

April 2007

Parallel Prefix Sum
(Scan) with CUDA

Mark Harris
mharris@nvidia.com

April 2007 ii

Document Change History

Version Date Responsible Reason for Change
 February 14,

2007
Mark Harris Initial release

Month 2007 1

 Abstract

Parallel prefix sum, also known as parallel Scan, is a useful building block for many
parallel algorithms including sorting and building data structures. In this document
we introduce Scan and describe step-by-step how it can be implemented efficiently
in NVIDIA CUDA. We start with a basic naïve algorithm and proceed through
more advanced techniques to obtain best performance. We then explain how to
scan arrays of arbitrary size that cannot be processed with a single block of threads.

Parallel Prefix Sum (Scan) with CUDA

April 2007 2

Table of Contents
Abstract..1
Table of Contents...2
Introduction...3

Inclusive and Exclusive Scan ...3
Sequential Scan...4

A Naïve Parallel Scan ...4
A Work-Efficient Parallel Scan...7
Avoiding Bank Conflicts ...11
Arrays of Arbitrary Size..14
Performance...16
Conclusion..17
Bibliography...18

Parallel Prefix Sum (Scan) with CUDA

April 2007 3

Introduction
A simple and common parallel algorithm building block is the all-prefix-sums operation. In
this paper we will define and illustrate the operation, and discuss in detail its efficient
implementation on NVIDIA CUDA. As mentioned by Blelloch [1], all-prefix-sums is a
good example of a computation that seems inherently sequential, but for which there is an
efficient parallel algorithm. The all-prefix-sums operation is defined as follows in [1]:

Definition: The all-prefix-sums operation takes a binary associative operator ⊕ , and an array of n
elements

[a0, a1, …, an-1],

and returns the array

[a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-1)].

Example: If ⊕ is addition, then the all-prefix-sums operation on the array

[3 1 7 0 4 1 6 3],

would return

[3 4 11 11 14 16 22 25].

There are many uses for all-prefix-sums, including, but not limited to sorting, lexical analysis,
string comparison, polynomial evaluation, stream compaction, and building histograms and
data structures (graphs, trees, etc.) in parallel. For example applications, we refer the reader
to the survey by Blelloch [1].

In general, all-prefix-sums can be used to convert some sequential computations into
equivalent, but parallel, computations as shown in Figure 1.

out[0] = 0;
forall j from 1 to n do
 out[j] = out[j-1] + f(in[j-1]);

forall j in parallel do
 temp[j] = f(in[j]);
all_prefix_sums(out, temp);

Figure 1: A sequential computation and its parallel equivalent.

Inclusive and Exclusive Scan
All-prefix-sums on an array of data is commonly known as scan. We will use this simpler
terminology (which comes from the APL programming language [1]) for the remainder of
this paper. As shown in the last section, a scan of an array generates a new array where each
element j is the sum of all elements up to and including j. This is an inclusive scan. It is often
useful for each element j in the results of a scan to contain the sum of all previous elements,
but not j itself. This operation is commonly known as an exclusive scan (or prescan) [1].

Definition: The exclusive scan operation takes a binary associative operator ⊕ with identity I, and an
array of n elements

[a0, a1, …, an-1],

Parallel Prefix Sum (Scan) with CUDA

April 2007 4

and returns the array

[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

Example: If ⊕ is addition, then the exclusive scan operation on the array

[3 1 7 0 4 1 6 3],

returns

[0 3 4 11 11 14 16 22].

An exclusive scan can be generated from an inclusive scan by shifting the resulting array
right by one element and inserting the identity. Likewise, an inclusive scan can be generated
from an exclusive scan by shifting the resulting array left, and inserting at the end the sum of
the last element of the scan and the last element of the input array [1]. For the remainder of
this paper we will focus on the implementation of exclusive scan and refer to it simply as scan
unless otherwise specified.

