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Preface

What Is This Document?

ThisBest Practices Gaimlenanual to help deysdes obtain the best performance
from theNVIDIA ® CUDAE architecture usingersion3.0of the CUDA Toolkit

It presents established optimization technigneesxplais coding metaphors and
idioms that can greatly simppfpgramming for th€EUDA architecture

While the contents can be used as a reference mansiaguld beware that

some topics are revisited in different contexts as various programming and
configuration topics are explored. As a result, it is recommended -tivaefirst
readerproceedhrough theguidesequentially. This approach will greatly improve
yourunderstanding of effective programnpracticeand enablgouto better use
theguidefor referencéater

Who Should Read This Guide?

Vii

Thisguideis intended foprogrammers/ho haveabasic familiarity wittme

CUDA programming environmentou have alrady downloaded and installed the
CUDA Toolkitand have written successful programs usifggitiscussions in
thisguideall use the C programming languaggoeshouldbe comfortable
reading C.

Thisguiderefers to and relies on several adoeuments that you should have at
your disposal for reference, all of which are avaitaloleost from the CUDA
wetlsite fttp://www.nvidia.com/object/cuda_develop.h)mrhe following
documerd are especially important resources:

Cc CUDA Quickstart Guide
¢ CUDA Programming Guide

Cc CUDA Reference Manual

Be sure to download the correct manual fo€thBA Toolkit versiorand
operating systeyou are using

CUDABest Practices GuideVersion 3.0
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Recommendations andBest Practices

Throughouthis guide specific recommendations are made regandidgsign

and implementation of CUDB.code. These recommendations are categorized by
priority, which is a blend of the effect of the recommendation and its scope. Actions
that present substantiapimvements for most CUDA applications have the

highest prioritywhile small optimizations that affect only very specific situations are
given a lower priority.

Before implementing lower priority recommendations, it is good practice to make
sure all highgariority recommendations that are relevant have already been applied.
This approach will tend to provide the best resultsdtime invested and will

avoid the trap of premature optimization.

The criteria of benefit and scope for establishing prdlfitsary depending on the
nature of the program. In tlyside they represent a typical case. Your code might
reflect different priority factors. Regardless of this possibility, it is good practice to
verify that ndnigherpriority recommendations haveehoverlookedefore
undertakindowerpriority items.

Appendix Aof this document lists all the recommendations and best practices,
grouping them by priority aadding somedalitional helpful observations.

Code samples throughout the guoiahit error checking for concisendamduction

code shouldhoweversystematically check the error code returned by each API call
andcheckfor failuresin kernel launches (or groups of kernel launches in the case
of concurrent kernelby callingudaGetLastError()

Contents Summary

The remainder of thguideis dividedinto the followingsections:

Parallel Computing with CUDA: Important aspects of the parallel
programming architecture.

Performance Metrics How shouldperformancée measureth CUDA
apgicatiors and what are the factors that most influence performance?

Memory Optimizations: Correct memory management is one of the most
effective means of improving performance. This chapter explores the different
kinds of memorgvailable t€UDA applicationsand it explainis detail how
memory is handled behind the scenes.

Execution Configuration Optimizations: How to make sure yo@UDA
application igxploiting all the aNable resourcem the GPU

Instruction Optimizations: Certain operations run faster than others. Using
faster operatiorand avoidinglower onesoften confersemarkablebenefits.

Control Flow: Carelesslgesigned control flow can force parallel code into
serial execution; whereas thoughtfelbjgthed control flow céwelpthe
hardware perform the maximum amount of work per clock cycle.

CUDA Best Practices Guidé/ersion 3.0 viii



Getting the Right Answer How to debug code and how to handle differences
in how the CPU an@PU represent floatingoint values
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Chapter 1.
Parallel Computing with CUDA

This chapter reviews heterogeneous computing with CUDA, explains the limits of
performance improvemeatdhelps you choose the right version of CUDA and
whichapplication programming interf#8€1) to use when programming.

1.1

1.1.1

Heterogeneous Computing with CUDA

CUDA C pogrammingnvolves running code on two different platforms
concurrentlyahossystenwith one or more CPUs athe or moralevise
(frequently graphics adaptard) with CUDAenabledNVIDIA GPUSs.

While NVIDIA devices argequenthassociated with rendering graphics,atey
alsopowerful arithmetic engines capable of running thousands of lightweight
threads in parallel. This capability makes thersuitetl to computationkdt can
leverage parallel execution well.

However, the device is based on a distinctly different design from the hast system
and i t Otsoundengiand teealifferences and how trastermine the
performance of CUDA applicaticimsuse CUDA effectively

Differences Between Host and Device

The primary differences occur in threading and memory. access

Threading resourcesExecution pipelines on host systems can support a
limited number of concurrent threads. Setlathavdour quadcore
processors today can run only 16 threawisurrently32 if the CPUs support
HypefThreading.) By comparison, smealleskecutable undf parallelisnon a
CUDA devicecomprise82 threadéawarp All NVIDIA GPUs cansupportat
least768concurrenty active threadser multiprocesspandsome GPUs
support 1024or moreactive threadser multiprocessgsee Section G.1 of the
CUDA Programming Quidie deviceshat have80 multiprocessors (such as
theNVIDIA ® GeForc@ GTX 280, this lead® more than 30,000 active
threads.

Threads.Threads on €PUare generally heavyweighitities The operating
system must swap threads on andfaffPUexecution channels to provide
multithreadingapabilityContext switches (when two threads are sdpppe
thereforeslow and expensive. By comparigdoeads olisPUsareextremely

CUDABest Practices GuideVersion 3.0



Chapter 1.
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lightweight. In a typical systehgusandsf threads are queued up for work (in
warpsof 32 threadsach. If the GPU must wait oronewarpof threadsit

simply begins eruting work oanotherBecauseeparateegisters are
allocated tallactive threads, no swapping of registestateneedoccur
between GPU threads. Resources stay allocetsthiioread until it completes
its execution.

RAM. Both the host system and the device have RANhe host system,

RAM is generally equally accessible to all code (within the limitations enforced
by the operating syster@n the device, RAM is dividetually and physically

into different types, eachwhich has a special purpose and fulfills different
needs. The types of device RAM are explained@uUba Programmi&gide

and inChapter 3f this document.

These are the primary hardware differdreteseen CPU hosts and GPU devices
with respect to parallel programmi@ther differencesre discussed as they arise
elsewhere in this document.

1.1.2 What Runs on a CUDAEnNabled Device?

Because of the considerabifeetences betwedhehostandhed e vi ce, it ds
importar to partition applications so that each hardware system is doing the work it
does bestThe following issues should be considered when determinimaidat

of an application to run on the device:

The device is ideally suited for computations that can tve numerous data
elements simultaneousiyparallel. This typically involves arithmetic on large
data sets (such as matrices) where the same operdimpeaediormed across
thousands, if nanillions of elements at the same time. IHasequirement

for good performance on CUD#e software must use a large number of
threads. The support for ring numerous threads in paraltives from the
CUDA architectu@s u s e o fthreadingimodblt we i gh't

There should be some coherence in memory aceckssdaycodeCertain
memory access patterns enable the hardware to coalesasf geadssor

writes of multiplelata items o one operation. Data that cannot be laid out so
as to enablcoalescingr that des dhave enough locality to use textores

L1 efficientlywill not enjoy much of a performaramefitwhen used in
computations o€UDA.

To use CUDA, data values must be transferred from the host to the device
along the PCI Expss (PCle) bughese transfers are costly in terms of
performance and should be minimiz8defection3.1) This cost has several
ramifications:

The complexity of operations should justify the cost of mdatatp and
from the deviceCode that transfedata forbriefuse bya small number of
threads will see littte noperformancdenefit The ideal scenario is one in
which many threads perform a substantial amount of work.

For example, transferring two matrices to the devpesfdom a matrix
addition andhentransferring the results back to the haknot realize
much performance benefihe issue here is the number of operations
performed per data element transteffer theprecedingrocedure
assuming matrices of sizeN there are Rloperations (additions) andZ3N

CUDA Best Practices Guidé/ersion 3.0 2
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elements transferred, so thgo ofoperationgo elementgransferedis 13

or O(1). Performance benefits can be more readily achievetisidiatio

is higher. For example, a matrix multiplicatidhe same matrices requires
N3 operations (multiplgdd) sotheratio of operations telemerg
transferred is O(N), in which case the larger the matrixetie tine
performance benefithe type®f operationsre an additional factes
additionshave different complexity profitean, for example, trigonometric
functions|lt is important to includie overhead of transferring datand
from the device ideterminingvhetheroperations shadilbe performedn

the host or on the device.

Data should be kept on the device as long as pd3sitdase transfers
should be minimizedrograms that run multiple kernels on the same data
should favor leaving the data on the device between kernel calls, rather than
transferringntermediate results to the host and then sending them back to
the device fosubsequentalculationsSq in the previous example, htheé

two matrices to be addalleadypeenon the devicas a result of some
previous calculation, or if the results of the addition would be gsatkin
subsequent calculatjiaghe matrix addition should be performed locally on
thedeviceThis approach should be used even if one of the steps in a
sequence of calculations could be performed faster on tHevkasi
relativelyslowkernel may be advantageous if it avoids one oRGtee
transfersSectior.1provides further detaiiacluding the measurements of
bandwidthbetween the host and the devieesuswithin the device proper.

1.1.3 Maximum Performance Benefit

High Priority : To get the maximum benefit from CUDA, focus first on finding ways to
parallelize sequential code.

The amount of performance benefit an applicatiorealizeoy running on

CUDA depends entirely on the extent to which it can be parallelized. As mentioned
previously, code that cannot be sufficiently parallelized should run on the host
unless doing so would result in excessive trapsfaesen the host and tthevice

Amdahl 6s | aw s p e c-udthaecan bé dxmectad byparatielizimg s p e e d
portions of a serial program. Essentially, it states that the maximunp$geefd
a program is
1
0

oy i
1 0)+y5

whereP is the fraction of the total semalecution time k&n by theortion ofcode
that can be parallelized &hds the number of processors over which the parallel
portion of thecoderuns

The largeN is (that is, the greater the number of processors), the smalldr the
fraction.It can kesimpler to view as a very large number, which essentially
transforms the equation inf> 1 /1 P Now, if% of a program is parallelized,
the maximum speeg over serial codelid (1 z %) = 4.

3 CUDABest Practices GuideVersion 3.0
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1.2

1.2.1

For most purposetije key point is that tlggeateP is, the great¢he speedip.

An additional cavestimplicit in this equation, which is the® i a small number

(so not substantially parallel), increasidges little to improve performante
get the largest lift, best practices suggest spemotsh effort on increasifgthat
is, by maximizing the amount of codé¢ ¢ha be parallelized.

Understanding the Programming
Environment

With each generation of NVIDIA processors, new features are added to the GPU

that CUDA can leverage. Consequently, 6 s

characteristics of tlaechitecture

i mportant

t o

Programmers shoulik aware dfvo version numberhe first ishe compute
capabilityandthe second is the version number of the runtime and driver APIs.

CUDA Compute Capability

The @mpum@pabilitgescribes the features of the hardware and reflects the set of

instructions supported by the device as wethas specificationsuch ashe

maximunnumber ofthreads per block amige number of registegser
multiprocessoHigher compute capability versions are supefdetver(that is,
earlieryersionsand sdahey ardackward compatible

The compute capability thie GPU in thedevicecan be querigarogranmatically

as illustrated ithe CUDA SDK in theleviceQuery sampleThe output for that

program is showin Figure 1.1This information is obtained by calling

cudaGetDeviceProperties() and accessing the information in the struitture

returns

&t C:\WINDOWS\system32\cmd.exe I

There is 1 device supporting CUDA

Device @:

"Quadro FX 57@"

Major revision number:

Minor» revision number:

Total amount of global memory:

Number of multiprocessors:

Number of cores:

Total amount of constant memory:

Total amount of shared memory per block:

Total number of registers available per block:

Warp size:

Maximum
Maximum
Maximum
Maximum
Texture

number of threads per block:

sizes of each dimension of a bhlock:
sizes of each dimension of a grid:
memory pitch:

alignment:

Clock rate:
Concurrent copy and execution:

Test PASSED

Press ENTER to exit...

1
1
268187776 hytes
16

128

65536 hytes
16384 bytes
8192

32

512

512 x 512 x 64
65535 x 65535 x 1
262144 hytes
256 hytes

8.41 GHz

Yes

under st

Figure 1.1 Sample CUDAconfiguration data reported by deviceQuery
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The major and minor revision numbers of the compute capability are shown on the
third and fourth lines of Figure 1Dkvice 0 othis systerhascompute capability
1.1.

