

April 2009

Black-Scholes
option pricing

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

Document Change History

Version Date Responsible Reason for Change
0.9 2007/03/19 Victor Podlozhnyuk Initial release

1.0 2007/04/06 Mark Harris Minor clarity / grammar edits for initial release

2.3 2009/04/12 Victor Podlozhnyuk Adapted to OpenCL implementation

April 2009

 Abstract
The pricing of options is a very important problem encountered in financial engineering
since the creation of organized option trading in 1973. This sample shows an
implementation of the Black-Scholes model in OpenCL for European options.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Introduction
The most common definition of an option is an agreement between two parties, the option
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation),
secured by the option seller, to carry out some operation (or exercise the option) at some
moment in the future. The predetermined price is referred to as the strike price, and the future
date is called the expiration date. (See Kolb & Pharr. [1])

Options come in several varieties:

A call option grants its holder the right to buy the underlying asset at a strike price at some moment
in the future.

A put option gives its holder the right to sell the underlying asset at a strike price at some moment
in the future.

There are several types of options, mostly depending on when the option can be exercised.
European options can be exercised only on the expiration date. American-style options are
more flexible as they may be exercised at any time up to and including expiration date and as
such, they are generally priced at least as high as corresponding European options. Other
types of options are path-dependent or have multiple exercise dates (Asian, Bermudian).

For a call option, the profit made at the exercise date is the difference between the price of
the asset on that date and the strike price, minus the option price paid. For a put option, the
profit made at the exercise date is the difference between the strike price and the price of the
asset on that date, minus the option price paid.

The price of the asset at expiration date and the strike price therefore strongly influence how
much one would be willing to pay for an option.

Other important factors in the price of an option are:

 The time to the expiration date, T: Longer periods imply a wider range of
possible values for the underlying asset on the expiration date, and thus more
uncertainty about the value of the option.

 The riskless rate of return, r, which is the annual interest rate of bonds or
other “risk-free” investments: Any amount P of dollars is guaranteed to be worth

 dollars T years from now if placed today in one of theses investments or
in other words, if an asset is worth P dollars T years from now, it is worth

 today.

rTeP ⋅

rTeP −⋅
This example demonstrates an OpenCL implementation of the Black-Scholes model for
European options.

April 2009

Black-Scholes model.
The Black-Scholes model provides a partial differential equation (PDE) for the evolution of
an option price under certain assumptions. For European options, a closed-form solution
exists for this PDE. (See Black & Scholes, [2])

)(1)(

)
2

()log(

)
2

()log(

)()(

)()(

2

2

2

1

12

21

dCNDdCND
Tv

Tvr
X
S

d

Tv

Tvr
X
S

d

dCNDSdCNDeXV

dCNDeXdCNDSV

rT
put

Tr
call

−=−

−+
=

++
=

−⋅−−⋅⋅=

⋅⋅−⋅=

−

−

where

callV is the price for an option call,

putV is the price for an option put,

)(dCND is the Cumulative Normal Distribution function,

S is the current option price,

X is the strike price,

T is the time to expiration.

 r is the continuously compounded risk free interest rate,

v is the implied volatility for the underlying stock,

The cumulative normal distribution function is computed with a polynomial approximation
that provides six-decimal-place accuracy. The expansion uses a fifth-order polynomial. (See
Hull, [3])

April 2009

Implementation details

Choosing a data storage layout
The existence of a closed-form expression makes calculating option prices an easy task. The
main problem is choosing the best data storage layout for the particular OpenCL device.

Here are some important features of OpenCL implemention on NVIDIA GPUs:

 Work-groups are executed as subgroups of logically coherent work-items, called
warps. However unlike work-items in a warp, warps in a work-group are
dynamically scheduled. Generally no assumption may be made on the exact
order of warp execution within a work-group and synchronism across a work-
group may only be guaranteed at barriers or memory fences. Warp size is 32 work-
items on G8x / G9x / G10x NVIDIA GPUs

 No memory caching for global memory operations. In case global memory
bandwidth is the bottleneck, the task of global memory bandwidth saving should
be handled explicitly by the programmer. This is frequently achieved by utilizing
fast local storage, which has about an order of magnitude higher bandwidth
(loading/storing from/to local memory is generally as fast as reading/writing
private register memory). Maximum possible local storage size for G8x / G9x /
G10x NVIDIA GPUs is 16KB.

