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 Abstract 
The pricing of options is a very important problem encountered in financial engineering 
since the creation of organized option trading in 1973. This sample shows an 
implementation of the Black-Scholes model in OpenCL for European options. 
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Introduction 
The most common definition of an option is an agreement between two parties, the option 
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation), 
secured by the option seller, to carry out some operation (or exercise the option) at some 
moment in the future. The predetermined price is referred to as the strike price, and the future 
date is called the expiration date. (See Kolb & Pharr. [1]) 

Options come in several varieties: 

A call option grants its holder the right to buy the underlying asset at a strike price at some moment 
in the future.  

A put option gives its holder the right to sell the underlying asset at a strike price at some moment 
in the future. 

There are several types of options, mostly depending on when the option can be exercised.  
European options can be exercised only on the expiration date. American-style options are 
more flexible as they may be exercised at any time up to and including expiration date and as 
such, they are generally priced at least as high as corresponding European options. Other 
types of options are path-dependent or have multiple exercise dates (Asian, Bermudian). 

For a call option, the profit made at the exercise date is the difference between the price of 
the asset on that date and the strike price, minus the option price paid. For a put option, the 
profit made at the exercise date is the difference between the strike price and the price of the 
asset on that date, minus the option price paid. 

The price of the asset at expiration date and the strike price therefore strongly influence how 
much one would be willing to pay for an option. 

Other important factors in the price of an option are: 

 The time to the expiration date, T: Longer periods imply a wider range of 
possible values for the underlying asset on the expiration date, and thus more 
uncertainty about the value of the option. 

 The riskless rate of return, r, which is the annual interest rate of bonds or 
other “risk-free” investments: Any amount P of dollars is guaranteed to be worth 

 dollars T years from now if placed today in one of theses investments or 
in other words, if an asset is worth P dollars T years from now, it is worth 

 today. 

rTeP ⋅

rTeP −⋅
This example demonstrates an OpenCL implementation of the Black-Scholes model for 
European options. 
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Black-Scholes model. 
The Black-Scholes model provides a partial differential equation (PDE) for the evolution of 
an option price under certain assumptions. For European options, a closed-form solution 
exists for this PDE. (See Black & Scholes, [2]) 
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where 

callV  is the price for an option call, 

putV is the price for an option put, 

)(dCND is the Cumulative Normal Distribution function, 

S  is the current option price, 

X is the strike price, 

T is the time to expiration. 

 r  is the continuously compounded risk free interest rate, 

v  is  the implied volatility for the underlying stock, 

The cumulative normal distribution function is computed with a polynomial approximation 
that provides six-decimal-place accuracy. The expansion uses a fifth-order polynomial. (See 
Hull, [3]) 
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Implementation details 

Choosing a data storage layout 
The existence of a closed-form expression makes calculating option prices an easy task. The 
main problem is choosing the best data storage layout for the particular OpenCL device.  

Here are some important features of OpenCL implemention on NVIDIA GPUs: 

 Work-groups are executed as subgroups of logically coherent work-items, called 
warps. However unlike work-items in a warp, warps in a work-group are 
dynamically scheduled. Generally no assumption may be made on the exact 
order of warp execution within a work-group and synchronism across a work-
group may only be guaranteed at barriers or memory fences. Warp size is 32 work-
items on G8x / G9x / G10x NVIDIA GPUs 

 No memory caching for global memory operations. In case global memory 
bandwidth is the bottleneck, the task of global memory bandwidth saving should 
be handled explicitly by the programmer. This is frequently achieved by utilizing 
fast local storage, which has about an order of magnitude higher bandwidth 
(loading/storing from/to local memory is generally as fast as reading/writing 
private register memory). Maximum possible local storage size for G8x / G9x / 
G10x NVIDIA GPUs is 16KB. 

 Global memory accesses should be coalesced for best performance. For coalescing 
on G8x / G9x NVIDIA GPUs, loads and stores from each work-item of a half-
warp (e.g. a subgroup of higher or lower 16 work-items of a warp) must be 
sequentially arranged and form a contiguous aligned block of memory of size 16 
* <request size>, and request size should be 4, 8 or 16 bytes. It is important to 
understand that memory requests are independently formed for each half-warp, 
and coalescing happens or not happens across half-warp threads issuing the 
same load or store instruction (not different memory operations in the kernel). 
G10x NVIDIA GPUs relax the coalescing rules, significantly improving global 
memory bandwidth on many access patterns that are not coalescable on G8x / 
G9x GPUs. For more detailed description please see section 5.1.2.1 of CUDA 
Programming Guide 

 As many RISC processors, NVIDIA GPUs are capable of loading and storing 
only aligned data elements of fixed sizes of 1, 2, 4, 8 or 16 bytes at instruction 
(work-item) level, so in the general case using arrays of structures requires either 
padding user structures to one of these “elementary” sizes (when structures are 
small enough), or issuing more than one load / store instructions per structure 
access (and possibly padding to a multiple of elementary size). The first case can 
be coalesced, but since padding bytes do not normally participate in any 
computations, it results in effective memory bandwidth loss (in addition to 
simply increased global memory consumption). The second case will never be 
coalesced, as load/store requests within a half-warp will never fall into adjacent 
global memory locations. 

 Due to these complications, data is typically arranged as a set arrays of 
elementary types, which is known as the “structure of arrays”(SoA) strategy, 
since it makes global memory coalescing possible for any number of elementary-
type fields (arrays) 
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Mapping data to work-items 
A simple implementation of a kernel evaluating Black-Scholes formula would assign each 
work-item a single option with index equal get_global_id(0), which implies a 1D global ID 
NDRange with exactly as many work-items as there are options to process. But there are 
some hardware constraints to be taken into account: 

 Work-group ID NDRange can be either one- or two-dimensional and is limited 
by 65535 work-group IDs across each dimension. 

 Work-item local ID NDRange can be one-, two- or three-dimensional and is 
limited by 512, 512, 64 local work-item IDs across dimension indices 0, 1, 2 
respectively, with the total work-group size limit being 512 work-items. 

 Depending on the utilization of local memory and private register memory, 
optimal work-group size typically varies in the range of 64..256 work-items. 

Therefore, one-to-one correspondence between work-items and 1D addressing restricts the 
maximum input data size by around 33 millions options. So, in order to allow for arbitrary 
numbers of options and stick with convenient 1D indexing, each thread should process 
more than one index if required; which is implemented with the code in Listing 1. 

 

for( 
    unsigned int opt = get_global_id(0); 
    opt < optN; 
    opt += get_global_size(0) 
) 
    BlackScholesBody( 
        &d_Call[opt], 
        &d_Put[opt], 
        d_S[opt], 
        d_X[opt], 
        d_T[opt], 
        R, 
        V 
    ); 

Listing 1. Processing multiple options per work-item. 
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