
 

 

April 2007 

Parallel Prefix Sum 
(Scan) with CUDA 

Mark Harris 
mharris@nvidia.com 



  
    

 

 

April 2007  ii  

Document Change History 

Version Date Responsible Reason for Change 
 February 14, 

2007 
Mark Harris Initial release 

    

    

    

 

 

 

 



 

 

Month 2007  1  

 Abstract 
 

Parallel prefix sum, also known as parallel Scan, is a useful building block for many 
parallel algorithms including sorting and building data structures.  In this document 
we introduce Scan and describe step-by-step how it can be implemented efficiently 
in NVIDIA CUDA.  We start with a basic naïve algorithm and proceed through 
more advanced techniques to obtain best performance.  We then explain how to 
scan arrays of arbitrary size that cannot be processed with a single block of threads. 
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Introduction 
A simple and common parallel algorithm building block is the all-prefix-sums operation.  In 
this paper we will define and illustrate the operation, and discuss in detail its efficient 
implementation on NVIDIA CUDA.  As mentioned by Blelloch [1], all-prefix-sums is a 
good example of a computation that seems inherently sequential, but for which there is an 
efficient parallel algorithm.  The all-prefix-sums operation is defined as follows in [1]: 

Definition: The all-prefix-sums operation takes a binary associative operator ⊕ , and an array of n 
elements 

[a0, a1, …, an-1], 

and returns the array 

[a0, (a0 ⊕  a1), …, (a0 ⊕  a1 ⊕  … ⊕  an-1)]. 
 

Example: If ⊕  is addition, then the all-prefix-sums operation on the array 

[3 1 7 0 4 1 6 3], 

would return 

[3 4 11 11 14 16 22 25]. 

There are many uses for all-prefix-sums, including, but not limited to sorting, lexical analysis, 
string comparison, polynomial evaluation, stream compaction, and building histograms and 
data structures (graphs, trees, etc.) in parallel.  For example applications, we refer the reader 
to the survey by Blelloch [1]. 

In general, all-prefix-sums can be used to convert some sequential computations into 
equivalent, but parallel, computations as shown in Figure 1. 

out[0] = 0; 
forall j from 1 to n do 
    out[j] = out[j-1]  +   f(in[j-1]); 

forall j in parallel do 
    temp[j] = f(in[j]); 
all_prefix_sums(out, temp); 

Figure 1: A sequential computation and its parallel equivalent. 

Inclusive and Exclusive Scan 
All-prefix-sums on an array of data is commonly known as scan.  We will use this simpler 
terminology (which comes from the APL programming language [1]) for the remainder of 
this paper.  As shown in the last section, a scan of an array generates a new array where each 
element j is the sum of all elements up to and including j.  This is an inclusive scan.  It is often 
useful for each element j in the results of a scan to contain the sum of all previous elements, 
but not j itself.  This operation is commonly known as an exclusive scan (or prescan) [1]. 

Definition: The exclusive scan operation takes a binary associative operator ⊕  with identity I, and an 
array of n elements 

[a0, a1, …, an-1], 
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and returns the array 

[I, a0, (a0 ⊕  a1), …, (a0 ⊕  a1 ⊕  … ⊕  an-2)]. 
 

Example: If ⊕  is addition, then the exclusive scan operation on the array 

[3 1 7 0 4 1 6 3], 

returns 

[0 3 4 11 11 14 16 22]. 

An exclusive scan can be generated from an inclusive scan by shifting the resulting array 
right by one element and inserting the identity.  Likewise, an inclusive scan can be generated 
from an exclusive scan by shifting the resulting array left, and inserting at the end the sum of 
the last element of the scan and the last element of the input array [1].  For the remainder of 
this paper we will focus on the implementation of exclusive scan and refer to it simply as scan 
unless otherwise specified. 

Sequential Scan 
 Implementing a sequential version of scan (that could be run in a single thread on a 
CPU, for example) is trivial.  We simply loop over all the elements in the input array and add 
the value of the previous element of the input array to the sum computed for the previous 
element of the output array, and write the sum to the current element of the output array. 

void scan( float* output, float* input, int length)  
{ 
    output[0] = 0; // since this is a prescan, not a scan 
    for(int j = 1; j < length; ++j)  
    { 
        output[j] = input[j-1] + output[j-1]; 
    } 
} 

This code performs exactly n adds for an array of length n; this is the minimum number of 
adds required to produce the scanned array.  When we develop our parallel version of scan, 
we would like it to be work-efficient.  This means do no more addition operations (or work) 
than the sequential version.  In other words the two implementations should have the same 
work complexity, O(n). 