 Global memory accesses should be coalesced for best performance. For coalescing
on G8x / G9x NVIDIA GPUs, loads and stores from each work-item of a half-
warp (e.g. a subgroup of higher or lower 16 work-items of a warp) must be
sequentially arranged and form a contiguous aligned block of memory of size 16
* <request size>, and request size should be 4, 8 or 16 bytes. It is important to
understand that memory requests are independently formed for each half-warp,
and coalescing happens or not happens across half-warp threads issuing the
same load or store instruction (not different memory operations in the kernel).
G10x NVIDIA GPUs relax the coalescing rules, significantly improving global
memory bandwidth on many access patterns that are not coalescable on G8x /
G9x GPUs. For more detailed description please see section 5.1.2.1 of CUDA
Programming Guide

 As many RISC processors, NVIDIA GPUs are capable of loading and storing
only aligned data elements of fixed sizes of 1, 2, 4, 8 or 16 bytes at instruction
(work-item) level, so in the general case using arrays of structures requires either
padding user structures to one of these “elementary” sizes (when structures are
small enough), or issuing more than one load / store instructions per structure
access (and possibly padding to a multiple of elementary size). The first case can
be coalesced, but since padding bytes do not normally participate in any
computations, it results in effective memory bandwidth loss (in addition to
simply increased global memory consumption). The second case will never be
coalesced, as load/store requests within a half-warp will never fall into adjacent
global memory locations.

 Due to these complications, data is typically arranged as a set arrays of
elementary types, which is known as the “structure of arrays”(SoA) strategy,
since it makes global memory coalescing possible for any number of elementary-
type fields (arrays)

April 2009

Mapping data to work-items
A simple implementation of a kernel evaluating Black-Scholes formula would assign each
work-item a single option with index equal get_global_id(0), which implies a 1D global ID
NDRange with exactly as many work-items as there are options to process. But there are
some hardware constraints to be taken into account:

 Work-group ID NDRange can be either one- or two-dimensional and is limited
by 65535 work-group IDs across each dimension.

 Work-item local ID NDRange can be one-, two- or three-dimensional and is
limited by 512, 512, 64 local work-item IDs across dimension indices 0, 1, 2
respectively, with the total work-group size limit being 512 work-items.

 Depending on the utilization of local memory and private register memory,
optimal work-group size typically varies in the range of 64..256 work-items.

Therefore, one-to-one correspondence between work-items and 1D addressing restricts the
maximum input data size by around 33 millions options. So, in order to allow for arbitrary
numbers of options and stick with convenient 1D indexing, each thread should process
more than one index if required; which is implemented with the code in Listing 1.

for(
 unsigned int opt = get_global_id(0);
 opt < optN;
 opt += get_global_size(0)
)
 BlackScholesBody(
 &d_Call[opt],
 &d_Put[opt],
 d_S[opt],
 d_X[opt],
 d_T[opt],
 R,
 V
);

Listing 1. Processing multiple options per work-item.

Bibliography
1. Craig Kolb and Matt Pharr (2005). "Option pricing on the GPU". GPU Gems 2. Chapter

45.
2. Fischer Black and Myron Scholes (1973). "The Pricing of Options and Corporate

Liabilities". Journal of Political Economy 81 (3): 637-654.
3. John C. Hull (1997) “Options, Futures, and Other Derivatives”

April 2009

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2009 NVIDIA Corporation. All rights reserved.

April 2009

	 Abstract
	 Introduction
	 Black-Scholes model.
	Implementation details
	Choosing a data storage layout
	Mapping data to work-items
	Bibliography
	
	

