ When compiling thrust::reduce cudafe generates use of private typedefs
‣ (Windows) The CUDA C compiler may produce a different memory layout,

compared to the host Microsoft compiler, for a C++ object of class type T that
satisfies any of the following conditions:

 1. T has virtual functions or derives from a direct or indirect base class that has
virtual functions.

 2. T has a direct or indirect virtual base.
 3. T has multiple inheritance with more than one direct or indirect empty base

class.

The size for such an object may also be different in host and device code. As long as
type T is used exclusively in host or device code, the program should work correctly.
Do not pass objects of type T between host and device code (e.g. as arguments to
__global__ functions or through cudaMemcpy calls).”

‣ For certain configurations, the CUFFT Library will produce slightly different results
for the same input when ECC is on versus when ECC is off, even on the same
architecture.

In both cases the results are mathematically within the expected tolerance. The
difference arises from optimizations specific to the ECC on and ECC off cases that
result in slightly different factorizations of the overall transform into smaller
radixes.

‣ The CUFFT library is not thread-safe, and hence cannot be accessed concurrently
from multiple threads in the same process. This will be fixed in a future release.

‣ CUDALibraries has 4 SDK samples that do not build on certain Linux 32-bit
Operating Systems. The Makefile links incorrectly to -lUtilNPP_i686; it should be
-lUtilNPP_i386.

To build NPP samples properly on 32-bit Linux replace all instances of -lUtilNPP_
$(OS_ARCH) with -lUtilNPP_$(LIB_ARCH) in the following Makefiles:

‣ CUDALibraries/src/boxFilterNPP/Makefile
‣ CUDALibraries/src/freeImageInteropNPP/Makefile

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 86

‣ CUDALibraries/src/imageSegmentationNPP/Makefile
‣ CUDALibraries/src/histEqualizationNPP/Makefile

‣ When a program is terminated while waiting on a breakpoint, the system needs to
be rebooted. This affects the TCC driver for Windows Vista and Windows 7.

‣ There is a known driver bug when debugging CUDA applications which use TCC.
If the application terminates while paused at a GPU breakpoint, internal driver state
can be corrupted. Until the system is rebooted, further attempts to create CUDA
contexts will enter an infinite loop during cuCtxCreate().

‣ GPU enumeration order on multi-GPU systems is non-deterministic and may
change with this or future releases. Users should make sure to enumerate all CUDA-
capable GPUs in the system and select the most appropriate one(s) to use.

5.10.1. Vista, Server 2008 and Windows 7 Related
‣ In order to run CUDA on a non-TESLA GPU, either the Windows desktop must be

extended onto the GPU, or the GPU must be selected as the PhysX GPU.
‣ Individual kernels are limited to a 2-second runtime by Windows Vista. Kernels that

run for longer than 2 seconds will trigger the Timeout Detection and Recovery (TDR)
mechanism. For more information, see http://www.microsoft.com/whdc/device/
display/wddm_timeout.mspx..

‣ The CUDA Profiler does not support performance counter events on Windows
Vista. All profiler configuration regarding performance counter events is ignored.

‣ The maximum size of a single memory allocation created by cudaMalloc or
cuMemAlloc on WDDM devices is limited to:

MIN ((System Memory Size in MB - 512 MB) / 2,
PAGING_BUFFER_SEGMENT_SIZE)

For Vista, PAGING_BUFFER_SEGMENT_SIZE is approximately 2GB.
‣ The OS may impose artificial limits on the amount of memory you can allocate using

the Cuda APIs for both system and video memory. In many cases, these limits are
significantly less than the size of physical system and video memory, but there are
exceptions that make it difficult to quantify the expected behavior for a particular
application.

5.10.2. XP, Vista, Server 2008 and Windows 7 Related
‣ Applications that try to use too much memory may cause a CUDA memcopy or

kernel to fail with the error CUDA_ERROR_OUT_OF_MEMORY. If this happens, the
CUDA context is placed into an error state and must be destroyed and recreated if
the application wants to continue using CUDA.