A Naïve Parallel Scan 

 
Algorithm 1: A sum scan algorithm that is not work-efficient. 

for d := 1 to log2n do  
    forall k in parallel do  
        if k ≥ 2d then x[k] := x[k − 2d-1] + x[k] 
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The pseudocode in Algorithm 1 shows a naïve parallel scan implementation.  This algorithm 
is based on the scan algorithm presented by Hillis and Steele1 [4], and demonstrated for 
GPUs by Horn [5].  The problem with Algorithm 1 is apparent if we examine its work 
complexity. The algorithm performs )log(2 2

log

1
12 nnOnn

d
d =−∑ =

−  addition operations.  
Remember that a sequential scan performs O(n) adds.  Therefore, this naïve implementation 
is not work-efficient.  The factor of log2 n can have a large effect on performance.  In the 
case of a scan of 1 million elements, the performance difference between this naïve 
implementation and a theoretical work-efficient parallel implementation would be almost a 
factor of 20. 

Algorithm 1 assumes that there are as many processors as data elements.  On a GPU 
running CUDA, this is not usually the case.  Instead, the forall is automatically divided 
into small parallel batches (called warps) that are executed sequentially on a multiprocessor.  
A G80 GPU executes warps of 32 threads in parallel. Because not all threads run 
simultaneously for arrays larger than the warp size, the algorithm above will not work 
because it performs the scan in place on the array.  The results of one warp will be 
overwritten by threads in another warp. 

To solve this problem, we need to double-buffer the array we are scanning.  We use two 
temporary arrays (temp[2][n]) to do this.   Pseudocode for this is given in Algorithm 2, 
and CUDA C code for the naïve scan is given in Listing 1.  Note that this code will run on 
only a single thread block of the GPU, and so the size of the arrays it can process is limited 
(to 512 elements on G80 GPUs). Extension of scan to large arrays is discussed later. 

 
 

Algorithm 2: A double-buffered version of the sum scan from 
Algorithm 1. 

                                                      

1 Note that while we call this a naïve scan in the context of CUDA and NVIDIA GPUs, it was not 
necessarily naïve for a Connection Machine [3], which is the machine Hillis and Steele were focused 
on.  Related to work complexity is the concept of step complexity, which is the number of steps that the 
algorithm executes. The Connection Machine was a SIMD machine with many thousands of 
processors.  In the limit where the number of processors equals the number of elements to be 
scanned, execution time is dominated by step complexity rather than work complexity.  Algorithm 1 
has a step complexity of O(log n) compared to the O(n) step complexity of the sequential algorithm, 
and is therefore step efficient. 

for d := 1 to log2n do  
    forall k in parallel do  
        if k ≥ 2d then  

x[out][k] := x[in][k − 2d-1] + x[in][k] 
        else  

x[out][k] := x[in][k] 
    swap(in,out) 
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x0 x1 x2 x3 x4 x5 x6 x7

(x0..x0) (x0..x1) (x1..x2) (x2..x3) (x3..x4) (x4..x5) (x5..x6) (x6..x7)

(x0..x0) (x0..x1) (x0..x2) (x0..x3) (x1..x4) (x2..x5) (x3..x6) (x4..x7)

(x0..x0) (x0..x1) (x0..x2) (x0..x3) (x0..x4) (x0..x5) (x0..x6) (x0..x7)

d=0

d=1

d=2

d=3
 

Figure 1: Computing a scan of an array of 8 elements using the 
naïve scan algorithm. 

 

Listing 1: CUDA C code for the naive scan algorithm.  This version 
can handle arrays only as large as can be processed by a single 
thread block running on one multiprocessor of a GPU. 

__global__ void scan(float *g_odata, float *g_idata, int n) 
{ 
    extern  __shared__  float temp[]; // allocated on invocation 
 
    int thid = threadIdx.x; 
    int pout = 0, pin = 1; 
 
    // load input into shared memory.  
    // This is exclusive scan, so shift right by one and set first elt to 0 
    temp[pout*n + thid] = (thid > 0) ? g_idata[thid-1] : 0; 
    __syncthreads(); 
 
    for (int offset = 1; offset < n; offset *= 2) 
    { 
        pout = 1 - pout; // swap double buffer indices 
        pin  = 1 - pout; 
 
        if (thid >= offset) 
            temp[pout*n+thid] += temp[pin*n+thid - offset]; 
   else 
  temp[pout*n+thid] = temp[pin*n+thid]; 
 
        __syncthreads(); 
    } 
 
    g_odata[thid] = temp[pout*n+thid1]; // write output 
} 
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A Work-Efficient Parallel Scan 
Our goal in this section is to develop a work-efficient scan algorithm that avoids the extra 
factor of log n work performed by the naïve algorithm of the previous section.  To do this 
we will use an algorithmic pattern that arises often in parallel computing: balanced trees.  The 
idea is to build a balanced binary tree on the input data and sweep it to and from the root to 
compute the prefix sum.  A binary tree with n leaves has log n levels, and each level d∈ [0,n) 
has 2d nodes.  If we perform one add per node, then we will perform O(n) adds on a single 
traversal of the tree. 