More details about the compute capabilities of various &&t&ppendix A of

the CUDA Programming Guidparticular, developers should note the number of
multiprocessors on tlikevicethe number of registeasdthe amount ofnemory
availableand any special capabilities of the device

1.2.2 Additional Hardware Data

Certainhardwardeatures are not descrili®dthecomputecapability. For example,

the ability to overlap kernel executidgtlh asynchronous data transfers betwlezn

host andhedevice is available on mbst not allGPUs withcomputecapability

1.1 In such casesallcudaGetDeviceProperties() to determinevhetherthe

device is capable of a certain feafimeexamplehedeviceOverlap  field of the

device property structure indicates whether overlapping kernel execution and data
transfers is pokde (displayed thed Concur rent copy and execut
Figure 1.1)ikewisethecanMapHostMemory field indicatesvhetherzerccopy data

transfers can be performed.

1.2.3 C Runtime for CUDA and Drive API Version

The CUDAdriver APl andhe C runtimefor CUDA are twoof theprogramming
interfaces to CUDATheir version numbegnableslevelopers to chetke features
associated with these APIs and dexidghermanapplication requires a newer
(later)versiorthan the one currently installed. This pmant because the CUDA
driver API isbackwabmpatililat not forward compatddaing that applications,
plugins, and libraries (including theu@time for CUDA) compiled against a
particular version of thdeiver API will continue to work onlsseaent (later)
driver releases. Howewaaplications, pluins, and libraries (including the C
runtime for CUDA) compiled against a particular version dfilee APImaynot
work onearlier versions of the driver, as illustrated in Figure 1.2.

5 CUDABest Practices GuideVersion 3.0
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1.2.4

1.3

Apps, Apps, Apps,
Libs & Libs & Libs &
Plug-ins Plug-ins Plug-ins

///
1.0 1.1 2.0
Driver Driver Driver
Compatible Incompatible

Figure 1.2 Compatibility of CUDA versions

Which Version to Target

When in doubtaboutthe compute capability of therdwarehat will be present at
runtime it is best to assume a compute capadiilit.0 as defined in tG&JDA
Programming Guedetiorns.1

To target specific versions of NVIDIA hardware and CUDA software, use the

iarch , - code, andi gencode optionsof nvcc . Code that contains douigeecision
arithmetic, for exampaphken,136mu sotr thd gcheemp icloentk
capability), otherwise doublecisiorarithmetiowill getdemoted tsingle

precisiorarithmetiqsee Section2.). This and othecompiler switchesre

discussetlurtherin Appendix B

CUDA AP$

The hostuntime componenif the CUDA software environmearén be useonly
by host functions. It provides functions to hatiteollowing:

Device management

Context management

Memory management

Code module management

Execution control

Texture referena@anagement

Interoperability with OpenGL and Direct3D
It compriseswo APIs:

A low-level API called the CUDA driver API

CUDA Best Practices Guidé/ersion 3.0 6
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Chapter 1.
Parallel Computingwith CUDA

A higherlevel API called th& runtime fotCUDA that is implemented on top
of the CUDA driver API

These APIs are mutually exclusiveagyiication should use one or the other.

TheC runtime foICUDA, which is the more commonly used API, eases device
code management by providing implicit initialization, context management, and
module management. The C host code generated by basedmtheC runtime

for CUDA, so applications that link to this code must use thetime foiCUDA.

In contrast, the CUDA driver API requires more @ottks somewhaharder to
program and debug, bhubffers a better level of contrin particular, itsimore

difficult to configure and launch kernels using the CUDA driver API, since the
execution configuration and kernel parameters must be specified with explicit
function calls instead of the execution configuration gyntaxé J.Nste that

the APIs elate only to host codbe kernels that are executed on the device are the
same, regardless of which API is used.

The two APIs can be easily distinguished, bebauS&IDA driver APl is
delivered through thecuda dynamic library and all its entrynp®iare prefixed
with cu; while theC runtime fotCUDA is delivered through thedart dynamic
library and all its entry points are prefixed aviti.

C Runtime for CUDA

TheC runtime forCUDA handles kernel loadiagd settingip kernelparameters
and launch configuraticmeforethekernelislaunched. The implicit code
initialization, CUDA context managgnt, CUDA module management (cidin
function mapping), kernel configuratiamd parameter passarg alperformedby
the C runtime forCUDA.

It comprise$wo principal parts
The lowlevelfunctions(cuda_runtime_api.h ) havea Gstyle interface.

The highlevelfunctions(cuda_runtime.h ) havea C++style interface built on
top of the lowevelfunctions

The functions that make up this API are explained @UBA Reference Manual

CUDA Driver API

The driver APl is a lowdgvel API than the runtime API. When compared with the
runtime API, the driver API has these advantages:

No dependency on the runtititrary

More control over devices (for example, only the driver API enables one CPU
thread to control multiple GPUseeChapter B

No C extensions in the host codethehost code can be compiled with
compilerother thamvee and the host compilerdalls bydefault

Its primary disadvantages, as mentiongettionl.3 areas follows:
Verbose code

CUDABest Practices GuideVersion 3.0
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Greater difficulty in debugging

A key point is that for every runtime API function, there is an equivalent driver API
function. The driver API, however, includes other functions missing intthmeru
API, such as those for migrating a coritert one host thread to another

For more information on the driver AR#fer toSection 3.3 of th€UDA
Programming Guide

1.3.3 When to Use Which API

The previous sectidists some of the salient differenatsvben the two APIs.
Additional considerations inclutie following

Driver APldonlyfeatures
Context management
Support for 1&it floatingpoint textures
Access to the MCL image processing library

In most cases, these points tenstéer developesgonglytoward one API. In
casewhere they do not, favor the runtime API because it is higher level and easier
to use. In additiorpecauseuntime functions all have driviP| equivalents, it is

easy to migrate runtime code to the driver API shouldtiiabecome necessary.

1.3.4 Comparing Code for Different APIs

To illustrate the difference in code between the runtime and driver APls, compare
Listings 1.1 and 1.2, which are examples of a vector addition inveviaicing are
added.

const unsigned int cnB lockSize = 512;
const unsigned int cnBlocks = 3;
const unsigned int cnDimension = cnBlocks * cnBlockSize;

/I create CUDA device & context
cudaSetDevice( 0 ); /I pick first device

/[ allocate host vectors

float * pA = new float[cnDimension];
float * pB = new float[cnDimension];
float * pC = new float[cnDimension];

/I initialize host memory
randominit(pA, cnDimension);
randomlnit(pB, cnDimension);

// allocate device memory

float *pDeviceMemA, *pDeviceMemB, *pDeviceMemC;

cudaMalloc((void **)&pDeviceMemA , cnDimension * sizeof(float));
cudaMalloc((void **)&pDeviceMemB, cnDimension * sizeof(float));
cudaMalloc((void **)&pDeviceMemC, cnDimension * sizeof(float));

/I copy host vectors to device

cudaMemcpy(pDeviceMemA, pA, cnDimension * sizeof(float),
cudaMemcpyHostToDevice);

cudaMemcpy(pDeviceMemB, pB, cnDimension * sizeof(float),
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cudaMemcpyHostToDevice);

vectorAdd<<<cnBlocks, cnBlockSize>>> (pDeviceMemA, pDeviceMemB,
pDeviceMemC);

/I copy result from device to host
cudaMemcpy ((void *) pC, pDeviceMemC, cnDimension * sizeof(float),
cudaMemcpyDeviceToHost);

delete[] pA;
delete[] pB;
delete[] pC;

cudaFree(pDeviceMemA);
cudaFree(pDeviceMemB);
cudaFree(pDeviceMemC);

Listing 1.1 Host code for adding two vectors using the C runtime for
CUDA

Listing 1.1 consists 27 lines of code.isting 1.2 shows the same functionality
implemented using the CUDRIAver API.

const unsigned int cnBlockSize = 512;
const unsigned int cnBlocks = 3;
const unsigned int cn Dimension = cnBlocks * cnBlockSize;

CUdevice hDevice;
CUcontext hContext;
CUmodule hModule;
CUfunction hFunction;

/I create CUDA device & context

culnit(0);

cuDeviceGet(&hContext, 0); // pick first device
cuCtxCreate(&hContext, 0, hDevice));

cuModul eLoad( &h Modul e, fivect or Add. cubino) ;
cuModuleGetFunction(&hFunction, hModule, "vectorAdd");

/I allocate host vectors

float * pA = new float[cnDimension];
float * pB = new floatcnDimension];
float * pC = new float[cnDimension];

/l initialize host memory
randomlnit(pA, cnDimension);
randominit(pB, cnDimension);

// allocate memory on the device

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC;
cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float));
cuMemAlloc(& pDeviceMemB, cnDimension * sizeof(float));
cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float));

/I copy host vectors to device
cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float));
cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float));

/l's et up parameter values
cuFuncSetBlockShape(cuFunction, cnBlockSize, 1, 1);
#define ALIGN_UP(offset, alignment) \
(offset) = ((offset) + (alignment) T 1) & ~((alignment) T 1)
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int offset = 0;

void* ptr;

ptr = (void*)(size_t) pDeviceMemA;
ALIGN_UP(offset, __alignof(ptr));

cuParamSetv( cuFunction , offset, &ptr, sizeof(ptr));
offset += sizeof(ptr);

ptr = (void*)(size_t ) pDeviceMemB;
ALIGN_UP(offset, __alignof(ptr));

cuParamSetv( cuFunction , offset, &ptr, sizeof(ptr));
offset += sizeof(ptr);

ptr = (void*)(size_t ) pDeviceMemC;
ALIGN_UP(offset, __alignof(ptr));

cuParamSetv( cuFunction , offset, &ptr, sizeof(ptr));
offset += sizeof(ptr);

cuParamSetSize( cuFunction , offset);

/I execute kernel
cuLaunchGrid(cuFunction, cnBlocks, 1);

/I copy the result from device back to host
cuMemcpyDtoH((void *) pC, pDeviceMemC,
cnDimension * sizeof(float));

delete[] pA,;
delete[] pB;
delete[] pC;

cuMemFree(pDeviceMemA);
cuMemFree(pDeviceMemB);
cuMemFree(pDeviceMemC);

Listing 1.2 Host code for adding two vectors using the CUDAdriver API
Listing 1.2 contair&0lines of code and performs several ldeuesl opeations

than the runtime APThese additional calls are evident in several places, especially
the setup necessary in the driver API prior to the kernel call.
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When attempting to optimigZdJDA code, it pays to know how to measure
performance accurately and to understand the role that bandwidth plays in
performanceneasurement his chapter discus$®w tocorrectlymeasure
performancesing CPU timer@nd CUDAeventslt then explores how bandwidth
affects performance metrics and howmitigatesome of the challenges it poses.

2.1

2.1.1

11

Timing

CUDA callsand kernel executionan be timg usingeither CPU or GPU timers.
Thissectiorexaminethe functionality, advantages, and pitfalls of both approaches.

Using CPU Timers

Any CPU timer can be used to measure the elapsed time of a CldDkecad|
executionThe details of various CPU timing approaches are outside thd scope o
this document, butevelopershould always be aware of the resolution their timing
calls provide.

When using CPU timers, it is critical to remember that many S8RBOAnctions

are asynchronouthat isthey return control back tthe callingcPU thred prior to
completing theiwork. All kernel launches are asynchrqramasememorycopy
functionswith the Async suffixon thaér name. Thereforefo accurately measure

the elapsed time for a particular call or sequence of CUDA calls, it is necessary to
synchronize the CPU thread with the GPU by calkiaghreadSynchronize()

immediately before starting and stopping the CPU timer.

cudaThreadSynchro nize() blocks thecallingCPU thread until all CUDA calls
previously issued by the thread are completed.

Althoughit is also possible to synchronize the CPU thread with a particular stream
or event on the GPU, these synchronization functions are ndedoitdiming

code in streanther than the default streanmaStreamSynchronize() blocks

the CPU thread until all CUDA calls previously issued into the given stream have
completedcudaEvent Synchronize()  blocks until a given eventa particular
streamhas been recorded by the GBBcausthe driver may interleave execution

of CUDA calls fronother nondefaulistreams, calls in other streams may be
included in the timing.
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Because the default streatream Qexhibits synchronous behavior (an operati
in the default stream can begty after all preceding calls in any stream have
completedand nosubsequerdperation in any stream can begin until it finishes)
these functionsan be usetliably for timing in the default stream.

Be aware that CPid-GPU synchronization points such as those mentioned in this
sectionmplya st al | in the GPUOs processing pipe
sparingly to minimize their performance impact.

2.1.2 Using CUDA GPU Timers

The CUDAevent APlprovidescalls thatreate and destroy events, record events
(via timestampandconvert timstampdifferencsinto a floatingpoint valuen
millisecondsListing2. lillustrates their use.

cudaEvent_t start, stop;
float time;

cudaEventCreate(&start);
cudaEvent Create(&stop);

cudaEventRecord ( start, O );

kernel<<<grid,threads>>> ( d_odata, d_idata, size_x, size_y,
NUM_REPS);

cudaEventRecord ( stop,0 );

cudaEventSynchronize  ( stop );

cudaEventElapsedTime( &t ime, start, stop );
cudaEventDestroy( start ) ;
cudaEventDestroy( stop );

Listing 2.1 How to time code using CUDA events

HerecudaEventRecord()  is used to place theart andstop events into the

default streapstream OThe device will record a timestamp for the event when it
reaches that event in the streBhecudaEventElapsedTime () functionreturns
thetimeelapsed betwedme recording of the@art andstop eventsThis value is
expressed in milliseconds and hasaution of approximately hathi&rosecond.

