

April 2008

Binomial option
pricing model

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

April 2008

Document Change History

Version Date Responsible Reason for Change
0.9 2007/03/19 vpodlozhnyuk Initial release

1.0 2007/04/05 Mharris Grammar and clarity fixes.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract
The pricing of options is a very important problem encountered in financial engineering
since the creation of organized option trading in 1973. As more computation has been
applied to finance-related problems, finding efficient ways to implement option pricing
models on modern architectures has become more important. This sample shows an
implementation of the binomial model in CUDA.

April 2008

Introduction
The most common definition of an option is an agreement between two parties, the option
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation),
secured by the option seller, to carry out some operation (or exercise the option) at some
moment in the future. The predetermined price is referred to as strike price, and future date is
called expiration date. (See Kolb & Pharr. [1])

Options come in several varieties:

A call option grants its holder the right to buy the underlying asset at a strike price at some moment
in the future.

A put option gives its holder the right to sell the underlying asset at a strike price at some moment
in the future.

There are several types of options, mostly depending on when the option can be exercised.
European options can be exercised only on the expiration date. American-style options are
more flexible as they may be exercised at any time up to and including expiration date and as
such, they are generally priced at least as high as corresponding European options. Other
types of options are path-dependent or have multiple exercise dates (Asian, Bermudian).

For a call option, the profit made at exercise date is the difference between the price of the
asset on that date and the strike price, minus the option price paid. For a put option, the
profit made at exercise date is the difference between the strike price and the price of the
asset on that date, minus the option price paid.
The price of the asset at expiration date and the strike price therefore strongly influence how
much one would be willing to pay for an option.

Other important factors in the price of an option are:

 The time to the expiration date, T: Longer periods imply wider range of
possible values for the underlying asset on the expiration date, and thus more
uncertainty about the value of the option.

 The riskless rate of return, r, which is the annual interest rate of bonds or
other “risk-free” investment: Any amount P of dollars is guaranteed to be worth

rTeP ⋅ dollars T years from now if placed today in one of theses investments or
in other words, if an asset is worth P dollars T years from now, it is worth

rTeP −⋅ today.
This example demonstrates a CUDA implementation of the binomial model for European
options.

April 2008

Binomial option model
The binomial option pricing model is an iterative solution that models the price evolution
over the whole option validity period. For some types of options, such as the American
options, using an iterative model is the only choice since there is no known closed-form
solution that predicts price over time.

More precisely, the binomial model represents the price evolution of the option’s underlying
asset as the binomial tree of all possible prices at equally-spaced time steps from today under
the assumption that at each step, the price can only move up and down at fixed rates and
with respective pseudo-probabilities up and dp . In other words, the root node is today’s
price, each column of the tree represents all the possible prices at a given time, and each
node of value S has two child nodes of values Su ⋅ and Sd ⋅ , where u and d are the
factors of upward and downward movements for a single time-step dT .

u and d are derived from volatility v :)1(;, =⋅== ⋅−⋅ duedeu dTvdTv .

dp is simply equal to up−1 and up is derived from the assumption that over a period of
dT the underlying asset yields the same profit as a riskless investment on average, so that if
it is worth S at time t , then it is worth dTreS ⋅⋅ at time dTt + . This leads to the following
equation:))1((SdpSupeS uu

dTr ⋅⋅−+⋅⋅=⋅ ⋅ , from which we deduce up :

du
dep

dTr

u −
−=

⋅

Sd 2 S Su 2

dS uS

Sd 3

Sd 2

uS Su 3

Sd 4

dS

S Su 4Su 2

S

Figure 1. Binomial tree for 4 time steps. 1=⋅ du

April 2008

From the binomial tree representation, we can then iteratively derive the option price for
each node of the tree, starting at the leaves. At each leaf of the tree (i.e. at option expiry)
deriving call and put option price is simple:

)0,max(XSVcall −= : Indeed, if market price S at expiry date is greater than strike price
X , a call option returns its holder XS − dollars of profit — for a same-day sale

transaction — or zero profit otherwise.

)0,max(SXVput −= : Similarly, if market price S at expiry date is lower than strike

price X , a put option gives its holder SX − dollars of profit, or zero profit otherwise.

Having calculated all possible option prices at expiry date, we start moving back to the root,
using the following formula: dTr

tddtuut eVpVpV ⋅−
++ ⋅⋅+⋅=)(1,1, , where tV is the option

price for one of the nodes at time t and 1, +tuV and 1, +tdV are the prices of its two child

nodes. This formula is derived from the observation that an option that is worth tV at time

t , is worth at time dTt + , dTr
t eV ⋅⋅ on one hand, and its expected value on the other

hand, which is 1,1, ++ ⋅+⋅ tddtuu VpVp , by definition.