The tree we build is not an actual data structure, but a concept we use to determine what 
each thread does at each step of the traversal.  In this work-efficient scan algorithm, we 
perform the operations in place on an array in shared memory.  The algorithm consists of 
two phases: the reduce phase (also known as the up-sweep phase) and the down-sweep phase.  In the 
reduce phase we traverse the tree from leaves to root computing partial sums at internal 
nodes of the tree, as shown in Figure 2.  This is also known as a parallel reduction, because 
after this phase, the root node (the last node in the array) holds the sum of all nodes in the 
array.  Pseudocode for the reduce phase is given in Algorithm 3. 

In the down-sweep phase, we traverse back up the tree from the root, using the partial sums 
to build the scan in place on the array using the partial sums computed by the reduce phase.  
The down-sweep is shown in Figure 3, and pseudocode is given in Algorithm 4.  Note that 
because this is an exclusive scan (i.e. the total sum is not included in the results), between the 
phases we zero the last element of the array.  This zero propagates back to the head of the 
array during the down-sweep phase.  CUDA C Code for the complete algorithm is given in 
Listing 2.  Like the naïve scan code in the previous section, the code in Listing 2 will run on 
only a single thread block.  Because it processes two elements per thread, the maximum 
array size this code can scan is 1024 elements on G80.  Scans of large arrays are discussed 
later. 

This scan algorithm performs O(n) operations (it performs 2*(n-1) adds and n-1 swaps); 
therefore it is work efficient and for large arrays, should perform much better than the naïve 
algorithm from the previous section.  Algorithmic efficiency is not enough; we must also use 
the hardware efficiently.  If we examine the operation of this scan on a GPU running 
CUDA, we will find that it suffers from many shared memory bank conflicts.  These hurt 
the performance of every access to shared memory, and significantly affect overall 
performance.  In the next section we will look at some simple modifications we can make to 
the memory address computations to recover much of that lost performance. 
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Algorithm 3: The up-sweep (reduce) phase of a work-efficient sum 
scan algorithm (after Blelloch [1]). 
 

 

Figure 2: An illustration of the up-sweep, or reduce, phase of a 
work-efficient sum scan algorithm. 

for d := 0 to log2n - 1  do  
for k from 0 to n – 1 by 2d + 1 in parallel do  
    x[k + 2d + 1 - 1] := x[k + 2d - 1] + x [k + 2d + 1 - 1] 
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Algorithm 4: The down-sweep phase of a work-efficient parallel sum 
scan algorithm (after Blelloch [1]).  
 

0 x0 (x0..x1) (x0..x2) (x0..x3) (x0..x4) (x0..x5) (x0..x6)

x0 x2 (x0..x1) x4 (x0..x3) x6 (x0..x5)

x0 (x0..x1) x2 x4 (x4..x5) x6 (x0..x3)

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6 (x0..x7)

Zero

d=0

d=1

d=2

d=3
 

Figure 3: An illustration of the down-sweep phase of the work-
efficient parallel sum scan algorithm.  Notice that the first step zeros 
the last element of the array. 

       x[n - 1] := 0 
for d := log2n down to 0  do  

for k from 0 to n – 1 by 2d + 1 in parallel do  
    t := x[k + 2d - 1] 
         x[k + 2d - 1] := x [k + 2d + 1 - 1] 
    x[k + 2d + 1 - 1] := t + x [k + 2d + 1 - 1] 
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Listing 2: CUDA C Code for the work-efficient sum scan of Algorithm 
3 and 4.  The highlighted blocks are discussed in the next section. 