‣ malloc may fail due to running out of virtual memory space. The address space
limitation is fixed by a Microsoft issued hotfix. Please install the patch located
at: http://support.microsoft.com/kb/940105 if this is an issue. Windows Vista SP1
includes this hotfix.

‣ When compiling a source file that includes vector_types.h with the Microsoft
compiler on a 32-bit Windows system, the 16-byte aligned vector types are not
properly aligned at 16 bytes.

http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx.
http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx.
http://support.microsoft.com/kb/940105

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 87

5.10.3. XP Related
‣ OpenGL interoperability

‣ OpenGL can not access a buffer that is currently mapped. If the buffer is
registered but not mapped, OpenGL can do any requested operations on the
buffer.

‣ Deleting a buffer while it is mapped for CUDA results in undefined behavior.
‣ Attempting to map or unmap while a different context is bound than was

current during the buffer register operation will generally result in a program
error and should thus be avoided.

‣ Interoperability will use a software path on SLI
‣ Interoperability will use a software path if monitors are attached to multiple

GPUs and a single desktop spans more than one GPU (i.e. WinXP dualview).
‣ OpenCL program binary formats may change in this or future releases. Users should

create programs from source and should not rely on compatibility of generated
binaries between different versions of the driver.

‣ (Windows and Linux) Individual GPU program launches are limited to a run time
of less than 5 seconds on a GPU with a display attached. Exceeding this time limit
usually causes a launch failure reported through the CUDA driver or the CUDA
runtime. GPUs without a display attached are not subject to the 5 second runtime
restriction. For this reason it is recommended that CUDA be run on a GPU that is
NOT attached to a display and does not have the Windows desktop extended onto
it. In this case, the system must contain at least one NVIDIA GPU that serves as the
primary graphics adapter.

‣ (Windows and Linux) It is a known issue that cudaThreadExit() may not be
called implicitly on host thread exit. Due to this, developers are recommended to
explicitly call cudaThreadExit() while the issue is being resolved.per email thread
started by Cliff Woolley

‣ For maximum performance when using multiple byte sizes to access the same
data, coalesce adjacent loads and stores when possible rather than using a union or
individual byte accesses. Accessing the data via a union may result in the compiler
reserving extra memory for the object, and accessing the data as individual bytes
may result in non-coalesced accesses. This will be improved in a future compiler
release.

5.10.4. Linux Only
‣ There is a known bug in ICC with respect to passing 16-byte aligned types by value

to GCC-built code such as the CUDA Toolkit libraries e.g. CUBLAS. At this time,
passing a double2 or cuDoubleComplex or any other 16-byte aligned type by
value to GCC-built code from ICC-built code will pass incorrect data. Intel has
been informed of this bug. As a workaround, a GCC-built wrapper function that
accepts the data by reference from the ICC-built code can be linked with the ICC-
built code; the GCC-built wrapper can then, in turn, pass the data by value to the
CUDA Toolkit libraries.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 88

‣ In order to run CUDA applications, the CUDA module must be loaded and the
entries in /dev created. This may be achieved by initializing X Windows, or by
creating a script to load the kernel module and create the entries. An example script
(to be run at boot time):
#!/bin/bash
/sbin/modprobe nvidia
if ["$?" -eq 0]; then
 # Count the number of NVIDIA controllers found.
 N3D=`/sbin/lspci | grep -i NVIDIA | grep "3D controller" | wc -l`
 NVGA=`/sbin/lspci | grep -i NVIDIA | grep "VGA compatible controller" |
 wc -l`
 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i;
 done
 mknod -m 666 /dev/nvidiactl c 195 255
else
 exit 1
fi

‣ The Linux kernel provides a mode where it allows user processes to overcommit
system memory. (Refer to kernel documentation /proc/sys/vm/ for details).
If this mode is enabled-the default on many distros-the kernel may have to kill
processes in order to free up pages for allocation requests. The CUDA driver
process, especially for CUDA applications that allocate lots of zero-copy memory
with cuMemHostAlloc or cudaMallocHost, is particularly vulnerable to being
killed in this way. Since there is no way for the CUDA SW stack to report an OOM
error to the user before the process disappears, users, especially on 32bit Linux, are
encouraged to disable memory overcommit in their kernel to avoid this problem.