Implementation details

CPU implementation
Having calculated all the quotients by the formulas given above, implementation of binomial
tree tracking on the CPU is fairly easy. At first, all leaf values have to be generated as shown
in Listing 1.

Listing 1. CPU price array generation.

We begin at the leaf nodes of the tree, with indices in the range [0, NUM_STEPS],
corresponding to time step NUM_STEPS. We reduce the price array step-by-step, moving
back in time to the root of the tree (time step 0) as shown in Listing 2.

Listing 2. Successive reduction of the prices array.

for(int i = NUM_STEPS; i > 0; i--)

 for(int j = 0; j <= i - 1; j++)

 Call[j] = puByDf * Call[j + 1] + _pdByDf * Call[j];

for(int i = 0; i <= NUM_STEPS; i++){
 data_t price = S * EXP(vDt * (2.0f * i - NUM_STEPS));
 Call[i] = MAX(price - X, 0);
}

April 2008

i = NUM_STEPS

i = NUM_STEPS - 1

i = 1

i = 2

NUM_STEPS + 1

...

...

...

...

...

...

Figure 2. Successive reduction of the prices array.

GPU implementation
On parallel architectures such as the NVIDIA G80 GPU, a more robust computation
scheme has to be developed, since everything is different on GPUs: there are many physical
devices executing instructions in parallel as well as constraints on memory access patterns.

A straightforward approach would be to load all leaf values into a high-speed shared
memory buffer and perform calculations in shared memory. But the size of shared memory
on the G80 GPU is limited. So, we take as basis our intention to store as many data as
possible in shared memory, but taking into account that working data sizes can be much
larger than the available shared memory, forcing us to spill to global memory at some steps
of the computation.

April 2008

The solution is to process nodes of the tree in portions that fit into shared memory.
Looking at the reference CPU implementation, we can see that only the values at nodes [A ..
B] at time step T are needed to derive the values at nodes [A .. B – 1] at time step T – 1 and
on down the tree to nodes [A .. B – D] at time step T – D.

This primitive, reducing nodes from [A .. B] to [A .. B – CACHE_DELTA] (B – A <=
CACHE_SIZE - 1) is the core of our CUDA kernel, as shown in Figure 3.

...

...

...

...

...

...

time = T

time = T - 1

B

...

...

... ...

...

...

...

...

...

...

...

...

A

A B – CACHE_DELTA

time = T – CACHE_DELTA + 1

time = T – CACHE_DELTA + 2

CACHE_SIZE

CACHE_STEP CACHE_DELTA

time = T – CACHE_DELTA

time = T - 2

 Figure 3. Reduction primitive.

Figure 3: The binomial options tree reduction primitive
In terms of the code in the binomialOptionsKernel() function of the
binomialOptions_kernel.cuh file, A = c_base, B = min(c_base + CACHE_SIZE -
1, i); i contains the highest index of the entire prices array for the current group of
CACHE_DELTA steps. The [A .. B] range contains exactly CACHE_SIZE elements if
index B = c_base + CACHE_SIZE – 1 is “valid” (in other words not greater than i),
or fewer otherwise. On one hand, it’s good to have a large CACHE_DELTA to perform
memory spills as rarely as possible, but on the other hand, each reduction primitive loads
data with an apron of size CACHE_DELTA — to produce N output elements N +
CACHE_DELTA elements are always loaded at each invocation of the reduction primitive.
Therefore, memory read overhead is inevitably increased.

Having applied the primitive to the entire vector, we reduce it by CACHE_DELTA nodes,
stepping back CACHE_DELTA time steps, as shown in Figure 4.

April 2008

Figure 4: Applying reduction primitive to the entire prices array.

In addition, since the order of thread scheduling is complex and best viewed as simply
undefined, the reduction primitive is double-buffered, ensuring by means of __syncthreads()
that results from the previous stage are ready before they are used in the next, as shown in
Listing 3.

Listing 3. Double buffering in the reduction primitive.

//Calculations within shared memory
for(int k = c_start - 1; k >= c_end;){
 //Compute discounted expected value
 __syncthreads();
 if(tid <= k)
 callB[tid] = puByDf * callA[tid + 1] + pdByDf * callA[tid];
 k--;

 //Compute discounted expected value
 __syncthreads();
 if(tid <= k)
 callA[tid] = puByDf * callB[tid + 1] + pdByDf * callB[tid];
 k--;
}

April 2008

Bibliography
1. Craig Kolb, Matt Pharr (2005). "Option pricing on the GPU". GPU Gems 2. Chapter 45.
2. Fischer Black, Myron Scholes (1973). "The Pricing of Options and Corporate

Liabilities". Journal of Political Economy 81 (3): 637-654.

April 2008

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