Sequential Scan
 Implementing a sequential version of scan (that could be run in a single thread on a
CPU, for example) is trivial. We simply loop over all the elements in the input array and add
the value of the previous element of the input array to the sum computed for the previous
element of the output array, and write the sum to the current element of the output array.

void scan(float* output, float* input, int length)
{
 output[0] = 0; // since this is a prescan, not a scan
 for(int j = 1; j < length; ++j)
 {
 output[j] = input[j-1] + output[j-1];
 }
}

This code performs exactly n adds for an array of length n; this is the minimum number of
adds required to produce the scanned array. When we develop our parallel version of scan,
we would like it to be work-efficient. This means do no more addition operations (or work)
than the sequential version. In other words the two implementations should have the same
work complexity, O(n).

A Naïve Parallel Scan

Algorithm 1: A sum scan algorithm that is not work-efficient.

for d := 1 to log2n do
 forall k in parallel do
 if k ≥ 2d then x[k] := x[k − 2d-1] + x[k]

Parallel Prefix Sum (Scan) with CUDA

April 2007 5

The pseudocode in Algorithm 1 shows a naïve parallel scan implementation. This algorithm
is based on the scan algorithm presented by Hillis and Steele1 [4], and demonstrated for
GPUs by Horn [5]. The problem with Algorithm 1 is apparent if we examine its work
complexity. The algorithm performs)log(2 2

log

1
12 nnOnn

d
d =−∑ =

− addition operations.
Remember that a sequential scan performs O(n) adds. Therefore, this naïve implementation
is not work-efficient. The factor of log2 n can have a large effect on performance. In the
case of a scan of 1 million elements, the performance difference between this naïve
implementation and a theoretical work-efficient parallel implementation would be almost a
factor of 20.

Algorithm 1 assumes that there are as many processors as data elements. On a GPU
running CUDA, this is not usually the case. Instead, the forall is automatically divided
into small parallel batches (called warps) that are executed sequentially on a multiprocessor.
A G80 GPU executes warps of 32 threads in parallel. Because not all threads run
simultaneously for arrays larger than the warp size, the algorithm above will not work
because it performs the scan in place on the array. The results of one warp will be
overwritten by threads in another warp.

To solve this problem, we need to double-buffer the array we are scanning. We use two
temporary arrays (temp[2][n]) to do this. Pseudocode for this is given in Algorithm 2,
and CUDA C code for the naïve scan is given in Listing 1. Note that this code will run on
only a single thread block of the GPU, and so the size of the arrays it can process is limited
(to 512 elements on G80 GPUs). Extension of scan to large arrays is discussed later.

Algorithm 2: A double-buffered version of the sum scan from
Algorithm 1.

1 Note that while we call this a naïve scan in the context of CUDA and NVIDIA GPUs, it was not
necessarily naïve for a Connection Machine [3], which is the machine Hillis and Steele were focused
on. Related to work complexity is the concept of step complexity, which is the number of steps that the
algorithm executes. The Connection Machine was a SIMD machine with many thousands of
processors. In the limit where the number of processors equals the number of elements to be
scanned, execution time is dominated by step complexity rather than work complexity. Algorithm 1
has a step complexity of O(log n) compared to the O(n) step complexity of the sequential algorithm,
and is therefore step efficient.

for d := 1 to log2n do
 forall k in parallel do
 if k ≥ 2d then

x[out][k] := x[in][k − 2d-1] + x[in][k]
 else

x[out][k] := x[in][k]
 swap(in,out)

Parallel Prefix Sum (Scan) with CUDA

April 2007 6

x0 x1 x2 x3 x4 x5 x6 x7

(x0..x0) (x0..x1) (x1..x2) (x2..x3) (x3..x4) (x4..x5) (x5..x6) (x6..x7)

(x0..x0) (x0..x1) (x0..x2) (x0..x3) (x1..x4) (x2..x5) (x3..x6) (x4..x7)

(x0..x0) (x0..x1) (x0..x2) (x0..x3) (x0..x4) (x0..x5) (x0..x6) (x0..x7)

d=0

d=1

d=2

d=3

Figure 1: Computing a scan of an array of 8 elements using the
naïve scan algorithm.