Please refer to documentation on vm.overcommit_memory and
vm.overcommit_ratio for more information.

5.10.5. Linux and Mac
‣ When compiling with GCC, special care must be taken for structs that contain 64-

bit integers. This is because GCC aligns long longs to a 4 byte boundary by default,
while NVCC aligns long longs to an 8 byte boundary by default. Thus, when using
GCC to compile a file that has a struct/union, users must give the -malign-double
option to GCC. When using NVCC, this option is automatically passed to GCC.

‣ It is a known issue that cudaThreadExit() may not be called implicitly on
host thread exit. Due to this, developers are recommended to explicitly call
cudaThreadExit() while the issue is being resolved.

5.10.6. Mac Only
‣ OpenGL interop will always use a software path leading to reduced performance

when compared to interop on other platforms.
‣ CUDA kernels which do not terminate or run without interruption for several

tens of seconds may trigger the GPU to reset causing a disruption of any attached
displays. This may cause display image to become corrupted, which will disappear
upon a reboot.

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 89

‣ The kernel driver may leak wired (i.e. unpageable memory) if CUDA applications
terminate in unexpected ways. Continued leaks will lead to severely degraded
system performance and requires a reboot to fix.

‣ On systems with multiple GPUs installed or systems with multiple monitors
connected to a single GPU, OpenGL interoperability always copies shared buffers
through host memory.

‣ Current hardware limits the number of asynchronous memcopies that can be
overlapped with kernel execution. Overlap is also limited to kernels executing for
less than 1 second. These limitations are expected to improve on future hardware.

‣ The following APIs exhibit high CPU utilization if they wait for the hardware for a
significant amount of time.. As a workaround, apps may use cu(da)StreamQuery
and/or cu(da)EventQuery to check whether the GPU is busy and yield the thread
as desired.

- cuCtxSynchronize
- cuEventSynchronize.
- cuStreamSynchronize.
- cudaThreadSynchronize
- cudaEventSynchronize.
- cudaStreamSynchronize

‣ The MacBook Pro currently presents both GPUs as available for use in Performance
mode. This is incorrect behavior, as only one GPU is available at a time. CUDA
applications that try to run on the second GPU (device ID 1) will potentially hang.
This hang may be terminated by pressing ctrl-C or closing the offending application.

‣ There is a potential for a system hang if any running CUDA application terminates
abnormally while executing divergent code on the MAC OS. This issue has
been fixed in the newer Mac driver version 256.01.00f03 available on: http://
www.nvidia.com/.

5.11. Resolved Issues
The following known issues that were published in CUDA Toolkit 3.2 (and 4.0 RC, RC2)
release notes and errata documents have been fixed:

‣ For devices with compute capability 1.x, only the Occupancy analysis part of Kernel
analysis was supported by the Visual Profiler. The information displayed under
Limiting Factor Identification in the kernel analysis window was not accurate and was
not to be used. This issue has been fixed.

‣ When profiling OpenCL applications on devices with compute capability 1.x. an
Invalid cta_launched column error was previously reported. This issue has been fixed.

‣ Visual Profiler was reported to crash when trying to profile a application on Ubuntu
10.10. This issue has been fixed.

‣ Earlier version reported a known issue that when profiling an application in Visual
Profiler on a device with compute capability 1.x with the Normalized counters option
enabled, incorrect signals are selected resulting in warnings. This issue has been
fixed.

http://www.nvidia.com/
http://www.nvidia.com/

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 90

‣ Earlier version reported a known issue that for some SDK applications (e.g.
simpleMultiGPU) which run on multiple GPU devices, the Visual Profiler output is
generated only for one device. This issue has been fixed.

‣ NV50_P2P allocations are limited to only allow P2P objects to be allocated between
GPUs in the same peer group.