Like the other calls in this listing, their specific operation, parameters, and return
values are described in @1¢DA Reference MamN@k that the timings are
measured on the GPU clock{lse timing redation isoperatingsystem

independent.

2.2 Bandwidth

Bandwidtfi the rate at which data can be transf@riedne ofthe most

important gating factefor performanceAlmost all changes to code should be
made in the context of how they affect bandwidth. As descriDedgter f this
guide bandwidth can be dramatically affected by the choice of memory in which
datais storel, how the dates laid outandthe order in which it @sccessed, as well

as othefactors
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To measure performance accurately, it is useful to calculate theorefieaitimed
bandwidth. When tHatter is much lower than the forpeesign or
implementation detadrelikelyto reducebandwidth and it should be the primary
goal of subsegut optimization effort® increase.it

High Priority : Use the effective bandwidth of your computation as a metric when
measuring performance and optimization benefits.

2.2.1 Theoretical Bandwidth Calculation

Theoretical bandwidtan becalculatedisinghardware specifications available
the product literature. For examgheNVIDIA GeForceGTX 280uses DDR
(double data rate) RAM wilmemoryclockrateof 1,107 MHzanda 512bit wide
memory interface

Using these daiiems the peak theoretical mem bandwidth of thBIVIDIA
GeForceGTX 280 is141.6 GB/sec:

(1107 x 10 x ( 512/8 ) x2) / 109 = 141.6 GB/sec

In this calculation, thmemoryclock rate is converted inHiz, multiplied by the
interface width (divided by 8, to convert bits to bytdshatiiplied by 2 due to the
doubledata rate. Finally, this product is divided biokbnvert the result to
GB/sec(GBps)

Note that some calculations ug®2 instead ofL® for the final calculation. In
such a case, the bandwidth would be 131p8 G importantto use the same
divisor when calculating theoretical effeCtivebandwidth so that the comparison
is valid.

2.2.2 Effective Bandwidth Calculation

Effectivebandwidth is calculategitiming specific program activitéasd by
knowing howdaais accessed by the progrdm do so, use this equation

Effective bandwidth = (( B, + Bw )/ 109) / time

Here the effective bandwidth is in units of @888 is the number of bytes read
per kernelBy, is thenumber of bytes writtgrer kernelandtime is givenin
seconds.

For example, to compute the effective bandwidth of a 2048 x 2048opgtthe
following formula could be used:

Effective bandwidth = ((20482x 4 x 2)/10°) / time

The number of elemesis multiplied by the size of eadmatnt (4 bytes for a

float), multiplied by 2 (because of the asaldrite), divided bg® (or 1,024) to

obtain GB of memory transferred. This number is divided by the time in seconds to
obtain GBs
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2.2.3

Throughput Reported by cudaprof

Thememorythroughputreportedn thesummarytable of cudaprof, the CUDA
Visual Profilerdiffersfrom the effective bandwidtitained byhe calculatiom
Section2.2.2in several regpts.

The firstdifference is that cudapmkasurgthroughputusing a subset tfe
G P U mudtiprocessarand then extrapolates that number to the entire Giab
reportinganestimate of thdata throughput

The £condand more important difference is thatausthe minimum memory
transaction size is larger than most word sizesgtherythroughputeported by
theprofilerincludeghe transfer oflata not usebly the kernel.

The effective bandwidth calculatio®ection2.22, howeve includes only data
transfers that are relevant to the algorithm. As such, the effective bandwidth will be
smaller than the memory throughput reported by cudapddé the number to use
when optimizing memory performance.

However, i t 0 ethat both mumhers aré usafub. The prafiler memory
throughputshowshow closehe code iso the hardware limind the comparison

of the effective bandwidth with the profiler number presents a good estimate of
how much bandwidth is wasted by suboptioekscing of memory accesses.

CUDA Best Practices Guidé/ersion 3.0 14



Chapter 3.
Memory Optimizations

Memory optimizations are the most important area for performance. The goal is to
maximize the use of the hardware by maximizing bandwidth. Bandwidth is best
served by using as much fast memodyas little sloaccess memoag possible.

This chapter disisses the varioksidsof memory on the host and device and how
best to set up data items to use the memory effectively.

3.1

15

Data Transfer Between Host and Device

The peakbandwidth btween the device memory and the @Rbuch higher
(141GBpsonthe NVIDIA GeForceGTX 28Q for examplethan thepeak
bandwidth between host memory and device m¢&GBpsonthePClex16
Gen2. Hencefor best overall application performaitde importantto minirrize
data transfer between the host and the device, gweaméans running kernels
the GPUthatdo notdemonstrate arspeeelp compared with running them on
the host CPU

High Priority : Minimize data transfer between the host and the device, even if it
means running some kernels on the device that do not show performance gains when
compared with running them on the host CPU.

Intermediate data structures should be created in device memory, operated on by
the device, and destroyed without ever being mapped by the host or copied to host
memory.

Also, becaus# the overhead associated with each transfer, batching many small
transfers into one larger transfer performs significantly better than making each
transfer separately.

Finally, higher bandwidtietween the host and the deiscachieved when using
paglocke(br pinngdnemory, as discussed in@¢DA Programming Garak
Section3.1.10f this document
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3.1.1 Pinned Memory

Pagdocked or pinned memory transfers attain the highest banbletisiden the
host and the devic®n RCle x16 Gen2 cards, for example, pinned memory can
attaingreater than 6Bpstransfer rates.

Pinned memory is allocateingthe cudaMallocHost() ~ Or cuda Host Alloc()
functiorsin the runtime ARIThebandwidthTest.cu  program in the CUDA SDK
shows how to usedhefunctiors as well asow tomeasure memory transfer
performance.

Pinned memory should not be overused. Excessive use can reduce overall system
performancéecauspinned memory is a scarce resouttfoer muchis too much

is difficult to tell in advance, so as with all optimizationt)aegplications and

the systems they run on for optimal performance parameters.

3.1.2 Asynchronous Transfers and Overlapping
Transfers with Computation

Data transfies betweethe host andhedevice usingudaMemcpy() are blocking
transfersthat is,control is returned to the host thread only after the data transfer is
complete. TheudaMemcpyAsync() functionis a norblocking variant of

cudaMemcpy() in whichcontrol is returned imediately to the host thokdn

contraswith cudaMemcpy() , theasynchronousansfer versiorequirgsnned host
memory (segection3.1.), andt contains an additional argument, a stream ID. A
streais simply a sequence of operations that are performed in order on the device.
Operations in different streaoen be interleaveshd in some cases overlajpad
propertythatcanbe used thide data transfebgtween the host and the device

Asynchronousransferenableoverlapof data transfers with computatiartwo
different ways. On all CUDénabledlevices, it is possible to overlap host
computation with asynchronous data tranafetwith device computationsor
examplel.isting 3.-demonstratelsow host computation in the routine
cpuFunction()  is performedvhiledata is transferred to the device and a kernel
using the device is executed

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(a_d);
cpuFunction();

Listing 3.1 Overlapping computation and data transfers

The last argument to th@laMemcpyAsync() function is the stream ID, which in
this case uses the default stream, streeme @ernel also uses thefaultstream,
andit will not begin execution tiithe memory copy completéisereforeno
explicit synchronization is needgecausthe memory copy arhe kernelboth
return control to the hoshmediatelythehost functiorcpuFunction()  overlaps
their execution.

In Listing 3.1the memory copy and kel execution occur sequentiély.devices

that are capable of 60c¢oncsr pokéelbdépy tdanadv
executioron the devicevith data transfers betwettye host andhedevice

Whether a device has this capaislitydicatedby the deviceOverlap  field of a
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cudaDeviceProp  variable (or listed in the output of the deviceQuery SDK sample)
On deviceshat havehis capabilitythe overlap once again requires pinned host
memory, andn additionthe datatransfer and kernelust wse differentnon
defaultstreamgstreams with nerero stream IDsNon-defaultstreams are

required for this overldgecause memory copy, memory set functionkeamel

calls that use the default streaninbeigly after all preding calls on thaevice (in

any stream) have completed, and no operation on the device (in any stream)
commenceguntil theyarefinished.

Listing 3.4llustrates the basic technique

cudaStreamCreate(&streaml);

cudaStreamCreate(&stream?2);

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice , streaml);
kernel<<<grid, block, 0, stream2>>>( otherData_d);

Listing 3.2 Concurrent copy and execute

In this codetwo streams are creatt usedh the data transfer and kernel
executions as specified in the last argumentscafidiemcpyAsync call andhe

kernel ds execution configuration

Listing 3.21demonstrathowto overlap kernel execution with asynchronous data
transferThistechniquesould be usedhenthe data dependency is such that the
data camebroken into chunksna transferred in multiple stages, launching
multiple kernels to operate on each chunk as it alrstess 3.3a and 3.3b
demonstrate this. Thpyoduce equivalent results. The first segment shows the
reference sequential impleméatatvhich transferand operates on an array of N
floats(where N iassumed to bevenly divisible by nThreads)

cudaMemcpy(a_d, a_h, N*sizeof(float), dir);
kernel<<<N/nThreads , nThreads >>>(a_d);

Listing 3.3a Sequential copy and execute

Listing 3.3kshows how the transfend kernel execution can be broken up into
nSteams stageshis approachermits some overlapping of the data transfer and
execution

size= NF¢sizeof(float) InStreams;
for (i=0; i<nStreams; i++) {
offset = i*N/nStreams;
cudaMemcpyAsync(a_d+offset, a_h+of fset, size, dir, streami]);

}
for (i=0; i<nStreams; i++) {
offset = i*N/nStreams;
kernel<<<N/(nThreads*nStreams), nThreads ,
0, stream[i]>>>(a_d+offset);
}

Listing 3.3b Staged concurrent copy and execute

(In Listing 3.3b, it iassum@thatN is evenly divisible lbyhreads *nStreams .)
Becausexecution within a stream occurs sequentially, none of the kernels will
launch until the data transfers inrthespective streams compl@arent
hardwarean simultaneougtyocesanasynchronoudata transfer arekecute
kernels(t should be mentiondtiat it is not possible to overlap a blocking transfer
with an asynchronous transtecauséhe blocking transferccurs in the default
streamandso itwill not begin until all previous CURAIlls completdt will not
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allow any other CUDA call to begin until it has compl&etiagram depicting the
timeline of execution for the twode segmenis shown in Figure 34nd
nStreams =4 for Listing 3.3bs shown in the bottom half

Copy data [

Execute I
Copy data I N N

Execute I N N

Figure 3.1 Comparison of timelines for sequential (top) and concurrent
(bottom) copy and kernel execution

For this example, it @ssumed that the data transfer and kernel execution times are
comparable. In such cases, and when the executifta)tereecedde transfer

time(tr), a rough gimate for the overall timetis+ tr/nStreanfer the staged

version versus + tr for the sequential versidhthe transfer time exceeds the
execution time, a rough estimate for the overall ttme tignStreams

3.1.3 Zero Copy

Zero copya featuréhat was added urersion 2.2 of theUDA Toolkit. It enables
GPU threads to directly access host memory. For this purpose, it recapped
pinned(hon-pageablememoryOn integrated GPUs, mapped pinned meifsory
always a performangainbecausé avoic superfluous copiesintegrated GPU

and CPU memory are physically the same. On discreten@ipscpinned

memory is advantageaudyin certain caseBecausthe data is not cached on the
GPU on devicesfacompute capability 1.mapped pinned memory should be read
or written only once, and the global loads and stores that read and write the memory
should be coalescecderdcopy can be used in place of strdanauskernel
originated data transfers auaiaally overlap kernel execution without the
overhead of setting up and determining the optimal number of streams.

Low Priority : On version 2.2 of the CUDATOoolkit (and later), use zero-copy operations
on integrated GPUs

Thehost coden Listing 3 shows how zero copy is typically set up

float *a_h, * a_map;

é

cudaGetDeviceProperties(&prop, 0);

if ( !prop.canMapHostMemory)
exit(0);
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cudaSetDeviceFlags( cudaDeviceMapHost);

cudaHostAlloc  ( (void **)&a_h, nBytes, cudaHostAllocMapped);
cuda Host GetDevicePoi nter ((void **)&a_map, (void *)a_h, 0);
kernel<<<gridSize, blockSize>>>(a_map);

Listing 3.4 Zero-copy host code

In this code, theanmapHostMemory field of the structure returnég
cudaGetDeviceProperties ( is usedd check thathe device suppontsapping
host memory t o t hlagdbekedimeneody snappithdsr e s s
enabled by callingdaSetDeviceFlags () With cudaDeviceMapHost . Note that
cudaSetDeviceFlags () must be called prior to settingeside or making a
CUDA call that requires state ttisaessentially, before a context is creBtzgh.
locked mapped host memory is allocas@thcudaHostAlloc()  , and the pointer
to the mapped device address space is obtatieeifunction

cuda Host GetDevicePointer() .In thecode in Listing 3.4erm el () can
reference the mapped pinned host memory usipgitiiera_map in exactly the
same was as it would ifnap referred to a location devicememory

3.2

19

To Host

’\

Device Memory Spaces

CUDA devicsuse severatemory spacewhich have different characteristics that
reflect their distinct usages in CUDA applications. These nsgraceinclude
global, locakharedtextureand registeras showin Figure32.