Listing 1: CUDA C code for the naive scan algorithm. This version
can handle arrays only as large as can be processed by a single
thread block running on one multiprocessor of a GPU.

__global__ void scan(float *g_odata, float *g_idata, int n)
{
 extern __shared__ float temp[]; // allocated on invocation

 int thid = threadIdx.x;
 int pout = 0, pin = 1;

 // load input into shared memory.
 // This is exclusive scan, so shift right by one and set first elt to 0
 temp[pout*n + thid] = (thid > 0) ? g_idata[thid-1] : 0;
 __syncthreads();

 for (int offset = 1; offset < n; offset *= 2)
 {
 pout = 1 - pout; // swap double buffer indices
 pin = 1 - pout;

 if (thid >= offset)
 temp[pout*n+thid] += temp[pin*n+thid - offset];
 else
 temp[pout*n+thid] = temp[pin*n+thid];

 __syncthreads();
 }

 g_odata[thid] = temp[pout*n+thid1]; // write output
}

Parallel Prefix Sum (Scan) with CUDA

April 2007 7

A Work-Efficient Parallel Scan
Our goal in this section is to develop a work-efficient scan algorithm that avoids the extra
factor of log n work performed by the naïve algorithm of the previous section. To do this
we will use an algorithmic pattern that arises often in parallel computing: balanced trees. The
idea is to build a balanced binary tree on the input data and sweep it to and from the root to
compute the prefix sum. A binary tree with n leaves has log n levels, and each level d∈ [0,n)
has 2d nodes. If we perform one add per node, then we will perform O(n) adds on a single
traversal of the tree.

The tree we build is not an actual data structure, but a concept we use to determine what
each thread does at each step of the traversal. In this work-efficient scan algorithm, we
perform the operations in place on an array in shared memory. The algorithm consists of
two phases: the reduce phase (also known as the up-sweep phase) and the down-sweep phase. In the
reduce phase we traverse the tree from leaves to root computing partial sums at internal
nodes of the tree, as shown in Figure 2. This is also known as a parallel reduction, because
after this phase, the root node (the last node in the array) holds the sum of all nodes in the
array. Pseudocode for the reduce phase is given in Algorithm 3.

In the down-sweep phase, we traverse back up the tree from the root, using the partial sums
to build the scan in place on the array using the partial sums computed by the reduce phase.
The down-sweep is shown in Figure 3, and pseudocode is given in Algorithm 4. Note that
because this is an exclusive scan (i.e. the total sum is not included in the results), between the
phases we zero the last element of the array. This zero propagates back to the head of the
array during the down-sweep phase. CUDA C Code for the complete algorithm is given in
Listing 2. Like the naïve scan code in the previous section, the code in Listing 2 will run on
only a single thread block. Because it processes two elements per thread, the maximum
array size this code can scan is 1024 elements on G80. Scans of large arrays are discussed
later.

This scan algorithm performs O(n) operations (it performs 2*(n-1) adds and n-1 swaps);
therefore it is work efficient and for large arrays, should perform much better than the naïve
algorithm from the previous section. Algorithmic efficiency is not enough; we must also use
the hardware efficiently. If we examine the operation of this scan on a GPU running
CUDA, we will find that it suffers from many shared memory bank conflicts. These hurt
the performance of every access to shared memory, and significantly affect overall
performance. In the next section we will look at some simple modifications we can make to
the memory address computations to recover much of that lost performance.

Parallel Prefix Sum (Scan) with CUDA

April 2007 8

Algorithm 3: The up-sweep (reduce) phase of a work-efficient sum
scan algorithm (after Blelloch [1]).

Figure 2: An illustration of the up-sweep, or reduce, phase of a
work-efficient sum scan algorithm.

for d := 0 to log2n - 1 do
for k from 0 to n – 1 by 2d + 1 in parallel do
 x[k + 2d + 1 - 1] := x[k + 2d - 1] + x [k + 2d + 1 - 1]

Parallel Prefix Sum (Scan) with CUDA

April 2007 9

Algorithm 4: The down-sweep phase of a work-efficient parallel sum
scan algorithm (after Blelloch [1]).