The details are as follows:

pciDomainID is added to the cudaDeviceProp structure
description: pciDomainID is the PCI domain identifier of the device
CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID added as a constant for
cuDeviceGetAttribute

5.11.1. Mac Related
‣ To save power, some Apple products automatically power-down the CUDA-capable

GPU in the system. If the operating system has powered down the CUDA-capable
GPU, CUDA fails to run and the system returns an error that no device was found.

In order to ensure that your CUDA-capable GPU is not powered down by the
operating system do the following:

 1. Go to System Preferences.
 2. Open the Energy Saver section.
 3. Un-check the Automatic graphics switching check box in the upper left.

‣ This issue described in the previous version has been fixed in CUDA Toolkit 4.0. On
Mac OS only, the NVIDIA C Compiler (nvcc) handles size_t incorrectly during 64-
bit compilation. The version of nvcc included with CUDA Toolkit 3.2 fails to handle
variables of type size_t as an 8-byte entity in PTX when compiling 64-bit device
code. To address this issue, NVIDIA has released a patch that updates components
of nvcc.

The patch is available as CUDA Toolkit: GFEC Patch for MacOS from the following
location: http://developer.nvidia.com/object/cuda_3_2_downloads.html

Please refer to additional information and installation instructions in the README
file distributed with the patch.

‣ The following issue reported in the previous version has been fixed in CUDA
Toolkit 4.0.

In CUBLAS 3.2, the GEMM, SYRK, and HERK routines for Fermi GPUs can enter
an infinite recursion leading to an application crash for certain input sizes meeting
the criteria below. To work around this problem, the input to CUBLAS must be
recursively subdivided until the individual calls to these CUBLAS routines do not
match these criteria.

Given threshold size T, where T is equal to 2^27 - 512 (i.e., 134217216), the crash
might be seen in any of the following circumstances:

 1. A is not transposed, lda * k >= T, and T is divisible by lda.
 2. B is not transposed, ldb * n >= T, T is divisible by n, and n is divisible by 32.
 3. A is transposed, lda * m >= T, T is divisible by m, and m is divisible by 32.

http://developer.nvidia.com/object/cuda_3_2_downloads.html

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 91

 4. B is transposed, ldb * k >= T, and T is divisible by ldb.
‣ The performance of the TRMM routine in this 4.0 release has regressed compared

to the performance in the 3.2 release. This will be fixed in the final 4.0 production
release. As a work-around, the new out-of-place option provided in the new
CUBLAS API for TRMM can be used. The performance of this out-of-place
implementation is much higher than the 3.2 performance.

‣ In the previous release of the CUBLAS Library, the cublasDgemm() routine
produced incorrect results in some cases when k < 32 and matrix A is transposed.
This has been fixed in this release.

‣ (Windows and Linux) In the previous version, divergent_branch counter in
Visual Profiler reported an incorrect value (of zero) for Fermi. This issue has been
fixed in CUDA Toolkit 4.0.

‣ (Windows) cudaMempy3D no longer ignores src and dst position parameters for host
memory.

‣ The cublasCgemm() routine in the CUBLAS library would crash in a few specific
cases in the previous release; fixed in this release.

‣ The cufftPlanMany() API in the 4.0 RC release had a bug that caused previously
working application code to fail. In particular, when inembed was set to NULL,
and istride or idist were set to invalid values, the API would return the
CUFFT_INVALID_VALUE error code. This has been fixed, and now the error checks
are only executed if inembed is not NULL. This applies to the onembed, ostride
and odist parameters as well.

‣ In the previous version of the CUFFT Library, there was a memory leak in some
cases when creating and subsequently destroying a plan for a FFT transform whose
size had a prime factor larger than 47. This has been fixed in the current release.

‣ The cublasFree() interface in the Legacy CUBLAS API has been corrected to
remove the const type qualifier from the void *devicePtr argument in order to
match the cudaFree() and the standard C free() APIs. Note that this may cause
user code that depends on that parameter being const not to compile with the latest
version of CUBLAS, though this should be an uncommon scenario.

