

June 2007

FFT-based 2D
convolution

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

June 2007

Document Change History

Version Date Responsible Reason for Change
1.0 2007/06/01 vpodlozhnyuk Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract
This sample demonstrates how general (non-separable) 2D convolution with large
convolution kernel sizes can be efficiently implemented in CUDA using CUFFT library.

June 2007

Introduction
The whitepaper of the convolutionSeparable CUDA SDK sample introduces
convolution and shows how separable convolution of a 2D data array can be efficiently
implemented using the CUDA programming model. However, the approach doesn’t extend
very well to general 2D convolution kernels. In such cases, a better approach is through
Discrete Fourier Transformation. This latter approach is based on the theorem, central to
Digital Signal Processing applications, that convolution in geometric space amounts to
point-wise multiplication (modulation) in frequency space. Therefore, given an efficient
direct/inverse Discrete Fourier Transformation implementation, Fourier-based convolution
can be more efficient than a straightforward implementation.

Implementation Details
Fast Fourier Transformation (FFT) is a highly parallel “divide and conquer” algorithm for
the calculation of Discrete Fourier Transformation of single-, or multidimensional signals. It
can be efficiently implemented using the CUDA programming model and the CUDA
distribution package includes CUFFT, a CUDA-based FFT library, whose API is modeled
after the widely used CPU-based “FFTW” library.

The basic outline of Fourier-based convolution is:

• Apply direct FFT to the convolution kernel,

• Apply direct FFT to the input data array (or image),

• Perform the point-wise multiplication of the two preceding results,

• Apply inverse FFT to the result of the multiplication.

However, there are some issues that need to be taken into account:

1) The DSP theorem applies to input data (both the image and the convolution kernel) of
same size. Therefore, assuming the image is bigger than the convolution kernel, which is
usually the case in practice, the convolution kernel needs to be expanded to the image
size and padded according to Figure 1. As can be seen on figures 2 and 3 (see below),
cyclic convolution with the expanded kernel is equivalent to cyclic convolution with
initial convolution kernel.

June 2007

Figure 1. Expansion of the convolution kernel to the image size: cyclically shift the
original convolution kernel, so that the central element of the kernel is at (0, 0)
2) The FFT “performs” cyclic convolution: The convolution kernel wraps around image
borders in both dimensions. Figure 2 illustrates the convolution computation in the non-
border case – that is when the kernel does not cross any image borders – and Figure 3
illustrates the same computation in the border case for a cyclic convolution.

Figure 2. Cyclic convolution: non-border case

Figure 3. Cyclic convolution: border case.

June 2007

However, most image processing applications require a different behavior in the border case:
Instead of wrapping around image borders the convolution kernel should clamp to zero or
clamp to border when going past a border. For the Fourier-based convolution to exhibit a clamp
to border behavior, the image needs to be expanded and padded in both dimensions as
illustrated in Figures 4, 5, 6, and 7. The convolution kernel just needs to be adjusted to the
new padded sizes (fftW, fftH) as illustrated in Figure 1.

4
3

5

2
1
0

4
3

5

2
1
0

4
3

5

2
1
0

0
9

1

8
7
6

0
9

1

8
7
6

0
9

1

8
7
6

0
9

1

8
7
6

9
8
7
6

1
2

0

3
4
5

9
8

8
7
6

1
2

0

3
4
5

9
8

8
7
6

1
2

0

3
4
5

9
8

4
3

5

2
1
0

3 0 40 2 0 0 5 0 6
8 8
8 8

81 3 0 40 2 0 0 5 0 6
81 3 0 40 2 0 0 5 0 6

0 2 1 05 4 3 7
0 2 1 05 4 3 7
0 2 1 05 4 3 7 0 0 0

0 0 0
0 0 0

1 1 1
1 1 1

9 9
9 9
9 9

1 0
1 0
1 0

3 2 4
3 2 4
3 2 4

9
9
9

2 1 05 4 3 7 423

dataW >= kernelW – kernelX - 1

fftW

99

Figure 4. Cyclic convolution of the padded image: left border case. Wrapped around
kernel elements get multiplied by correct data value (pixels).

Figure 5. Cyclic convolution of the padded image: right border case. Wrapped
around kernel elements get multiplied by correct data values (pixels).

June 2007

Figure 6. Cyclic convolution of the padded image: top border case. Wrapped around
kernel elements are multiplied by correct data values (pixels).

Figure 7. Cyclic convolution of the padded image: bottom border case. Wrapped
around kernel elements are multiplied by correct data values (pixels).
Required padding is only kernelW – 1 elements in width and kernelH – 1 elements in height,
but for different data sizes CUFFT operates with different speeds and different precision. In
particular, if FFT dimensions are small multiples of powers of N, where N varies from 2 to 8
for CUFFT, the performance and precision are best. For this reason, we round up each
padded dimension (dataW + kernelW – 1) and (dataH + kernelH – 1) to fftW and fftH
respectively as follows: We round up to the nearest power of two if the padded dimension is
less than or equal to 1024, or only to the nearest multiple of 512 otherwise, in order to save
computations and memory bandwidth, since the per-element computation complexity of the
FFT algorithms grows as the sizes of the Fourier transformation increase.

June 2007

Performance
Benchmarking FFT-based convolution is somewhat ambiguous issue to be expressed in a
single rate of filtered pixels per second, since per-element computation complexity of the
underlying FFT algorithms depends only on the padded image size, and in its turn padded
image size depends both on the image and convolution kernel sizes. For power of two
padded image size (fftW, fftH), effective per-element computation complexity is:

))log()(log())log((fftHfftWO
dataHdataW

ftHfftWfftHfftWO +≈
⋅

⋅⋅⋅

against O(kernelW * kernelH) of a straightforward convolution implementation.
Increasing the convolution kernel size, still assuming it to be much smaller than of the image
(as usually observed on practice), we can see that the value of the former expression remains
approximately the same, but the value of the latter expression increases proportionally to the
number of elements in the convolution kernel. So, for each “big enough” input image size,
starting from certain convolution kernel size, FFT-based convolution becomes more
advantageous than a straightforward implementation in terms of performance.

Table below gives performance rates

FFT size 256x256 512x512 1024x1024 1536x1536 2048x2048 2560x2560 3072x3072 3584x3584

Execution
time, ms

0.75 2.08 6.73 28 42 89 146 178

FFT
convolution
rate,
MPix/s

87 125 155 85 98 73 64 71

So, performance depends on FFT size in a non linear way. On average, FFT convolution
execution rate is 94 MPix/s (including padding).

The 2D FFT-based approach described in this paper does not take advantage of separable
filters, which are effectively 1D. Therefore, it should not come as a surprise that for
separable convolutions, the approach used in convolutionSeparable performs at much higher
rates. The 2D FFT-based approach is however the better choice for large non-separable 2D
convolutions, for which straightforward shared memory-based approaches either do not
perform as well because they require a big apron that introduces too much memory read
overhead, or are simply not applicable because they require more shared memory than is
available

Bibliography
1. Y. A. Romanyuk (2005). “Discrete Signal Transformations”. Basics of Digital Signal

processing. Part 1. Chapter 3.
2. Wolfram Mathworld. “Convolution” http://mathworld.wolfram.com/Convolution.html

June 2007

3. Wolfram Mathworld. “Fast Fourier Transform”
http://mathworld.wolfram.com/FastFourierTransform.html

June 2007

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