0 x0 (x0..x1) (x0..x2) (x0..x3) (x0..x4) (x0..x5) (x0..x6)

x0 x2 (x0..x1) x4 (x0..x3) x6 (x0..x5)

x0 (x0..x1) x2 x4 (x4..x5) x6 (x0..x3)

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6 (x0..x7)

Zero

d=0

d=1

d=2

d=3

Figure 3: An illustration of the down-sweep phase of the work-
efficient parallel sum scan algorithm. Notice that the first step zeros
the last element of the array.

 x[n - 1] := 0
for d := log2n down to 0 do

for k from 0 to n – 1 by 2d + 1 in parallel do
 t := x[k + 2d - 1]
 x[k + 2d - 1] := x [k + 2d + 1 - 1]
 x[k + 2d + 1 - 1] := t + x [k + 2d + 1 - 1]

Parallel Prefix Sum (Scan) with CUDA

April 2007 10

Listing 2: CUDA C Code for the work-efficient sum scan of Algorithm
3 and 4. The highlighted blocks are discussed in the next section.

__global__ void prescan(float *g_odata, float *g_idata, int n)
{
 extern __shared__ float temp[];// allocated on invocation

 int thid = threadIdx.x;
 int offset = 1;

 temp[2*thid] = g_idata[2*thid]; // load input into shared memory
 temp[2*thid+1] = g_idata[2*thid+1];

 for (int d = n>>1; d > 0; d >>= 1) // build sum in place up the tree
 {
 __syncthreads();

 if (thid < d)
 {

int ai = offset*(2*thid+1)-1;
 int bi = offset*(2*thid+2)-1;

 temp[bi] += temp[ai];

 }
 offset *= 2;
 }

 if (thid == 0) { temp[n - 1] = 0; } // clear the last element

 for (int d = 1; d < n; d *= 2) // traverse down tree & build scan
 {
 offset >>= 1;
 __syncthreads();

 if (thid < d)
 {

int ai = offset*(2*thid+1)-1;
 int bi = offset*(2*thid+2)-1;

 float t = temp[ai];
 temp[ai] = temp[bi];
 temp[bi] += t;
 }
 }

 __syncthreads();

 g_odata[2*thid] = temp[2*thid]; // write results to device memory
 g_odata[2*thid+1] = temp[2*thid+1];
}

A

B

D

E

C

Parallel Prefix Sum (Scan) with CUDA

April 2007 11

Avoiding Bank Conflicts
The scan algorithm of the previous section performs approximately as much work as an
optimal sequential algorithm. Despite this work efficiency, it is not yet efficient on NVIDIA
GPU hardware due to its memory access patterns. As described in the NVIDIA CUDA
Programming Guide [5], the shared memory exploited by this scan algorithm is made up of
multiple banks. When multiple threads in the same warp access the same bank, a bank
conflict occurs, unless all threads of the warp access an address within the same 32-bit word.
The number of threads that access a single bank is called the degree of the bank conflict. Bank
conflicts cause serialization of the multiple accesses to the memory bank, so that a shared
memory access with a degree-n bank conflict requires n times as many cycles to process as an
access with no conflict. On the G80 GPU, which executes 16 threads in parallel in a half-
warp, the worst case is a degree-16 bank conflict.

Binary tree algorithms such as our work-efficient scan double the stride between memory
accesses at each level of the tree, simultaneously doubling the number of threads that access
the same bank. For deep trees, as we approach the middle levels of the tree the degree of
the bank conflicts increases, and then decreases again near the root where the number of
active threads decreases (due to the if statement in Listing 2). For example if we are
scanning a 512-element array, the shared memory reads and writes in the inner loops of
Listing 2 experience up to 16-way bank conflicts. This has a significant effect on
performance.