‣ In the previous release, in certain situations, the CUFFT library would print the
following error message to stderr: cufft: Failed to find applicable transform.

In the current release, all errors are reported via API return codes and the library
does not print anything directly to stdout or stderr.

‣ Fixed in this release: When profiling an application in Visual Profiler on a device
with compute capability 1.x with the Normalized counters option enabled, incorrect
signals are selected resulting in warnings. To avoid the warnings, do not enable the
Normalized counters option.

‣ Fixed in this release: Issue reported in earlier release notes: For some SDK
applications (e.g. simpleMultiGPU) which run on multiple GPU devices, the Visual
Profiler output is generated only for one device.

‣ Fixed in this release: In the earlier release, Visual Profiler sample project
Nbody.cvp could not be opened on Linux unless the file was remaned from
Nbody_nbody_Context_0.csv to Nbody_Nbody_Context_0.csv.

‣ Fixed in this release: Issue reported in earlier release notes: GPU enumeration order
on multi-GPU systems is non-deterministic and may change with this or future

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 92

releases. Users should make sure to enumerate all CUDA-capable GPUs in the
system and select the most appropriate one(s) to use.

‣ Fixed in this release (Vista, Server 2008 and Windows 7 related): Issue reported in
earlier release notes: The CUDA Profiler does not support performance counter
events on Windows Vista. All profiler configuration regarding performance counter
events is ignored.

‣ In previous releases, the nppiNormDiff_8u_C1R function in the NPP library
returned both output values into host pointers. In this release, the semantics of
this API function have been changed and now the pointers provided for the two
outputs are assumed to be pointing to device memory. There will be no compilation
error as the prototype of the function has not changed and the program may fail
silently; hence if this function is being used we recommend that the code be updated
proactively by users.

‣ In previous versions of the NPP Library, the Rotate primitives set pixel values inside
the destination ROI to 0 (black) if there is no pixel value from the source image that
corresponds to a particular destination pixel. This incorrect behavior has been fixed.
Now, these destination pixels are left untouched so that they stay at the original
background color.

‣ In the previous CUDA Toolkit 4.0 release candidates, the NPP Library header file,
nppi.h, made use of const references for passing structs to functions. This causes
compilation errors when included from within a C file (as opposed to from within
a C++ file). Since the NPP API is intended to be a pure C API, the offending C++
constructs have been removed from the header file.

‣ In the previous release of the NPP Library, the nppiGraphcut_32s8u API function
would return a NPP_TEXTURE_BIND_ERROR in some cases when the API should
have executed to completion without error. This has been fixed in the current
release.

‣ Improved the accuracy of the generation of normally distributed single-precision
pseudo-random numbers in the CURAND library. The main observed impacts of
this improvement are:

 1. the maximum difference between the results generated by a GPU generator and
a HOST generator are much smaller for single-precision normally distributed
random numbers; and

 2. the performance of GPU random number generation is now slower than the
previous version for single-precision normally distributed random numbers.

‣ The Sobol' direction vectors used by the CURAND library have been updated using
the latest Joe-Kuo file new-joe-kuo-6.21201. The file was obtained from this
website: http://web.maths.unsw.edu.au/%7Efkuo/sobol/. The smallest dimension
with updated values in the new file is the 212th dimension. Therefore, the exact
Sobol' sequences generated by CURAND may differ from the previous release even
for the same exact input parameters, if more than 211 dimensions are requested.
The authors of the direction vectors indicate that the previous set of vectors were
corrupted and that their use be discontinued.

‣ The previous version of the NPP library had a bug in the nppsDiv_32s_C1R
primitive when dividing by 0. This bug has been fixed, and now the primitive will
correctly return NPP_MAX_32S or NPP_MIN_32S when dividing by 0.

http://web.maths.unsw.edu.au/%7Efkuo/sobol/

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 93

‣ (Operating Systems: Windows2008 Server64, WinXP-x64) In the previous version
a setup consisting of GF100 M2070-Q + R260.27 driver resulted in SDK sample
DeviceQuery not running when switched from OS to regular user account. This has
been fixed in this version.