Device

GPU

Multiprocessor

Multiprocessor

Multiprocessor
Registers

Shared Memory

Figure 3.2 The various memory spaceson a CUDA device

Of thesedifferentmemory spaceglobabnd texture memparethe most

plentiful see Section G.1 of t8&DA Programming Giadée amounts of

memory available in each memory space at each compute capal@igbigvel

local and texturenemory have the greatest access latency, followed by constant
memory registersaand sharethemory

Thevarious principataits of the memory types are showhahble3.1
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Table 3.1 Salient features of device memory

Memory | Location Cached | Access Scope Lifetime
on/off chip

Register | On n/a R/W 1 thread Thread

Local Off A R/W |1 thread Thread

Shared On n/a R/W All threads in bloc| Block

Global Off A R/W All threads + host | Host allocation

Constant | Off Yes R All threads + host | Host allocation

Texture | Off Yes R All threads + host | Host allocation

3.2.1

ACached ply on deices of compute capability.2.0

In the case of texture access, if a texture reference is bound to a lireesaof(and
version 2.2 of th€UDA Toolkit, pitchtlinear) array in global memdhen the
device code can write to the underlgimgy Reading from a texture while writing

to its underlying global memory array in the same kernel launch should be avoided

becausthe texture caches are reatly and are not invalidated when the adedci
global memory imodified.

Coalesced Access toGlobal Memory

High Priority : Ensure global memory accessesare coalescedwhenever possible.

Perhaps the single most important performamtsideratiom programming for
the CUDA architecturés coalesngglobal memory accesses. Global melvadg
and storebythreads of hdf warp(for devices of compute capability) dnof a
warp (for devices of compute capabilitydgtd®roalesced by the deinte as few
as one transactiovhencertainaccesgsequirements are met.

To undertand these access requiremeidabal memorghould be viewdd terms

of aligned segments of 16 and 32 wéidsre3.3 helps explainoalescingf a half
warp of 3zbit words, such as floatsshowsglobal memorgsrows of 64byte

aligned segments (16 floatsjo rows of the same color represent sbyg8

aligned segment. A half warp of thre¢hatkaccesses the global memory is indicated
at the bottornrof the figure Note that this figure assumes a device of compute
capability 1.x.
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} 64B aligned segment

} 128B aligned segment

Half warp of threads

Figure 3.3 Linear memory segments and threads in a half warp

Theaccessequirements for coalescing depend on the compute capability of the
device:

On devices ofompute capability 1.0 or 1.1, kké thread in a half warp must
accesthek-th word in a segmeatigned to 16 times the size of the elements
beingaccessedowevemot all threads need to participate.

On devicesf computecapability 1.2 dr.3 coalescing is achieved for any
pattern ofaccessdbat fits into a segmesize of 32 bytes forl@8t words,

64 bytes for 1éit wordsor 128 bytes for 32nd 64bit words. Smaller
transactions may be issued to awaistingpandwidthMore precisely, the
following protocol is used to issue a memory transaction fonatpalf

Find the memory segment that contains the address requested by the lowest

numbered active thread. Segment size is 32 bytdstfda, 64 bytes for
16-bit data, and 128 bytes for, 3%, and 12&it data.

Find all other active threads whose reciiestdress lies in the same
segment, and reduce the transaction size if possible:

If the transaction is 128 bytes and only the lower or upper half is used,
reduce the transaction size to 64 bytes.

If the transaction is 64 bytes and only the lower or uglpés bsed,
reduce the transaction size to 32 bytes.

Carry out the transaction and mark the serviced threads as inactive.
Repeat until all threads in the half warp are serviced.

On devices of compute capability @@mory accesses by the threads of a
waip are coalesced into the minimum number -@chdinesized aligned
transactions necessary to satisfy all threads; see Section G.€2DAthe
Programming Guide

These concegptare illustratad the following simple examples.

A Simple AccessPattern

The first and simplest cadecoalescing can behievedyany CUDAenabled
device: th&-th thread accesses kth word in a segmerhe exceptiois thatnot
allthread need tgparticipate(Sed-igure3 4. Note that this figure assumes a device

of compute capability 1.x, but that the figure would be much the same except twice

as wide for devices of compute capability 2.0.)
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Figure 3.4 Coalesced accessn which all threads but one access the
corresponding word in a segment

This access pattern results in a singbyté4ransaction, indicated by the red

rectangle. Note that even though one word is not requested, all data in the segment
arefetched. If accesses by threade permutedithin this segmentijlsone 64

byte transaction woulte performedby a device with compute capability 1.2 or

higher, but 16 serialized transactions waufgerformed bg device with compute
capability 1.1 oower

3.2.1.2 A Sequential but Misaligned AccessPattern

If sequentighreads in a half waggcessmemory that isequential but not aligned
with the segments, then a separate transactiosfoFsedich element requested on

a devicavith compute capability 1.1 omler On a devicith compute capability

1.2 or higher, several different scenadnsarisdepending on whethall

addresses for a half warpviathin asingle128byte segment. If thaldresses fall
within a 12&yte segment, then a single-liy&@ transactiois perfomed as

shown in Figure3.5. Again, this figure assumes a device of compute capability 1.x

| |
EITITIITT]

Figure 3.5 Unaligned sequential addresses that fit within a single 128-
byte segment

If a half warpccessenemory that isequential but split across two-hize
segments, then two transactiareperformed In the following casi#lustrated in
Figure36, one 64byte transaction and onel82e transactioresult Again, this
figure assumes a device of compute capability 1.x.
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amennsszeann

Figure 3.6 Misaligned sequential addresses that fall within two 128-byte
segments

Memory allocated through the runtime ABth asiacudaMalloc() , is

guaranteed to be aligned to at least 256 bytes. Therefore, ceos#itgthread

block sizg such as multiples of 16, facilitates memory accesses by half warps that
are aligned to segments. In addition, the qualifigiga_ (8) and

_align__(16)  can be used when defining structures to ensure alignment to
segments.

Effects of Misalighed Acces®s

It is easynd informativéo explore the ramifications of misaligned accesses using a
simple copy kerneduchasthe one irListing 3.

__global__ void offsetCopy(float *odata, float* idata, int offset)

int xid = blockldx.x * blockDim.x + thread| dx.x + offset;
odata[xid] = idata[xid];
}

Listing 3.5 A copy kernel that illustrates misaligned accesses

In Listing 35, data is copied from the input artaya  to the output array, both of
which exist in global memory. The kernel is executed wdbmia host codéhat

varies the parametgtset from 1 to 32.Kigures & and 36 correspond to

offsets of 1 and 17, respectively.) The effective bandwidth for the copy with various
offsets oran NVIDIA GeForceGTX 280 (ith compute capability 1.3) asnl

NVIDIA GeForce GTX 880@ompute capability 1&)e showin Figure 3.
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Copy with Offset
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Figure 3.7 Performance of offsetCopy kernel

For theNVIDIA GeForce GTX 8800evice global memory accesses with no
offset or with offsets that are multiples of 16 result in a single transadiah
warp and an effective bandwidttapproximately4 GBps Otherwise, 16
transactions are issued per half warp resulting in an elff@etwédth of
approximately GBps Thisroughly & performance degradatismdue to the fact
that32 bytesthe minimum transaction siaee fetched for each threbldwever,
only4 bytes of data are used for each 32 bytes fetotmdting in thd/32=1/8
performanceelative to the fully coalesced cabke two numbers also reflect the
different data represented by effective bandwidth (4 \mrt=sgctual bandwidth
(32 bytes).

Because of this possible performance degradaéorory coalescing is the most
critical aspect of performance optimizatibtlevice memoryor devices of
compute capability 1.2 and, 1h& situation is less dire for misaligned accesses
becausén all casesiccess by a half warp of threads in érizek resustin either
one or two transactions.

On theNVIDIA GeForceGTX 280device, this results in effiective bandwidth

of between 12GBpsfor a single transaction andGBpsfor two transactions per
half warpThe number of transactions issuedafbalf warp of threads depends on
the offset and whetht#re warp i®ven or oddnumbered. For offsedf O or 16,
each half warp results in a singlbyid transaction (kige34). For offsetof 1
through 7 or 9 through 15, ewemmbered warps resinta single 12Byte
transactionKigure35) and odehumbered warps result in two transactions: ene 64
byte and one 32yte Figure3.6). For offsets of 8, evarumbered warps result in
one 12&yte transaction and cddmbered warps result in twel82e

transactions. The two-B%te transactionsather than a 64nd a 3dyte
transactiopare responsible for the blip at the offset of 8 uwr&gyv.
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Strided Accesses

Althoughthe relaxed coalescing restrictions for devices with compute capability
or higher achieve ofalf full bandwidth for the offset copy ciase described
performance on such devices can degra€ele successive threads access memory
locationghat havenon-unit strides. Thigatternoccurs frequently when dealing

with mudtidimensional data or matricies examplewhen a halivarp of threads
accesses matrix elements colwiseandthe matrix is stored in remvajor order.

To illustrate the effect of strided access on effective bande@lthdollowing
kernektrideCo py() , which copieglata with a stride efiide elements between
threaddromidata to odata .

__global__ void strideCopy(float *odata, float* idata, int stride)

{

int xid = (blockldx.x*blockDim.x + threadldx.x)*stride;
odata[xid] = idata[xid];
}

Listing 3.6 A kernel to illustrate non-unit stride data copy

Figure Billustrates aituation that can be created using the codésiting 3.6
namelythreads within a half waapcesmemory with a stride of Zhisactionis
coalesainto a single 12Byte transaction omaVIDIA GeForceGTX 280
(compute capability 1.3)

| |
2 B

Figure 3.8 A half warp accessing memory with a stride of 2

Although a stride of 2 results in a single transaction, note that half the elements in
the transactioare not used and represent wasted bandwidth. As the stride
increases, the effective bandwidth decreases until the point wherad®trans

are issuefbr the 16 threads in a half warp, as indicat€idime 2.
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Figure 3.9 Performance of strideCopy kernel

Note, howeverthat on theNVIDIA GTX 8800devicgcompute capability 1.0),
any nonrunit stride results in 16 separate transactions per half warp.

Asillustrated in Figure8non-unit stride global memory accesses should be
avoided whenever podsillOne method for doing so utilizes shared memory,
which is discussed in the next section

Shared Memory

Because it is erhip, shared memory is much faster than local and global memory.
In fact,uncachedhared memoigtencyis roughly 100bowerthan dgobal memory
latencii providedthere are no bank conflicts between the threads, as dethibed
following section

Shared Memory and Memory Banks

To achieve high memory bandwiithconcurrent accessehared memory is
divided into equally sizasemory moduleanKsthatcan be accessed
simultaneouslirherefore any memorlpad or storef naddresses thgparsn
distinct memory banks can be serviced simultaneously, yielding an effective
bandwidth that intimes as high as the bandwidth sihglebank

However, ifmultipleaddresses of a memory requegt tothe same memory bank,

the accesseseserialized. The hardware splits a memory reaesadank

conflicts into as many separate cotffiée requests as necessary, decreasing the
effective bandwidth by a factor equal to the number of separate memory requests.
The me exception here is wherttaleads in a half wagodresshe same shared
memay location, resulting in a broaddasvices of compute capability 2.0 have

the additional ability to multicast shared memory accesses.
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To minimize bank conflicts, it is important to understand how memory addresses
map to memory banks and how to optiyrsdhedule memory requests.

Medium Priority : Accesses to shared memory should be designed to avoid serializing
requests due to bank conflicts.

Shared memolyanks are organized such that successbiev@@ds are assigned
to successive banks and eack bas a bandwidth of 32 bits per clock cVhlke.
bandwidth of shared memory is 32 bits per bank per clock cycle.

For devices of compute capability 1.x, the warp size is 32 threads and the number of
banks is 16A shared memory request for a warp isismibne request for the

first half of the warp and one request for the second half of thé\w&rphat no

bank conflict occurs if only one memory location per bank is accessed by a half
warp of threads.

For devices of compute capability 2.0, the sizegs 32 threads and the number of
banks is also 32. A shared memory request for a warp is not split as with devices of
compute capability 1.x, meaning that bank cowe#iaiscur between threads in the

first half of a warp and threads in the secolidhithe same warfgee Section

G.4.30f the CUDA Programming Quide

Refer tathe CUDA Programming Gigidenore information on how accesses and
banks can be matched to avoid conflicts.

Shared Memory in Matrix Multiplication (C = AB)

Shared memosnaltescooperatiorbetween threads in a block. Whuiitiple

threads in a block use the same datadgtobaimemory, shared memory can be

used to access the data from global memory only once. Shared memory can also be
used to avoidncoalesced memory accesses by loading and storing data in a
coalesced pattern from global memory and then reoit@risgared memory.