__global__ void prescan(float *g_odata, float *g_idata, int n) 
{ 
    extern  __shared__  float temp[];// allocated on invocation 
 
    int thid = threadIdx.x; 
    int offset = 1; 
 
    temp[2*thid]   = g_idata[2*thid]; // load input into shared memory 
    temp[2*thid+1] = g_idata[2*thid+1]; 
 
    for (int d = n>>1; d > 0; d >>= 1) // build sum in place up the tree 
    { 
        __syncthreads(); 
 
        if (thid < d)    
        { 

int ai = offset*(2*thid+1)-1; 
            int bi = offset*(2*thid+2)-1; 
 
            temp[bi] += temp[ai];         

  } 
        offset *= 2; 
    } 
 
    if (thid == 0) { temp[n - 1] = 0; } // clear the last element 
 
    for (int d = 1; d < n; d *= 2) // traverse down tree & build scan 
    { 
        offset >>= 1; 
        __syncthreads(); 
 
        if (thid < d) 
        { 

int ai = offset*(2*thid+1)-1; 
            int bi = offset*(2*thid+2)-1; 
 
            float t   = temp[ai]; 
            temp[ai]  = temp[bi]; 
            temp[bi] += t; 
        } 
    } 
 
    __syncthreads(); 
 
    g_odata[2*thid]   = temp[2*thid]; // write results to device memory 
    g_odata[2*thid+1] = temp[2*thid+1];  
} 

A

B 

D

E 

C
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Avoiding Bank Conflicts 
The scan algorithm of the previous section performs approximately as much work as an 
optimal sequential algorithm.  Despite this work efficiency, it is not yet efficient on NVIDIA 
GPU hardware due to its memory access patterns.  As described in the NVIDIA CUDA 
Programming Guide [5], the shared memory exploited by this scan algorithm is made up of 
multiple banks.  When multiple threads in the same warp access the same bank, a bank 
conflict occurs, unless all threads of the warp access an address within the same 32-bit word.  
The number of threads that access a single bank is called the degree of the bank conflict. Bank 
conflicts cause serialization of the multiple accesses to the memory bank, so that a shared 
memory access with a degree-n bank conflict requires n times as many cycles to process as an 
access with no conflict.  On the G80 GPU, which executes 16 threads in parallel in a half-
warp, the worst case is a degree-16 bank conflict. 

Binary tree algorithms such as our work-efficient scan double the stride between memory 
accesses at each level of the tree, simultaneously doubling the number of threads that access 
the same bank.  For deep trees, as we approach the middle levels of the tree the degree of 
the bank conflicts increases, and then decreases again near the root where the number of 
active threads decreases (due to the if statement in Listing 2).  For example if we are 
scanning a 512-element array, the shared memory reads and writes in the inner loops of 
Listing 2 experience up to 16-way bank conflicts.  This has a significant effect on 
performance. 

Bank conflicts are avoidable in most CUDA computations if care is taken when accessing 
__shared__ memory arrays.  In convolution, for example, this is just a matter of padding 
the 2D array to a width that is not evenly divisible by the number of shared memory banks.  
Scan, due to its balanced-tree approach, requires a slightly more complicated approach.  We 
can avoid most bank conflicts by adding a variable amount of padding to each shared 
memory array index we compute.  Specifically, we add to the index the value of the index 
divided by the number of shared memory banks.  This is demonstrated in Figure 4. We start 
from the work-efficient scan code in Listing 2, modifying only the highlighted blocks A 
through E.  To simplify the code changes, we define a macro 
CONFLICT_FREE_OFFSET, shown in listing 3. 

 

 

Listing 3: This macro is used for computing bank-conflict-free shared 
memory array indices. 
 

#define NUM_BANKS 16 
#define LOG_NUM_BANKS 4 
 
#ifdef ZERO_BANK_CONFLICTS 
#define CONFLICT_FREE_OFFSET(n) \ 
    ((n) >> NUM_BANKS + (n) >> (2 * LOG_NUM_BANKS)) 
#else 
#define CONFLICT_FREE_OFFSET(n) ((n) >> LOG_NUM_BANKS) 
#endif 
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The blocks A through E in Listing 2 need to be modified using these macros to avoid bank 
conflicts.  Two changes must be made to block A.  Each thread loads two array elements 
from the __device__ array g_idata into the __shared__ array temp.  In the 
original code, each thread loads two adjacent elements, resulting in interleaved indexing of 
the shared memory array, incurring two-way bank conflicts.  By instead loading two elements 
from separate halves of the array, we avoid these bank conflicts.  Also, to avoid bank 
conflicts during the tree traversal, we need to add padding to the shared memory array every 
NUM_BANKS (16) elements.  We do this using the macros in Listing 3 as in the following 
code blocks A through E.  Note that we store the offsets to the shared memory indices so 
that we can use them again at the end of the scan when writing the results back to the output 
array g_odata in block E.   