‣ In the previous release of the NPP Library, the nppiMinMax_8u_C1R() function
would not work in certain situations; this has been fixed in this release.

‣ For an OpenCL C program, the maximum alignment of a function scope local
variable and a function parameter variable is limited to 16-byte.

‣ In previous releases, the nppiMean_StdDev_8u_C1R function in the NPP library
returned both output values into host pointers. In this release, the semantics of
this API function have been changed and now the pointers provided for the two
outputs are assumed to be pointing to device memory. There will be no compilation
error as the prototype of the function has not changed and the program may fail
silently; hence if this function is being used we recommend that the code be updated
proactively by users.

‣ In the previous release, the *Filter_8u_C1R functions in the NPP library
produced incorrect results when the nSrcStep input parameter was not a
multiple of 4. This has been corrected, and now the functions work for all values
of nSrcStep. The exact list of impacted functions is nppiFilterRow_8u_C1R,
nppiFilterBox_8u_C1R, nppiFilter_8u_C1R, nppiFilterMax_8u_C1R, and
nppiFilterMin_8u_C1R.

‣ In previous releases, the nppiMinMax_8u_C1R function in the NPP library returned
both output values into host pointers. In this release, the semantics of this API
function have been changed and now the pointers provided for the two outputs are
assumed to be pointing to device memory. There will be no compilation error as the
prototype of the function has not changed and the program may fail silently; hence
if this function is being used we recommend that the code be updated proactively by
users.

‣ The accuracy of single-precision transforms in the CUFFT Library has been
signifcantly improved, especially for larger transforms and multi-dimensional
transforms.

The accuracy improvements in general did not impact performance compared to
the previous version of CUFFT, however some single precision power-of-2 kernels
on the Fermi architecture will show a minor performance regression compared to
the previous version of the library.

‣ In previous versions of the CUFFT Library, for some 1D transform sizes larger than
32M elements, the first call to cufftExec*() would fail due to insufficient memory
or due to grid size limitations. These resource limitations are now properly checked
for and reported by cufftPlan*() such that if sufficient resources are not available
to execute an FFT of the requested size, the error will be reported at plan time rather
than at execution time.

‣ Thrust no longer supports scatter and gather directly between host and device
memory; instead the output needs to be staged through a temporary object and
copied explicitly with thrust::copy().

NVIDIA CUDA Toolkit v4.0 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.5 RN-06722-001 _v5.5 | 94

‣ Thrust no longer supports operations on device_vector when the backend is
CUDA in the absence of nvcc. Hence, operations which modify device_vector's size
or elements are unavailable in a .cpp file.

5.12. Source Code for Open64 and CUDA-GDB
‣ The Open64 and CUDA-GDB source files are controlled under terms of the

GPL license. Current and previously released versions are located at: ftp://
download.nvidia.com/CUDAOpen64

‣ Linux users:

‣ Please refer to the Release Notes and Known Issues sections in the CUDA-GDB
User Manual (CUDA_GDB.pdf).

‣ Please refer to CUDA_Memcheck.pdf for notes on supported error detection and
known issues.

5.13. More Information
For more information and help with CUDA, please visit http://www.nvidia.com/cuda.

5.14. Acknowledgements
NVIDIA extends thanks to EM Photonics (http://www.emphotonics.com) for their
contributions to the matrix-vector multiplication functions in the CUBLAS library
incorporated into the v4.0 release.

ftp://download.nvidia.com/CUDAOpen64
ftp://download.nvidia.com/CUDAOpen64
http://www.nvidia.com/cuda
http://www.emphotonics.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	List of Tables
	NVIDIA CUDA Toolkit v5.5 Release Notes
	1.1. Errata
	1.1.1. General CUDA
	1.1.2. CUDA Libraries
	1.1.2.1. CUBLAS
	1.1.2.2. CUFFT

	1.1.3. CUDA Samples
	1.1.4. CUDA Tools

	1.2. Documentation
	1.3. List of Important Files
	1.3.1. Core Files
	1.3.2. Windows lib Files
	1.3.3. Linux lib Files
	1.3.4. Mac OS X lib Files