Aside from memory bank conflidtsere is ngenalty for norsequential or

unaligned accesd®ga half warm sharednemory.

Theuse of shared memasyillustratediathe simple example of a matrix
multiplication G= AB for the caseith A of dimension M16, B of dimension
16xN, and Cof dimensiorMxN. To keep the kernels simpand Nare
multiples of 16. A naturdécompoision of theproblem is to use a bloakdtile
sizeof 16x16 threadsTherefore, in terms of £@6 tiles, A is a column matixis
a row matrix, and C is their outer prod{@=e-igure 3.0) A grid of N/16 by
M/16 blocks is launched, wheeelkethreadblock calculateé elements of a
different tile in C from a single tile of A and a single tile of B.

Note that the example discussed throughout this section assumes compute
capability 1.x; the example would be much the same for computiyc2iiabil
except that it would have a width of 32 instead of 16.
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Figure 3.10 A block-column matrix (A) multiplied by a block-row matrix
(B) and the resulting product matrix (C)

To do this, th@impleMultiply kernel(Listing 37) calculatethe outputelements
of atile of matrixC.

__global__ void simpleMultiply(float *a, float* b, float *c,
int N)
{

int row = blockldx.y * blockDim.y + threadldx.y;

int col = blockldx.x * blockDim.x + threadldx.x;

float sum = 0.0f;

for(inti=0;i<T ILE_DIM; i++) {
sum += a[row*TILE_DIM+i] * b[i*N+col];

c[row*N+col] = sum;

}
Listing 3.7 Unoptimized matrix multiplication

In Listing 37, a, b, andc are pointerto global memory fahe matrices A, B, and
C, respectivelylockDim.x , blockDim.y , andTILE_DIM are all 16. Each thread in
the 1616 block calculates one elemeattiie ofC.row andcol are the row and
column of the element in C being calculated by a particular thread. [6bp
overi multiplies a row of A by a colurahB, which is then written to C.

The effective bandlth of this kernel is on8:7GBpson an NVIDIA GeForce
GTX 280 and.7GBpson an NVIDIA GeForce GTX 8800To analyze
performancet is hecessary to consitiew half wass of threads access global
memoryin thefor loop.Each half warp of threads calculatesrow of a tile of C,
which depends on a single @ivA and an entire tile of &s illustrated in Figure
3.1
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C

16

Figure 3.11 Computing a row (half warp) of atile in C using one row of A
and an entire tile of B

For each iteratioinof thefor loop,allthreadin a half warpead the same value
from global memory (thidex row*TILE_DIM+ i isconstantvithin ahalfwarp,
resulting in 16 transactidos compute capability 1.1 owler ard 1 transaction

for compute capability 1.2 or high@ren though the operation requires only 1
transaction focompute capabilitl.2 or higher, there is wasbeshdwidthin the
transactioecausenly4 bytes out of a 3@ytetransactiorreusedFor each
iteration, the 16 threads in a half warp read afrineB tile, which is a sequential
and coalesced access for all compute capabilities.

Theperformance on a device of any compute capahilitye improvebly reading
a tile of A into shared memorysaswn in Listing 8.

__global__ void coalescedMultiply(float *a, float* b, float *c,
int N)

__shared__ float aTile[TILE_DIM][TILE_DIM];

int row = blockldx.y * blockDim.y + threadl dx.y;
int col = blockldx.x * blockDim.x + threadldx.x;
float sum = 0.0f;
aTile[threadldx.y][threadldx.x] = a[row*TILE_DIM+threadldx.x];
for (inti=0; i < TILE_DIM; i++) {

sum += aTile[threadldx.y][i]* b[i*N+col];

c[row*N+col] = sum;

}

Listing 3.8 Using shared memory to improve the global memory load
efficiency in matrix multiplication

In Listing 38, each element in a tile of A is read from global memory only once, in a
fully coalesced fashion (with no wasted bandwlt)ared memoryVithin each
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iteration of theéor loop, a value in shared memory is broadcast to all threads in a
half warp.

In Listing 38, a__syncthreads() ~ synchronization barrier dalihot needed after
reading the tile of Ata shared memotyecausenlythreadswithin the half warp
thatwritethe data into shared memaoegdthe data. Thikernelhas an effective
bandwidth ofLl4.3GBpson an NVIDIA GeForceGTX 280, and@.2GBpson an
NVIDIA GeForce GTX 8800

A furtherimprovementan be mad® how Listing & deaswith matrixB. In
cal cul at i nmatriaC,theiehtie dle of B i® reathe fepeatertading
of theB tilecan beeliminatedy reading it into shared memory dh¢ging 39).

__global__ void sharedABMultiply(float *a, float* b, float *C,
int N)

__shared__ float aTile[TILE_DIM][TILE_DIM],
bTile[TILE_DIM][TILE_DIM];

int row = blockldx.y * blockDim.y + threadldx.y;

int col = blockldx.x * blockDim.x + threadldx.x;

float sum = 0.0f;

aTile[threadldx.y][th readldx.x] = a[row*TILE_DIM+threadldx.x];
bTile[threadldx.y][threadldx.x] = b[threadldx.y*N+col];
__syncthreads();

for (inti=0; i< TILE_DIM; i++) {
sum += aTile[threadldx.y][i]* bTile[i][threadldx.x];

c[row*N+col] = sum;

}
Listing 3.9 Improvement by reading additional data into shared memory

Note that inListing 3.9a__syncthreads() callis required after reading the B tile
becausa warp reads data from shared memory that were written to shared memory
by different warpsThe effective bandwidth of this routine is7Z9Bpson a

NVIDIA GeForceGTX 280 andl5.7GBpsonanNVIDIA GeForce GTX 8800

Note that the performance improvement is not due to improved codlesitingy

case, buib avoiding redundantansfers from glay memory.

The results of the various optimizations are summarized in Zable 3.

Table 3.2 Performance improvements optimizing C= AB matrix multiply

Optimization NVIDIA GeForce NVIDIA GeForce
GTX 280 GTX 8800
No optimization 8.7GBps 0.7GBps
Coalesced using shared
memoryto store a tile of A 14.3 Gips 8.2GBps
Using shared memory to
eiminate redundant read; 29.7 Gs 15.7GBps

of a tile of B
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Medium Priority : Use shared memory to avoid redundant transfers from global
memory.

Shared Memory in Matrix Multiplication (C = AAT)

A variant of tle previousnatrix multigicationcan be used to illustrate hovidsd
accesses to global memasywell asharednemory bank confligtare handled
This variant simply uses the transpose of A ratheBttoarC = AA.

As in the previous section, this example assumes compute capability 1.x; it would
have a width of 32 rather than 16 for compute capability 2.0.

A simple implementation for=CAAT isshown in Listing 30.

__global__ void simpleMultiply(float *a, float *c, int M)

{
int row = blockldx.y * blockDim.y + threadldx.y;
int col = blockldx.x * blockDim.x + threadldx.x;
float sum = 0.0f;
for (inti=0; i < TILE_DIM; i++) {
sum += a[row*TILE_DIM+i] * a[col*TILE_DIM+i];

c[row*M+col] = sum;

}
Listing 3.10 Unoptimized handling of strided accesses to global memory

In Listing 310, therowth, colth element of C is obtained by taking the dot product
of the rowth and coth rows of A. The effective bandwidth for thisikéis
1.1GBpsonan NVIDIA GeForceGTX 280 and.5GBpson an NVIDIA

GeForce GTX 880Q0rhese resultre substantially lower than ¢heresponding
measurementer theC = AB kernel The difference is in how threads in a half
warp access elemeat A in the seconterm,afcol*TILE_DIM+i] , for each
iterationi . For a half warp of threads| represents sequential columns of the
transpose of A, and therefes#TILE_DIM  represents a strided access of global
memory with a stride of 16. This resinituncoalesced memory accessdewices
with compute capabilifyl or bwerand plenty of wastézindwidthon devices

with compute capability.2 orhigher The wayo avoidstrided access is to use
shared memory as before, except in this casevafpateads a rowf A into a
column of a shared memory tilesla@wnin Listing 311

__global__ void coalescedMultiply(float *a, float *c, int M)

__shared__ float aTile[TILE_DIM][TILE_DIM],
transposedTile[TILE_DIM][TILE_DIM];

int row = blockldx.y * blockDim.y + threadldx.y;

int col = blockldx.x * blockDim.x + threadldx.x;

float sum = 0.0f;

aTile[threadldx.y][threadldx.x] = a[row*TILE_DIM+threadldx.x];

transposedTile[threadldx.x][threadldx.y] =
a[(blockldx.x*blockDim.x + t hreadldx.y)*TILE_DIM +
threadldx.x];

__syncthreads();

CUDABest Practices GuideVersion 3.0



Chapter 3.

Memory Optimizations

for (inti=0; i < TILE_DIM; i++) {
sum += aTile[threadldx.y][i]* transposedTile[i][threadldx.x];

c[row*M+col] = sum;

}

Listing 3.11 An optimized version of Listing 3.10 using coalesced reads
from global memory

Listing 311 uses the shar@dnsposedTile  to avoiduncoalesced accessdhe
second term in the dot produahdthe sharediTile technique from the previous
exampleo avoid unoalesced accesses in the firshtThe effective bandwidth of
thiskernelis 249 GBpsonan NVIDIA GeForceGTX 280 and.3.2GBpson an
NVIDIA GeForce GTX 8800These resultwe slightly lower thainose obtained
bythe finalkernelfor C = AB. Thecause ofhe differencés shared mmaory bank
conflicts.

Thereadf elements imansposedTile within thefor loop arefree ofconflics,
becausthreads of eadmalf warpread acrog®ws of the tileresulting in unit stride
across the bankdoweverpank conflicts occur wheopyinghe tile from global
memoryinto shared memaryo enable thébads from global memadiy be
coalescedlataareread from global memory sequentially. Hownigrejuires
writing to shared memory in columars] because theuseof 16x 16 tiles in
shaed memorythis results in a stride between threads of 16 banks1&nese
bank conflict are very expensivithesimpleremedy i$o pad thesharednemory
arrayso thatt has an extra column, as in the following line of code

__shared__ float trans posedTile[TILE_DIM][TILE_DIM+1];

This paddingliminates the conflgntirely because now the stride between
threads is 17 ban{&3 banks for compute capability,2u®ich, due to modular
arithmetic used to compute bank indiceglivalent to a unstride After this
change, the effective bandwidtB(dgiGBpson anNVIDIA GeForceGTX 280
and15.6 GBson an NVIDIA GeForce GTX 88Q@vhich is comparable to the
results from the last£AB kernel

The results of these optimizations are summariZedblie3.3.

Table 3.3 Performance improvements optimizing C= AA" matrix
multiplication

Optimization NVIDIA GeForce NVIDIA GeForce
GTX 280 GTX 8800
No optimization 1.1 GBs 0.5GBps
Using sharethemoryto 24.9GBps 13.2GBps
coalesce global reads
Removing bank conflicts 30.4GBps 15.6 Ghps

These resudshould be compared with those in Tal#eA3. can be seen from
these tables, judicious use of&haremory can dramatically improve performanc
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The examplés this sectiohave illustratethreeways to usshared memory:

To enableoalesced accesses to global memory, especially to avoid large strides
(for general matricestrides are much larger than 16)

To eliminate (or reduce) redundaads from global memory
To avoidwasted bandwatih

3.2.24 Shared Memory Use by Kernel Arguments

Shared memory holds the parameters or arguments that are passeslab kernel
launch. Irkernels withong argument lists, it can be valuable to put some
arguments into constant memory (and reference them there) rather than consume
shared memory.

Low Priority : For kernels with long argument lists, place some arguments into
constant memory to save shared memory.

3.2.3 Local Memory

Local memory is so named bec#isseope is local to the thread, not because of its
physicalocation. In fact, local memonrof§-chip. Hence, access to local merisory

as expensive as access to global mdraglobal memoyyocal memory is not

cachedn devices of compute capabilityll. A ot her words, the terr
namedoesnot imply faster access.

Local memory is used only to hold automatic variables. This is doneday the
compiler when it determines that there is insufficient register space to hold the
variable. Automatic variables that are likely to be placed in local memory are large
structures or arrays that would consume too much register space ahéttiays
compler determines may be indexed dynamically

Inspection of th&TX assembly code (obtained by compiling-wikh or - keep
commanedineoptionsto nvcc ) reveals whetharvariable has been placed in local
memory during the first compilation phases. Ikitihavill be declared using the
Jocal mnemonic and accessed usingdtiheal  andstlocal mnemonics. If

it has not, subsequent compilation phases might still decide ottieheisénd

the variableonsumes too much register space for the taagetetbcture. There is
no way to check this forspecifiovariable, but the compiler reports total local
memory usage per kernel (Imem) whewmith the-- ptxas - options= -v option.