Block A: 

 
Blocks B and D are identical: 

 
Block C: 

 
Block E: 

 

g_odata[ai] = temp[ai + bankOffsetA];  
g_odata[bi] = temp[bi + bankOffsetB]; 

if (thid==0) { temp[n – 1 + CONFLICT_FREE_OFFSET(n - 1)] = 0; } 

int ai = offset*(2*thid+1)-1; 
int bi = offset*(2*thid+2)-1; 
ai += CONFLICT_FREE_OFFSET(ai); 
bi += CONFLICT_FREE_OFFSET(bi); 

int ai = thid; 
int bi = thid + (n/2); 
 
int bankOffsetA = CONFLICT_FREE_OFFSET(ai); 
int bankOffsetB = CONFLICT_FREE_OFFSET(ai); 
 
temp[ai + bankOffsetA] = g_idata[ai];  
temp[bi + bankOffsetB] = g_idata[bi];  
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Figure 4: Simple padding applied to shared memory addresses can 
eliminate high-degree bank conflicts during tree-based algorithms 
like scan.  The top of the diagram shows addressing without 
padding and the resulting bank conflicts.  The bottom shows padded 
addressing with zero bank conflicts. 
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Arrays of Arbitrary Size 
The algorithms given in the previous sections scan an array inside a single thread block.  This 
is fine for small arrays, up to twice the maximum number of threads in a block (since each 
thread loads and processes two elements).  On G80 GPUs, this limits us to a maximum of 
1024 elements.  Also, the array size must be a power of two.  In this section we explain how 
to extend the algorithm to scan large arrays of arbitrary (non-power-of-two) dimensions.  
This algorithm is based on the explanation provided by Blelloch [1]. 

The basic idea is simple. We divide the large array into blocks that each can be scanned by a 
single thread block, scan the blocks, and write the total sum of each block to another array 
of block sums.  We then scan the block sums, generating an array of block increments that 
that are added to all elements in their respective blocks.  In more detail, let N be the number 
of elements in the input array IN, and B be the number of elements processed in a block.  
We allocate N/B thread blocks of B/2 threads each (In this section we assume that N is a 
multiple of B, and extend to arbitrary dimensions in the next paragraph).  A typical choice 
for B on G80 GPUs is 512.  We use the scan algorithm of the previous sections to scan each 
block j independently, storing the resulting scans to sequential locations of an output array 
OUT. We make one minor modification to the scan algorithm.  Before zeroing the last 
element of block j (label B in Listing 2), we store the value (the total sum of block j) to an 
auxiliary array SUMS.  We then scan SUMS in the same manner, writing the result to an 
array INCR.  We then add INCR(j) to all elements of block j using a simple uniform add 
kernel invoked on N / B thread blocks of B / 2 threads each.  This is demonstrated in 
Figure 4.  For details of the implementation, please see the source code for the sample 
“scan_largearray” in the NVIDIA CUDA SDK. 

To handle non-power-of-two dimensions, we simply divide the array into a part that is a 
multiple of B elements and process it as above (using B/2 threads per block), and process 
the remainder with a scan kernel modified to handle non-power-of-2 arrays in a single block.  
This kernel pads the shared memory array used out to the next higher power of two and 
initializes this extra memory to zero while loading in the data from device memory.  For 
details see the source code for the sample “scan_largearray”. 
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Final Array of Scanned Values

Initial Array of Arbitrary Values

Scan Block 0 Scan Block 1 Scan Block 2 Scan Block 3

Store Block Sum to Auxiliary Array

Add Scanned Block Sum i to All 
Values of Scanned Block i + 1 + + +

Scan Block Sums

Figure 5: Algorithm for performing a sum scan on a large array of 
values. 
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Performance 

# elements CPU Scan (ms) GPU Scan (ms) Speedup 

1024 0.002231 0.079492 0.03 

32768 0.072663 0.106159 0.68 

65536 0.146326 0.137006 1.07 

131072 0.726429 0.200257 3.63 

262144 1.454742 0.326900 4.45 

524288 2.911067 0.624104 4.66 

1048576 5.900097 1.118091 5.28 

2097152 11.848376 2.099666 5.64 

4194304 23.835931 4.062923 5.87 

8388688 47.390906 7.987311 5.93 

16777216 94.794598 15.854781 5.98 

Table 2: Performance of the work-efficient, bank conflict free Scan 
implemented in CUDA compared to a sequential scan implemented 
in C++.  The CUDA scan was executed on an NVIDIA GeForce 8800 
GTX GPU, the sequential scan on a single core of an Intel Core Duo 
Extreme 2.93 GHz. 
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Conclusion 
The scan operation is a simple and powerful parallel primitive with a broad range of 
applications.  In this technical report we have explained the efficient implementation of scan 
using CUDA which achieves a significant speedup over a sequential implementation on a 
fast CPU.  In the future, we will add example applications of scan such as sorting and stream 
compaction. 
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