	1.4. Supported NVIDIA Hardware
	1.5. Supported Operating Systems
	1.5.1. Windows
	1.5.2. Linux
	1.5.3. Mac OS X

	1.6. Installation Notes
	1.6.1. Windows
	1.6.2. Linux

	1.7. Deprecated Features
	1.8. New Features
	1.8.1. General CUDA
	1.8.2. CUDA Libraries
	1.8.2.1. CUBLAS
	1.8.2.2. CUFFT
	1.8.2.3. CURAND
	1.8.2.4. CUSPARSE
	1.8.2.5. Thrust

	1.8.3. CUDA Tools
	1.8.3.1. CUDA Compiler
	1.8.3.2. CUDA-GDB
	1.8.3.3. CUDA-MEMCHECK
	1.8.3.4. CUDA Profiler
	1.8.3.5. Debugger API
	1.8.3.6. Nsight Eclipse Edition

	1.9. Performance Improvements
	1.9.1. CUDA Libraries
	1.9.1.1. CUBLAS
	1.9.1.2. Math

	1.10. Resolved Issues
	1.10.1. General CUDA
	1.10.2. CUDA Libraries
	1.10.2.1. NPP

	1.10.3. CUDA Tools
	1.10.3.1. CUDA-GDB
	1.10.3.2. Debugger API

	1.11. Known Issues
	1.11.1. Linux on ARMv7 Specific Issues
	1.11.2. General CUDA
	1.11.3. CUDA Libraries
	1.11.3.1. NPP

	1.11.4. CUDA Tools
	1.11.4.1. CUDA Compiler
	1.11.4.2. CUDA Profiler

	1.12. Source Code for Open64 and CUDA-GDB
	1.13. More Information

	NVIDIA CUDA Toolkit v5.0 Release Notes
	2.1. Errata
	2.1.1. Known Issues
	2.1.1.1. General CUDA
	2.1.1.2. CUDA Libraries
	2.1.1.3. CUDA Tools

	2.2. Documentation
	2.3. List of Important Files
	2.3.1. Core Files
	2.3.2. Windows lib Files
	2.3.3. Linux lib Files
	2.3.4. Mac OS X lib Files

	2.4. Supported NVIDIA Hardware
	2.5. Supported Operating Systems
	2.5.1. Windows
	2.5.2. Linux
	2.5.3. Mac OS X

	2.6. Installation Notes
	2.6.1. Windows
	2.6.2. Linux

	2.7. New Features
	2.7.1. General CUDA
	2.7.1.1. Linux

	2.7.2. CUDA Libraries
	2.7.2.1. CUBLAS
	2.7.2.2. CURAND
	2.7.2.3. CUSPARSE
	2.7.2.4. Math
	2.7.2.5. NPP

	2.7.3. CUDA Tools
	2.7.3.1. CUDA Compiler
	2.7.3.2. CUDA-GDB
	2.7.3.3. CUDA-MEMCHECK
	2.7.3.4. NVIDIA Nsight Eclipse Edition
	2.7.3.5. NVIDIA Visual Profiler, Command Line Profiler

	2.8. Performance Improvements
	2.8.1. CUDA Libraries
	2.8.1.1. CUBLAS
	2.8.1.2. CURAND
	2.8.1.3. Math

	2.9. Resolved Issues
	2.9.1. General CUDA
	2.9.2. CUDA Libraries
	2.9.2.1. CURAND
	2.9.2.2. CUSPARSE
	2.9.2.3. NPP
	2.9.2.4. Thrust