3.2.4 Texture Memory

Thereadonlytexture memory space is caclibereforeatexture fetch costs one
devicanemory read only on a cache noiteerwiseit just costs one read from the

texture cache. The texture cache is optimized for 2D spatial locality, so threads of
the same warp that read texture addresses that are clbee woljeichieve best
performance. Texture memory is also designed for streaming fetches with a constant
latencythat is, a cache hit reduces DRAM bandwidth demand, but not fetch

latency.
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In certain addressing situatioeading device memory througittuee fetching can
be an advantageous alternative to reading device memory from global or constant
memory

3.24.1 Textured Fetch vs. Global Memory Read

Device memory reads through texture fetching present petemtihbenefits
over reads from global memory:

They are cachednlike global memory reads in devices of compute capability
1.x. For these devices, this resulp®iantially exhibit higher bandwidth if

there i2D locality in the texture fetcheasdcan be used to avoid uncoalesced
loads from globanemory(Note that the L1 cache in devices of compute
capability 2.0 has a higher bandwidth than the texture cache, obviating this
benefit in these devices.)

Packed data can bepackednto separate variables in a single operation

8-bit and 16bit integer input data may be optionally convertedHbit 32
floatingpoint values in the range [0.0, 1.0J100] 1.Q]

Listings 3.2and 3.3 illustratehow textures can be used to avoid uncoalesced
global memory accesses in the following variation ofse€opy kernelThis
copy performs a shift in data, as demonstratedfiollitveingkernel

__global__ void shiftCopy(float *odata, float * idata, int shift)
{

int xid = blockldx.x * b lockDim.x + threadldx.x

odata[xid ] = idata[xid +shift  ];

Listing 3.12 Unoptimized data shifts

Thiscopy kernehpplies a shift to ttggobalmemory location when reading from
idata , but writs tounshiftedglobalmemory locatioin odata . The arunt of

shift is specified adunctionargument to the kern€bme degradation of
performanceccursvhen the shift is neither zero nor a multiple dfetduse
reading fronmdata will beeitheruncoalesced (compute capability 1.1 or lower) or
result in transactions with wasted bandwidth (compute capability h2rpr hig
Note that regardless of compute capability, writiowgto isfully coalesced.

The version of this code that uses textures to perform the shiftedsheaehisn
Listing 3.3.

__global__ void textureShiftCopy(float *odata, float *idata,
int shift)

int xid = blockldx.x * blockDim.x + threadldx.x;
odata[xid] = tex1Dfetch(texRef, xid+shift);
}

Listing 3.13 Data shifts optimized by use of texture memory

Here the texture referenesRef is bound to thaata array in the host codmnd

the functionexiDfetch()  reads the shifted memory locationgaed via a

texture fetch. The results of both kernels (using global memory and textures for
loads) on an NVIDIA GeForce GTX80 and an NVIDIA GeForce GT3800are
given in Figure 3.12
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Copy with Shift

Using Global Memory and Textures
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Figure 3.12 Results of using texture memory to avoid uncoalescedglobal
memory access

The benefit of using textures for cases that are not optimally coalesced is clear.
Textured readsanmaintain effective bandwidth of the unshiftety; dollesced
casesvithin a few percenftlote that shifts that are neither zero nor multiples of 16
show greater effective bandwidth than the Giipgtkernel in Figuie?7. Because

all the stores in thehift kernels are fully coalesced with no wasted bandhédth
shift appliesnlyto the loads.

3.2.4.2 Additional Texture Capabilities
If textures aréetched usingxiD() ,tex2D() , Ortex3D() rather than
tex1Dfetch() , the hardware provides otlbapabilitiediatmightbe useful for
someapplicationssuch agmage processingeerable 3.)
Table 3.4 Useful features for tex1D(), tex2D(), and tex3D() fetches
Feature Use Caveat
Filtering Fast, lowprecision Valid only if theexture

interpolation between texels reference returns floatipgint
data

Normalized texture  Resolutioindependent coding
coordinates

Addressing modes  Automatic handling of Can be used only with

boundary caskes normalized texture coordinate

35

IThe automatic handling of boundeages in the bottom row of Tabkeréfers to how a texture coordinate is
resolved when it falls outside the valid addressing ramgaréheo optionslampndwraplf x is the
coordinate anill is the number of texefor a onelimensional texturthen vith clampx is replaced by 0xf< 0
and by #/Ni f x.WithQurapx is replaced by frag(where frac) = x & floor(x). Floor returns the largest
integer less than or equaki&o, in clamp mode where N = 1 xaof 1.3 is clamped to 1.0; whereas in wrap
mode, it is converted to 0.3
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Within akernel call, the texture cache is not kept coherent wigktrassglobal

memory writes, dexture fetcbsfrom addresssthat haebeen written via global

storedn the sme kernel call return undefined déket is a thread can safely read
amemory locatiomia texturef the location has been updated by a previous kernel

call or memory copy, but not if it has been previously updated by the same thread or
another threadithinthesame kernel call. This is relewstywhen fetching from

linearor pitchlinearmemonybecausa kernel cannot write to CUDA arrays.

3.2.5 Constant Memory

There is a total of 84B constant memory on a devithe constant memory space
is cachedAs a resulta read from constant memory costs one memory read from
device memory only on a cache oiberwiseit just costs one read from the
constant cache.

For all threads of a halarp, reading from the constant cache is as fast as reading
from a egister as long as all threads read the same akiiresses to different
addresses by threads within a half warp are serialtzest, ssmales linearly with the
number of different addresses read by all thnetiais a half warp

Alternatively, on déces of compute capability 2.0, programs use the LoaD
Uniform (LDU) operation; see Section G.4.4 o&d®A Programming Giade
details.

3.2.6 Registers

Generally, accessing a register consumes zero extra clock cycles per instruction, but
delays may occurealto register reaafterwrite dependencies and register memory
bank conflicts.

Thelatency ofeadafterwrite dependenciésapproxmately24cyclesbut this
latency is completely hidden on multiprocessors that havel&idesdive threads
(thatis, 6 warpsNote that in the case ebmpute 2.0, which supports digalie,

as many as 384 threads might be required to completely hide latency.

The compiler andardwaréhread schedulavill schedule instructions as optimally

as possible to avoid iggr memory bank conflicts. They achieebest results

when the number of threads per block is a multiple of 64. Other than following this
rule, an application has no direct control over these bank conflicts. In particular,
there is noegisterelatedeasorio pack data intfioat4  orint4 types.

3.2.6.1 Register Pressure

Register pressubecurs whethere are not enough registers available for a given
task. Even though each multiprocessor cortteonsands a32-bit registergsee
Section G.1 of thEUDA Programming Quitiese are partitioned argon
concurrent threads. oevent the compiler from allocating many registensse
thei maxrregcount=" N compilercommaneine option(see SectidB.1below) or

the launch bounds kernel definition qualifier (see Section B.1€0tAe
Programming Qualeontrolthe maximunmumber ofregisterso allocatd per

thread.
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One of the keys to good performance is to keep the multiprocessors on the device

as busy as possitedevice in which work is poorly balah@eross the

multiprocessawill deliver suboptimal geo r ma n c e . Hence, it ds i mj
desigrnyou application to use threads and blackswayhatmaximize hardware

utilization ando limit practices thampede the free distribution of work. A key

concept in this effort isccupancywhich is explaidan the following sections.

Another important concept is the management of system resources allocated for a
particular task. How to manage this resource utilization is discussed in the final
sections of this chapter.

4.1

Occupancy

Thread instructions are ented sequentially in CUDA, aad a resylexecuting

other warpsvhen one warp is paused or stafi¢de only way to hide latencies and
keep the hardware buSpme metric related to thember of active warps on a
multiprocessor is therefareportant in determining how effectively the hardware is
kept busy. This metricascupancy

Occupancy is the ratio of the number of active warps per multiprocessor to the
maximum number of possible active warps. (To determine the latter number, see
thedeviceQuery.cu  program in the CUDA SDK aefer toAppendix A in the

CUDA Programming Guileother way to view occupancy is the pergeoitthe

h a r d vabilityeofpcess warps timactively in use.

Higher occupancy does abway®quate to higerperformance there is a point
above which additional occupancy does not improve perfortdanayer, low
occupancylways interferes with the abilityide memory latenagsulingin
performance degradation.

4.2

39

Calculating Occupancy

One of several ¢tors that determine occupancy is register availR&digter
storage enables threads to keep local variables nearbydtarioyaccess.
Howevertheset of registers (known as tegister fiie a limited commodity that

all threads resident armultiprocessor must share. Registers are allocated to an
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entire block all at onc®o,if each thread block uses many registers, the number of
thread blocks that can be resident on a multiprocessor is rétrebgowering

the occupancy of the muligessorThe maximum number of registersthezad

can be set manually at compilation fierdile using the maxrregcount  optionor
perkernel using the launch_bounds__  qualifier (se&ection3.2.6.}1

For purposes of calculating occupancypuheber of registers used by each thread
is one of thé&eyfactors For example, devicegth computecapability D.and 11

have 89232 bit registers panultiprocessoandcan hava maximum of 768
simultaneouthreadsesident24 warps x 32 threads per warp). This means that
one of these devices, fomultiprocessdo havel0® occupancyeachthread can
use at mostO registersdowever, thispproach of determining how register count
affects occupandpes not take into accouht registeallocation granularitiyor
example, on a device of compute capability 1.0, a kernel witrea@d&locks

using 12 registers per thread results ac@upancy d83% with 5 active 128

thread blocks per mudtbcessqrwhereas a kernel with 2B6ead blocks using the
same 12 registers per #ur@esults in an occupancyp@bo becausenly two256
thread blocks can reswole a multiprocessdfurthermore, register allocations are
roundedup to the nearest 256gisters per block aevices witikompute

capability 1.and1.1

The number of registers available, the maximum number of simultaneous threads
resident on each multiprocessol the register allocation granularity vary over
different compute capahés.Because of these nuances in register allogation

the fact that a multiprocessords shared m
thread blockghe exactelatiorshipbetween register usage aocupancy can be

difficult to determineélhe-- ptx as- options= -v option ofnvcc details the

number of registers usgérthreadfor each kerneSee Section 4.2 of tBEDA
Programming Giadéhe register allocation formulas for devices of various compute
capabilities and Section G.1 of the programguiidg for the total number of

registers available on those devices. AlternatiVéiBIA provides anoccupancy
calculator in the form of an Excel spreadsheet that enables developers to hone in on
the optimal balance and to test different possible seenar@oeasily his
spreadsheeshown in Figure 4.is,calledCUDA_Occupancy_calculator.xls and

islocated in theols directory of theCUDA SDK.
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5 Microsoft Excel - CUDA_Occupancy_ calculator.xis BEE
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Figure 4.1 Use the CUDA GPW ccupancy Calculator to project occupancy

In addition to thealculator spreadsheet, occupancy can be determined using the
CUDA profiler.

4.3
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Hiding Register Dependencies

Medium Priority : To hide latency arising from register dependencies, maintain
approximately 25% occupancy as a minimum.

Register dependencies arise whéamsamnction uses result stored in a register

written by an instruction beforeTihe latency on current CUBskabledsPUs is
approximately 24 cycles, so threads must wait 24 cycles before using an arithmetic
result. wever, this latency can be completely hidden by the execution of threads
in other warpslo hidearithmetidatency completely, multiprocessbiould be

running at least 192 threatsdevices of compute capability 1.x (equati2ig/io
occupancy on dewis with compute capabilityp orl.1having 768 simultaneous
threads maximuiind 18.7% occupancy odevices witkompute capability 102

1.3 having 1,024 simultaneous threads maximum) or, on devices of compute
capability 2.0, as many as 384 threaats thi® dualksue capability (equating again

to 25% occupancy given 1,536 maximum simultaneous threads)
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4.4

Thread and Block Heuristics

Medium Priority : The number of threads per block should be a multiple of 32 threads,
becausethis provides optimal computing efficiency and facilitates coalescing.

The dimension and size of blocks per grid and the dimension and size of threads
per blockare both important factorBhe multidimensional aspect of these
parameterallowseasier mapping of multidimensional goisl to CUDA and does

not play a role in performanées a result, this section discussashut not

dimension.

Latency hiding and occupancy depend on the number of active warps per
multiprocessor, which is implicitly determined by the exepatenmeters along
with resourcéregister and shared memannstraintsChoosing execution
parameters a matter adtriking a balance between latency hiding @ocypand
resource utilization.

Choosing thexecution configuration parameters shouttbbe in tandem
howeverthere areertain heuristidhat apply teachparameteindividuallyWhen
choosinghe firstexecution configuratiggarametér the number of blocks pe

grid, or gridsizé theprimaryconcern is keeping the entire GPU busy. Tihebar

of blocksin a gridshould be larger than the number of multiprocessors so that all
multiprocessors have at least one block to execute. Furthermore, there should be
multipleactiveb | oc ks per multiprocessor so that
__syncthreads()  can keep the hardware bddysrecommendatiois subject to
resource availabitithereforeit should be determined in the contexhetecond
execution parameiethe number of threads per blockbturclsizé as well as

shared memorysageTo scale to future devices, the number of blocks per kernel
launch shodlbe in the thousands.