Bank conflicts are avoidable in most CUDA computations if care is taken when accessing
__shared__ memory arrays. In convolution, for example, this is just a matter of padding
the 2D array to a width that is not evenly divisible by the number of shared memory banks.
Scan, due to its balanced-tree approach, requires a slightly more complicated approach. We
can avoid most bank conflicts by adding a variable amount of padding to each shared
memory array index we compute. Specifically, we add to the index the value of the index
divided by the number of shared memory banks. This is demonstrated in Figure 4. We start
from the work-efficient scan code in Listing 2, modifying only the highlighted blocks A
through E. To simplify the code changes, we define a macro
CONFLICT_FREE_OFFSET, shown in listing 3.

Listing 3: This macro is used for computing bank-conflict-free shared
memory array indices.

#define NUM_BANKS 16
#define LOG_NUM_BANKS 4

#ifdef ZERO_BANK_CONFLICTS
#define CONFLICT_FREE_OFFSET(n) \
 ((n) >> NUM_BANKS + (n) >> (2 * LOG_NUM_BANKS))
#else
#define CONFLICT_FREE_OFFSET(n) ((n) >> LOG_NUM_BANKS)
#endif

Parallel Prefix Sum (Scan) with CUDA

April 2007 12

The blocks A through E in Listing 2 need to be modified using these macros to avoid bank
conflicts. Two changes must be made to block A. Each thread loads two array elements
from the __device__ array g_idata into the __shared__ array temp. In the
original code, each thread loads two adjacent elements, resulting in interleaved indexing of
the shared memory array, incurring two-way bank conflicts. By instead loading two elements
from separate halves of the array, we avoid these bank conflicts. Also, to avoid bank
conflicts during the tree traversal, we need to add padding to the shared memory array every
NUM_BANKS (16) elements. We do this using the macros in Listing 3 as in the following
code blocks A through E. Note that we store the offsets to the shared memory indices so
that we can use them again at the end of the scan when writing the results back to the output
array g_odata in block E.

Block A:

Blocks B and D are identical:

Block C:

Block E:

g_odata[ai] = temp[ai + bankOffsetA];
g_odata[bi] = temp[bi + bankOffsetB];

if (thid==0) { temp[n – 1 + CONFLICT_FREE_OFFSET(n - 1)] = 0; }

int ai = offset*(2*thid+1)-1;
int bi = offset*(2*thid+2)-1;
ai += CONFLICT_FREE_OFFSET(ai);
bi += CONFLICT_FREE_OFFSET(bi);

int ai = thid;
int bi = thid + (n/2);

int bankOffsetA = CONFLICT_FREE_OFFSET(ai);
int bankOffsetB = CONFLICT_FREE_OFFSET(ai);

temp[ai + bankOffsetA] = g_idata[ai];
temp[bi + bankOffsetB] = g_idata[bi];

Parallel Prefix Sum (Scan) with CUDA

April 2007 13

Figure 4: Simple padding applied to shared memory addresses can
eliminate high-degree bank conflicts during tree-based algorithms
like scan. The top of the diagram shows addressing without
padding and the resulting bank conflicts. The bottom shows padded
addressing with zero bank conflicts.

Parallel Prefix Sum (Scan) with CUDA

April 2007 14

Arrays of Arbitrary Size
The algorithms given in the previous sections scan an array inside a single thread block. This
is fine for small arrays, up to twice the maximum number of threads in a block (since each
thread loads and processes two elements). On G80 GPUs, this limits us to a maximum of
1024 elements. Also, the array size must be a power of two. In this section we explain how
to extend the algorithm to scan large arrays of arbitrary (non-power-of-two) dimensions.
This algorithm is based on the explanation provided by Blelloch [1].