	2.9.3. CUDA Tools
	2.9.3.1. CUDA Compiler
	2.9.3.2. CUDA Occupancy Calculator

	2.10. Known Issues
	2.10.1. General CUDA
	2.10.1.1. Linux, Mac OS
	2.10.1.2. Windows

	2.10.2. CUDA Libraries
	2.10.2.1. NPP

	2.10.3. CUDA Tools
	2.10.3.1. CUDA Compiler
	2.10.3.2. NVIDIA Visual Profiler, Command Line Profiler

	2.11. Source Code for Open64 and CUDA-GDB
	2.12. More Information

	NVIDIA CUDA Toolkit v4.2 Release Notes
	3.1. Errata
	3.1.1. Known Issues

	3.2. Release Highlights
	3.3. Documentation
	3.4. List of Important Files
	3.4.1. Windows lib Files
	3.4.2. Linux lib Files
	3.4.3. Mac OS X lib Files

	3.5. Supported NVIDIA Hardware
	3.6. Supported Operating Systems
	3.6.1. Windows
	3.6.2. Linux
	3.6.3. Mac OS X

	3.7. Installation Notes
	3.7.1. Windows
	3.7.2. Linux

	3.8. New Features
	3.9. Resolved Issues
	3.10. Known Issues
	3.10.1. Windows
	3.10.2. Linux & Mac
	3.10.3. Mac
	3.10.4. Visual Profiler and Command Line Profiler

	3.11. Source Code for Open64 and CUDA-GDB
	3.12. More Information

	NVIDIA CUDA Toolkit v4.1 Release Notes
	4.1. Release Highlights
	4.2. Documentation
	4.3. List of Important Files
	4.3.1. Windows lib Files
	4.3.2. Linux lib Files
	4.3.3. Mac OS X lib Files

	4.4. Supported NVIDIA Hardware
	4.5. Supported Operating Systems
	4.5.1. Windows
	4.5.2. Linux
	4.5.3. Mac OS X

	4.6. Installation Notes
	4.6.1. Windows
	4.6.2. Linux

	4.7. Upgrading from Previous CUDA Toolkit 4.0
	4.7.1. Vista, Server 2008 and Windows 7 Related
	4.7.2. Linux and Mac
	4.7.3. Mac Related

	4.8. CUDA Toolkit Known Issues
	4.8.1. SDK Related
	4.8.2. Visual Profiler and Command Line Profiler
	4.8.3. CUDA-MEMCHECK

	4.9. New Features in CUDA Release 4.1
	4.9.1. CUDA Runtime
	4.9.2. Compiler Related
	4.9.3. CUDA Libraries
	4.9.4. CUDA Driver

	4.10. Performance Improvements in CUDA Release 4.1
	4.11. Resolved Issues
	4.12. Source Code for Open64 and CUDA-GDB
	4.13. More Information
	4.14. Acknowledgements

	NVIDIA CUDA Toolkit v4.0 Release Notes
	5.1. Release Highlights
	5.2. Documentation
	5.3. Errata for Windows, Linux, and Mac OS X
	5.3.1. Linux
	5.3.2. Resolved Issues
	5.3.3. Known Issues
	5.3.4. More Information

	5.4. List of Important Files
	5.4.1. Windows lib Files
	5.4.2. Linux lib Files
	5.4.3. Mac OS X lib Files

	5.5. Supported NVIDIA Hardware
	5.6. Supported Operating Systems for Windows, Linux, and Mac OS X
	5.6.1. Windows
	5.6.2. Linux
	5.6.3. Mac OS X

	5.7. Installation Notes
	5.7.1. Windows
	5.7.2. Linux

	5.8. Upgrading from Previous CUDA Toolkit 3.2
	5.9. Notes on New Features and Performance Improvements
	5.9.1. CUDA Driver Features
	5.9.2. CUDA Compiler Features
	5.9.3. CUDA Libraries Features
	5.9.4. CUDA Libraries Performance

	5.10. Known Issues
	5.10.1. Vista, Server 2008 and Windows 7 Related
	5.10.2. XP, Vista, Server 2008 and Windows 7 Related
	5.10.3. XP Related
	5.10.4. Linux Only
	5.10.5. Linux and Mac
	5.10.6. Mac Only

	5.11. Resolved Issues
	5.11.1. Mac Related

	5.12. Source Code for Open64 and CUDA-GDB
	5.13. More Information
	5.14. Acknowledgements