When choosing tHaock sizgit is important taemember that multiple concurrent
blocks can reside on a multiprocessmyccupancy is not determinedblyck size
aloneln particulgra largeblock sizeloes not imply a higher occupancy. For
example, on a device of compute capability 1.1 or lower, a kernel with a maximum
block sizeof 512 threads nelisin an occupancyf 66 percenbecausthe

maximum number of threapler multiprocessor on such a device isH&&ce,

only a single block can be active per multiprocessor. However, a kernel with 256
threads per block on such a device can result pedd@hibccupancy h three

resident active blocks.

As mentioned igection4.], highemccupancy does nativay®quate tdetter
performanceFor examplerriproving occupancy from pércento 100percent

generally does not translate to a singagase in performanéelower occupancy

kernel will have more registers available per thread than a higher occupancy kernel,
which may result in less register spilling to local mérypigally once an

occupancy of 508ercenhas beeneached, additnal increases in occupancy do not
translate into improved performance.
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There are marguchfactorsinvolvedin selectingplock sizeand inevitably some
experimentation is requirétbwevera few rules of thumb should be followed:

Threads per blodhould be a nitiple of warp size to avoid wasting
computation on undgropulated warps and to facilitate coalescing

A minimum of 64 threads per block should be used, but only if there are
multiple concurrent blocks per multiprocessor

Betweerl28and256threads per block is a betthpice and a good initial
rangdor experimentation witllifferentblocksizes.

Note that whem thread block allocates miggistershanareavailable on a
multiprocessor, theernel launchails, as it will when too muahared memory or
too many threads are requested.

Effects of Shared Memory

Shared memory can be helpful in several situatichsas helping to coalesce or
eliminate redundant access to global meidovyeverit alsocanact as a
constraint on occupandg.many casethe amount of shared memoeguired by
a kernel is related to the bletkethat was chosebut the mapping of threads to
shared memory elements does not need to He-one. For example, it may be
desirable to use ax32 element shed memory array in a kernel, but because the
maximum number of threads per block is B12notpossibldgo launch a kernel
with 3232 threads per block. In such casamet with 32«16 or 3% 8 threads
can be launched wigtach thread procésgtwo or four elements, respectiyefy
the shared memory arrape approach ofisingasinglethreadto process multiple
elements of a shared memory array can be beneficial even if linstshsemtisa
per block are not an issiitais is becauseme perationc€ommon to each
elementan be performed ligethread onceamortizinghe cost over the number
of shared memory elements processéukliyread.

A useful technique to determthe sensitivity gferformancéo occupancis
throughexperimenti#on withthe amount of dynamically allocated shared memory
asspeified in the third parametertbk execution configuration. By simply
increasing this parameter (without nyintithe kernel)if is possible teffectively
reduce the occupanafythe lernel and meastiteeffect on performance.

As mentioned in the previous section, once an occupancy of morepiae 50

has been reachedgénerallgloes not pay to optimize parameters to obtain higher
occupancy ratioshe previousechnique can hesed to determinghethersuch a
plateau has been reached.
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Awareness of how instructions are executed often perrigy ébwptimizations
that can be usefspecially in code that is run frequently (toalts hot spot in
a program)Best practices suggest that this optimization be performed after all
higherlevel optimizations have been completed.

5.1

5.1.1

5.1.2

45

Arithmetic Instructions

Singleprecision floats providhe best performancnd their use is highly
encouraged.

The throughput of individual arithmetic operations on devices of compute
capability 1.x is detailed in Section G.3 dCWBA Programming Guidd the
throughput of these operations on devicesiwipute capability 2.0 is detailed in
Section G.4 of the programming guide.

Division and Modulo Operations

Low Priority : Use shift operations to avoid expensive division and modulo calculations

Integer division and modulo operasiare particularly cdgtand should be avoided
or replaced with bitwise operations whenever poffsibiea power of 2i/f) is
equivalent toi{ log26)) and (% n) is equivalent to & (n-1)).

The compiler will perform these conversionssifiteral (For furtherinformation,
refer toChapter ®f the CUDA Programming Quide

Reciprocal Square Root

The reciprocal square root should always be invoked expligiti§)as for
singleprecision anesqgrt()  for doubleprecisionThe compiler optimizes
1.0f/sqrtf(x) intorsgrt f() only when this does not violate IEZE4
semantics.
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5.1.3 Other Arithmetic Instructions

Low Priority : Avoid automatic conversion of doubles to floats.

The compiler must on occasion insert conversion instructions, introducing
additional executiatycles. This is the case for

Functions operating ahar or short whose operands generally need to be
converted to aimt

Doubleprecision floatingoint constants (defined without any type suffix)
used as input to singlescision floatingoint computaons

The latter case can be avoided by using-piegision floatingoint constants,

defined with an suffix such as.141592653589793f , 1.0f , 0.5f . Thissuffixhas
accuracy implications in addition to its ramifications on performance. The effects on
accuracy are discusse@limpter 7Note that this distinction is particularly

importantto performancen devices of compute capability 2.0.

For singleprecision code, use of the float type and the-pireglision math
functonsare highly recommend&udhen compiling for devices without native
doubleprecision support such as devices of compute capability da2liandach
doubleprecision floatingoint variables converted to singlerecision floating
point format (butetains its size of 64 bits) and doiéision arithmetis
demoted to singlerecision arithmetic.

Itshouldalsobemt ed t hat t he ddiehentargeror | i braryods
function,erfcf() , is particularly fast with full sirglecision accuracy.

514 Math Libraries

Medium Priority : Use the fast math library whenever speed trumps precision.

Two types of runtime math operatianasupportedThey can be distinguished by

their names: some have names with prepended underscores, whereas others do not
(e.g.__func tionName () versusunc tionName () ). Functiondollowing the

_ functionName()  haming conventiomap directly to the hardware level. They

are faster but provide somewhat lower accwacy 6in f(x) and__expf (x) ).
FunctiondollowingfunctionName()  naming conventioare slower but have

higher accuracg.g.sin f (x) and expf (x) ). The throughput of _sinf(x)

_cosf(x) ,and__expf(x) ismuch greather than that«off(x) ,cosf(x)

tanf(x) . The latter becomeven morexpensivéabout a order of magnitude

slower) if thenagnitude of the argumenteeds to be reducddoreover, in such

cases, the argumeatuction code uses local memory, which can affect
performance even more because of the high latency of local memory. More details
are available in tt@UDA Programming Guide

Note also that whenever sine and cosine of the same argument are computed, the
sincos € family of instructions should be use

_ sincosf()  for singleprecision faghath (see next paragraph)

CUDA Best Practices Guidé/ersion 3.0 46



5.2

47

Chapter 5.
Instruction Optimizations

sincosf()  for regular singlprecision
sincos()  for double precision

Thei use_fast math  compiler option ofivcc coerces evemynctionName()  call

to the equivalent func tionName () call This switch should be used whenever
accuray is a lesser priority than the performance. This is frequently the case with
transcendental functions. Note this switch is effertiyen singlerecision

floating point.

Medium Priority : Prefer faster, more specialized math functions over slower, more
general ones when possible.

For exponentiation using base 2 or 10, use the furesfias or expf2() and
expl0() oOrexpflo() rather than the functiopsw() or powf() .Bothpow() and
powf() are heawweightfunctionsin terms of registg@ressure and instruction
countdue to thenumerouspecial casesising in generakponentiation and the
difficulty of achieving good accuracy across the entire ghtigebase anthe
exponent. The functiorsp2() , exp2f() ,expl0() , andexplof () , on the other
hand aresimilar toexp () andexpf () in terms of performangand can be as
much as ten times faster than tpei) / powf() equivalents.

Memory Instructions

High Priority : Minimize the use of global memory. Prefer shared memory access
where possible.

Memory instructions include any instruction that reads from or writes to shared,
local or global memory. When accesaimgachedbcal or global memory, there are
400 to 600 cloogycles of memygratency.

As anexamplethe assignment operator in the following sampletasia high
throughputbut, cruciallythere is a latency 400 to600 clock cycles to read data
from global memory

__shared__ float shared[32];

__device__ float device[32];
shared[threadldx.x] = device[threadldx.x]

Much of this global memory latency can be hidden by the thread scheduler if there
are sufficient independent arithmetic instructions that can be issued while waiting
for the global memory accéssompleteHowever, it is best to avoid accessing
global memory whenever possible.
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6.1

Branching and Divergence

High Priority : Avoid different execution paths within the same warp.

Any flow control instructiorif (, switch , do, for , while ) cansignificantly affect

the instruction throughput by causing threads of the same warp tq ithaeige

to follow different execution paths. If this happens, the different execution paths
mustbe serialized, increasing the total number of instructemgezkfor this

warp. When all the different execution paths have completed, the threads converge
back to the same execution path.

To obtain best performance in cases where the control flow depends on the thread
ID, the controlling condition should betéem so as to minimize the number of
divergent warps.

This is possible because the distribution of the warps across the block is
deterministic as mentionedsettion4.1 of theCUDA Programmi@gideA trivial
example is when the controlling conditiepaethds only ofthreadidx / WSIZE )
wherewsizEis the warp size.

In this case, no warp diverges because the controlling condition is perfectly aligned
with the warps.

6.2
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Branch Predication

Low Priority : Make it easy for the compiler to use branch predication in lieu of loops
or control statements.

Sometimes, the compiler may unroll loops or optimizie oukwitch statements
by using branch predication instead. In these cases, no warp can ever diverge. The
programmer can also control loop unrolling using

#pragma unroll

For more information on this pragmefer tothe CUDA Programming Guide
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When using branch predicatioane of the instructions whose execution depends
on the controlling conditids skipped. Instead, easlnch instructiors associated
with a petthread condition code or predicate that is set to true cadatgeing to

the controlling conditiorAlthough each of these instructisscheduled for
execution, only the instructions with a true predicate are actually executed.
Instructons with a false predicate do not write resultshapalso do not evaluate
addresses or read operands.

The compiler replaces a branch instruction with predicated instructions only if the
number of instructions controlled by the branch conditiors théesr equal to a
certain threshold: If the compiler determines that the condition is likely to produce
many divergent warps, this thresholglathérwise it is 4.
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Obtaining the right answer is clearlyptiiecipal goal of all computati@n

parallel systems, it is possible to rundifticultiesnot typically founth traditional
seriaforiented programming. These include threading iseagpectedtaluesiue

to the way floatirgoint values are commgd, andhallengearising from

differences in the way CPU and GPU processors operate. This chapter examines
issues that can affect the correctness of returned data and points to appropriate
solutions.

7.1

Debugging

The CUDA debugge€UDA-GDB, is a valuabldebugging tool. It a port of the
GNU Debuggeversion 6.6 andins on 3zbit and 64bit Linux.See th€UDA-
GDB User Manudal more details.

7.2

7.2.1

51

Numerical Accuracy and Precision

Incorrector unexpecterkesultsarise principalfyom issues dioatingpoint
accuracyue to the way floatifmpint values are computed and storad.

following sections explain the principal items of interest. Other peculiarities of
floatingpoint arithmetic are presented@ection G.2f the CUDA Programming
Gude

Single vs. Double Precision

Devicef compute capability 1aBd higheprovide native support for double
precision floatingoint values (that is, values 64 bits wide). Results obtained using
doubleprecision arithmetic will frequently differ from same operation

performed via singfgrecision arithmetic due to the greater precision of the former
anddueto rounding issues. Thereforésimportant to be sure to compare like

with like and to express the results within a certain tolerancehaatreqpecting

them to be exact.
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Whenever doubles are used atiseasthei arch= sm 13 switch on thevcc
command linesee Sections 3.1.3 and 3.1.4 aEtHieA Programming Gidde
more details.

7.2.2 Floating-Point Math |Is Not Associative

Each floatingpoint arithmetic operation involves a certain amount of rounding.
Consequently, the order in which arithmetic operations are performed is important.
If A, B,andC are floatingoint valuegA+B)+C is not guaranteed to equal
A+(B+C)asit isin symbolic math. When you parallelize computations, you
potentially change the order of operations and therefore the parallehigsults

not match sequential resuisis limitationis not specifioot CUDA, bu an

inherent parof parallel computation floatingpoint values

7.2.3 Promotions to Doubles and Truncations to Floats

When comparintheresults of computation$ toat variables between the host
and device, make sure thietmotionsto doubleprecision on the host do not
account for different muerical result$-or example, if the code segment

float a;

é
a=a*1.02;

were performed on a device of compute capability £5pot on a device with
compute capability.3but compiled without enabling double precigien (
mentioned aboygthen theanultiplication would be performed in single precision.
However, if the code were performed orhibs the literal 1.02 would be
interpreted as a doulpescision quantitgnda would be promoted to a doultiee
multiplicatiorwould be performed in doebprecisionand the resulwould be
truncated to a floattherebyyielding a slightly different result. If, howdher,
literal1.02 were replacedith 1.02f , the result would be the samalicase
becausao promotion to doubles would occlio ensure that computations use
singleprecision arithmetic, always use float literals.