The basic idea is simple. We divide the large array into blocks that each can be scanned by a
single thread block, scan the blocks, and write the total sum of each block to another array
of block sums. We then scan the block sums, generating an array of block increments that
that are added to all elements in their respective blocks. In more detail, let N be the number
of elements in the input array IN, and B be the number of elements processed in a block.
We allocate N/B thread blocks of B/2 threads each (In this section we assume that N is a
multiple of B, and extend to arbitrary dimensions in the next paragraph). A typical choice
for B on G80 GPUs is 512. We use the scan algorithm of the previous sections to scan each
block j independently, storing the resulting scans to sequential locations of an output array
OUT. We make one minor modification to the scan algorithm. Before zeroing the last
element of block j (label B in Listing 2), we store the value (the total sum of block j) to an
auxiliary array SUMS. We then scan SUMS in the same manner, writing the result to an
array INCR. We then add INCR(j) to all elements of block j using a simple uniform add
kernel invoked on N / B thread blocks of B / 2 threads each. This is demonstrated in
Figure 4. For details of the implementation, please see the source code for the sample
“scan_largearray” in the NVIDIA CUDA SDK.

To handle non-power-of-two dimensions, we simply divide the array into a part that is a
multiple of B elements and process it as above (using B/2 threads per block), and process
the remainder with a scan kernel modified to handle non-power-of-2 arrays in a single block.
This kernel pads the shared memory array used out to the next higher power of two and
initializes this extra memory to zero while loading in the data from device memory. For
details see the source code for the sample “scan_largearray”.

Parallel Prefix Sum (Scan) with CUDA

April 2007 15

Final Array of Scanned Values

Initial Array of Arbitrary Values

Scan Block 0 Scan Block 1 Scan Block 2 Scan Block 3

Store Block Sum to Auxiliary Array

Add Scanned Block Sum i to All
Values of Scanned Block i + 1 + + +

Scan Block Sums

Figure 5: Algorithm for performing a sum scan on a large array of
values.

Parallel Prefix Sum (Scan) with CUDA

April 2007 16

Performance

elements CPU Scan (ms) GPU Scan (ms) Speedup

1024 0.002231 0.079492 0.03

32768 0.072663 0.106159 0.68

65536 0.146326 0.137006 1.07

131072 0.726429 0.200257 3.63

262144 1.454742 0.326900 4.45

524288 2.911067 0.624104 4.66

1048576 5.900097 1.118091 5.28

2097152 11.848376 2.099666 5.64

4194304 23.835931 4.062923 5.87

8388688 47.390906 7.987311 5.93

16777216 94.794598 15.854781 5.98

Table 2: Performance of the work-efficient, bank conflict free Scan
implemented in CUDA compared to a sequential scan implemented
in C++. The CUDA scan was executed on an NVIDIA GeForce 8800
GTX GPU, the sequential scan on a single core of an Intel Core Duo
Extreme 2.93 GHz.

Parallel Prefix Sum (Scan) with CUDA

April 2007 17

Conclusion
The scan operation is a simple and powerful parallel primitive with a broad range of
applications. In this technical report we have explained the efficient implementation of scan
using CUDA which achieves a significant speedup over a sequential implementation on a
fast CPU. In the future, we will add example applications of scan such as sorting and stream
compaction.

Parallel Prefix Sum (Scan) with CUDA

April 2007 18

Bibliography
1. Guy E. Blelloch. “Prefix Sums and Their Applications”. In John H. Reif (Ed.), Synthesis

of Parallel Algorithms, Morgan Kaufmann, 1990.
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-90-
190.html

2. Siddhartha Chatterjee and Jan Prins. “COMP 203: Parallel and Distributed Computing.
PRAM Algorithms”. Course Notes. Fall 2005.
http://www.cs.unc.edu/~prins/Classes/203/Handouts/pram.pdf

3. Hillis, W. Daniel. The Connection Machine. The MIT Press, 1985.

4. Hillis, W. Daniel, and Steele Jr., Guy L. Data Parallel Algorithms. Communications of the
ACM 29, 12, pp. 1170–1183. ACM Press, December 1986.
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=7903

5. Horn, Daniel. Stream reduction operations for GPGPU applications. In GPU Gems 2,
M. Pharr, Ed., ch. 36, pp. 573–589. Addison Wesley, 2005
http://developer.nvidia.com/object/gpu_gems_2_home.html

6. NVIDIA Corporation. NVIDIA CUDA Programming Guide. 2007.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