In addition to accurade conversiorbetween doubles and flogad vice versa)
has a detrimental effect on performaasaliscussed@hapter 5

71.2.4 IEEE 754 Compliance

All CUDA compute devices follow the IEEE 754 standard for binary flpatintg
representation, with some small exceptions. These exceptions, whictedria detail
Section G.»f theCUDA Programming Guide lead to results that differ from
IEEE 754 values computed on the host system.

One of the key differences is theedmultiply-add(FMAD) instruction, which
combines multiplgdd operations into a singistruction executioand truncates
the intermediate result of the multiplicatitsresult will differ at times from
results obtained by doing the two operations separately.
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x86 80-bit Computations

x86processorsan usan 80bit oddoubleextendegrecisiod mwaherh
performing floatingoint calculation3.he results of these calculations can
frequently differ from pure @it operations performed on the CUDA device.
get a closer match between values, sed@h@st processor to use regulaulde
or single precision (64 bits and 32 bits, respectively). This is donerniibvhe
assembly instruction or the equivalent operating system API.
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8.1

Introduction to Multi -GPU

Programming a mulBPU applicaon is no different from programming an

application to utilize multiple cores or sockets because CUDA is completely
orthogonal to CPU thread management or message passing APIs. The only new
concept is selecting the correct GPU, which in most casei$ndtirout a

context) GPU. In fact, GPU acceleration can be straightforwardly added to existing
multithreaded CPU code, whether it uses lightweight or heavyweightthlieads

one has to do is port the compute intensive portions of the code to GRdtiand

calls to transfer data between CPU and GPU, leaving tf@Rikkthread

communication code unchanged.

8.2
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In order to issue work to a GPU, a coniegstablished between a CPU thread and

the GPU. Only one context can be active on GPU at a time. Similarly, a CPU

thread can have one active context at a time. A context is established during the
programds first cal |l thascueaMafod)n cetch),son t hat
one can force the creation of a context by calliagree(0) . Note that a

context is created on GPU 0 by default, unless another GPU is selected explicitly

prior to context creation withcadaSetDevice()  call. Context isadtroyed either

with acudaThreadExit() call, or when the controlling CPU thread exits.

CUDA driver API allows a single CPU thread to manage multiple contexts (and
therefore multiple GPUSs) by pushing/popping contexts. In the remainder of the
document we W focus on CUDA runtime API, which currently allows strictly one
context per CPU thread.

In order to issue work @GPUs concurrently, a program nge@®U threads,

each with its own context. Threads can be lightweight (pthreads, OpenMP, etc.) or
heayweight (MPI). Note that any CPU mitliteading or messagassing API or

library can be used, as CPU thread management is completely orthogonal to CUDA.
For example, one can add GPU processing to an existing MPI application by

porting the computmtersive portions of the code without changing the
communication structure.
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8.3

8.4

Even though a GPU can execute calls from one context at a time, it can belong to
multiple contexts. For example, it is possible for several CPU threads to establish
contexts with theame GPU. This allows developing riaRU applications on a

single GPU. GPU driver manages GPU switching between the contexts, as well as
partitioning memory among the contexts (GPU memory allocated in one context
cannot be accessed from another cgntext

Selecting a GPU

In many cases, the intent is for each CPU thread to control a different GPU.
Achieving this is straightforward if a program spawns as many lightweight threads as
there are GPUS one can derive GPU index from thread ID. For example,

OpenMP thread ID can be readily used to select GPUs.

MPI rank can be used to choose a GPU reliably as long as all MPI processes are
launched on a single host node. However, when MPI processes are launched across
several cluster nodes, the assignment edgz@xto host nodes depends on the

MPI implementation and launch configuration (hostfile), preventing reliable

selection of a unique GPU. To address this issue, one could implement a
negotiation protocol among MPI processes running on the same host (using
MPI_Get_processor_name()  call), so that each one claims a unique GPU. A less
robust option is for the GPU selection to rely on a specific allocation MPI processes
to nodes (for example, allocating consecutive processes to the same node).

Starting with CDA 2.2, Linux drivers provide an alternative and much simpler way
to ensure that each GPU is assigned to at most one édhtegtdministrator can

select exclusive mode via the SMI (System Management Interface) tool that comes
with the driver. In exclive mode, if the application does not specify a GPU with a
cudaSetDevice()  call, the context is no longer created on GPU 0, but on a GPU
without an active context. If there are no available GPUsydaiSétDevice()

specifies a GPU already having ameacbntext, the first CUDA call tltempts

to changehe devicetate will fail and return an error.

Inter -GPU communication

All interGPU communication takes place via host nodes. GPU and the controlling
CPU thread communicate via memcopies, @Rilethreads exchange data using

the same methods as applications not accelerated with GPUs. Thus, best
performance is achieved when one follows best practices for t&POPU
communication as well as GEBU communication. Note that the two are
independet and orthogonal.

Communication between CPU and GPU is most efficient when using pinned
memory on the CPU. Pinned memory enables asynchronous memory copies
(allowing for overlap with both CPU and GPU execution), as well as improves PCle
throughput on FSBystems. Please refer to the CUDA Programming Guide for
more details and examples of pinned memory usage.

CUDA Best Practices Guidé/ersion 3.0 56



8.5

8.6

57

Chapter 8.
Multi-GPU Programming

Lightweight CPU threads exchange data most efficiently via shared memory. Note
that in order for a pinned memory region to be viewed as pinnEd ltir€ads

other than the one that allocated it, one musiucatostAlloc() with the
cudaHostAllocPortable flag. A common communication pattern will be for one
CPU thread to copy data from its GPU to a shared host memory region, after which
another CPUhread will copy the data to its GPU. Users of NUMA systems will
have to follow the same best practices as for communication betw&gtnon
accelerated CPU threads.

Communication between heawgight processes takes place via message passing,

for exampm MPI. Once data has been copied from GPU to CPU it is transferred to
another process by calling one of the MPI functions. For example, one possible
pattern when exchanging data between two GPUs is for a CPU thread to call a
deviceto-hog cudaMemcpy() , thenMPI_Sendrecv() , then a hostip-device

cudaMemcpy() . Note that performance of the MPI function is not dependent on

the fact that data originated at or is destined for a GPU. Since MPI provides several
variations for most of its communication funajdhe choice of a function should

be dictated by the best practices guide for the MPI implementation as well as the
system and network.

Compiling Multi-GPU Applications

Code that includes GPU kernels or CUDA runtime kernel launch syntax must be
compiled with nvce , the compiler drivemvee invokes eithegec (on Linux) or
Microsoft Visual C++ compiler (on Windows) for +##@RAU code. One can pass
options to the host C/C++ compiler througitc by using Xcompiler option

(for more details please refentec documentation included in the CUDA

toolkit). For example, one would specify i Xcompiler /openmp  in order to

pass theopenmp option to the hosfcc compiler (the same option for MSVC
compiler igopenmp ).

MPI applications are typically compiledguspicc , the MPI compiler driver.

While it is possible to pass all the necessary flags thweughis often simpler to
compile MPI code and CUDA kernel code into separate object files. This approach
also fits many larger projects well, since ¢épayate the communication and
computation source code already.

Known Issues

Currently CUDA pinned host memory does not interoperate with OpenMPI
memory pinning for transfers across Infiniband network. As -@amearid, one
should specify thenca btl_open ib_flags1  option tompirun . While not using
pinned memory for Infiniband can reduce throughput of a network transfer, we
found thatvPiI_Sendrecv() in the OpenMPI implementation maintained the same
throughput.
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Appendix A.
Recommendationsand Best Practices

This appendix contains a list of all the recommensitiapptimization and the
list of best practices that are explained in this document.

Al
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Overall Performance Optimization Strategies

Performance optimization revolves around three basic strategies:

¢ Maximizing parallel execution

¢ Optimizing memagr usage to achieve maximum memory bandwidth

¢ Optimizing instruction usage to achieve maximum instruction throughput

Maximizing parallel exeautistarts with structuring the algorithm in a way that
exposes as much data parallelism as possible. Once the parallelism of the algorithm
has been exposéineeds to be mapped to the hardware as efficiently as possible.
This is done by carefully chogsihe execution configuration of eleimel

launch The application should also maximize parallel execution at a higher level by
explicitly exposing concurrent execution on the device through streams, as well as
maximizing concurrent executlmetween théost and the device

Optimizing memory usage starts with minimizing data transfers between the host
and the device becausesttransferdiave much lower bandwidttaninternal

device data transfelkernel access tglobal memorglsoshould be minimedby
maximizingheuse of shared memory on the device. Sometimes, the best
optimization might even be to avoid any data transfer in the first place by simply
recomputing the data whenever it is needed.

The effective bandwidth can vary by an order giitnale depending dneaccess
pattern for each type of memory. The next step in optimizing memory usage is
therefore to organize memory accessawding tohe optimal memory access
patterns. This optimization is especially important for global neoesges
becaustatencyof access codtsindreds of clock cycles. Shared memory accesses,
in counterpointare usually worth optimizioglywhen there existdhégh degree

of bank conflicts.

As for optimizing instruction usage, the use of arithmsttiagtionghat havéow
throughputshould bevoided Thissuggestsading precision for speed when it
does not affect the end result, such as using istiirsséad of regular functions or
singleprecision instead of doulgieecisionFinally, prticdar attention must be
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paid to control flow instructions due to 8I¥T (single instruction mutle
thread nature of the device.

A.2 High-Priority Recommendations

To get the maximum benefit from CUDA, focus first on finding ways to
parallelize sequential ed®ectiorl.1.3

Use the effective bandwidth of your computation as a metric when measuring
performance and optimization benef@gctior.2

Minimize data transfer betwdkahost andhedeviceeven ifit means
running some kernels on the device that do not show performance gains when
compared with running them on the host CPU. (S&tfion

Ensure global memory accesses are coalesced whenever(@estiig.2.)

Minimizetheuse of global memory. Prefer shared memory access where
possible(Sectiorb.?

Avoid different execution paths within the same vw2epti¢r6.J)

A.3 Medium-Priority Recommendations

Accesses to shared memory should be designed to avoid serializing requests due
to bank conflicts. (Secti@rR.2.1

Use shared memory to avoid redundant transfers from global memory. (Section
3.2.22

To hide latency arising from register dependencies, maintain approximately 25%
occupancy as a minimu@@ectiort.3

The number of threads per block should be a multiple of 32 threads, because
this provides optimal compugi efficiency and facilitates coales(8agtion

4.4
Use the fast math library whenever speed trumps precision. 85kdtion

Prefer faster, more specialized math functions over slower, more geseral on
when possible. (Sectibri.4

A4 Low-Priority Recommendations

On version 2.2 of thnCUDA Toolkit (and later), userecopy operationsn
integrated GPUgSectiors.1.3

For kernels with long argumdists, place some arguments into constant
memory to save shared mem@gc(ior8.2.2.%
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Use shift operations to avoid expensive division and modulo calculations.
(Sectiorb.1.}

Avoid automaticonversiorof doubles to floatsSéctiorb.1.3

Make it easy for the compiler to use branch predication in lieu ofrloops o
control statements. (Sect®f
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B.1 NVCC

nvee IS the compiler that converds files into C for the host system and CUDA
assembly or binary instructions for the device. It supports a spate of switches, of
which the following are especially useful for optiomizatid related best practices:

C -arch= sm_13 or higheiis required for double precisi®ee Section2.1

C imaxrregcount= N specifies the maximummber ofregister&ernes can use
at a pefile level Se€ection3.2.6.1(See also thelaunch_bounds__
gualifier discussed in Section B.14 o€thBA Programming Guaidm®ntrol
the number of registausedon a peikernel basis.)

C - ptxas -options= -v Of - Xptxas= - v lists petkernel registesharedand
constant memory usage
C iuse_fast_ math compiler option ofivec coerces evefynctionName()  call

to the equivalent func tionName () call. This makes the code run faster at the
cost of slightly diminished precision andracy. Segection5.1.4

B
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Revision History

Version 3.0

Added compute capability 2.0.

Devices of compute capability Rae an L1 cache of configurable size for
global and local memdgee Section G.4.1 of BEIDA Programming Quide
Note that the L1 cache has higher bandwidth than the texture cache and
therefore obviates some of the benefits of texture fetch seeic@s dév
compute capability 1See Sectich2.4.1

Removed references to device emulation mode, which is deprésidied in
3.0 and will be removed@UDA 3.1.

The CUFFT and CUBLAS libraries can now interoperate with applications that
use he driver API.

Addedarecommendatiofor theuse ofexp2() orexp10() in preference to
pow() to Sectiorb.1.4

The__launch_bounds__  kernel definitiomualifer can now be used to control
register usage on a{iernel basis (in contrast to thexrregcount

commaneine option ofnvcec , which controls this on a giile basis). See
SectiorB.2.6.1of this guide and Section B.14 of@¢DA Programming Guide

Note importance of distinguishing singiecision floatingoint constants and
arithmetic from doublprecision constants and arithmetic for performance on
devics of compute capability 2.0 in Secidn3

Devices of compute capability 2.0 can multicast shared memory accesses in
addition to the broadcast mechanism in dewvitcompute capability 1.x.

Added Chapter 8 on mu@GPU programming.
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