

November 2007

Histogram
calculation in
CUDA

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

November 2007

Document Change History

Version Date Responsible Reason for Change
1.0 06/15/2007 vpodlozhnyuk Initial release

1.1.0 11/06/2007 vpodlozhnyuk Merge histogram64 & histogram256 documents

1.1.1 11/09/2007 Ignacio Castano Edit and proofread

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract
Histograms are a commonly used analysis tool in image processing and data mining
applications. They show the frequency of occurrence of each data element.

Although trivial to compute on the CPU, histograms are traditionally quite difficult to
compute efficiently on the GPU. Previously proposed methods include using the occlusion
query mechanism (which requires a rendering pass for each histogram bucket), or sorting the
pixels of the image and then searching for the start of each bucket, both of which are quite
expensive.

We can use CUDA and the shared memory to efficiently produce histograms, which can
then either be read back to the host or kept on the GPU for later use. The two CUDA SDK
samples: histogram64 and histogram256 demonstrate different approaches to
efficient histogram computation on GPU using CUDA.

November 2007

Introduction

Figure 1: An example of an image histogram

An image histogram shows the distribution of pixel intensities within an image.
Figure 1 is an example of a histogram with amplitude (or color) on the horizontal axis and
pixel count on the vertical axis.

Histogram64 demonstrates a simple and high-performance implementation of
a 64-bin histogram. Due to the current hardware resource limitations, its approach cannot be
scaled to higher resolutions. 64-bin are enough for many applications, but it’s not well suited
for many image processing applications, like for example histogram equalization.

Histogram256 demonstrates an efficient implementation of a 256-bin
histogram, which makes it suitable for image processing applications that require higher
precision than 64 bins can provide.

November 2007

Motivation
Calculating an image histogram on a sequential device with single thread of execution is
fairly easy:

 Listing 1. Histogram calculation on a single-threaded device. (pseudocode)

Distribution of the computation process between multiple execution threads is possible.
It amounts to:

1) Subdivision of the input data array between execution threads

2) Processing of the sub-arrays by each dedicated execution thread and storing the result
into a certain number of sub histograms. In some cases it may also be possible to reduce the
number of histograms by using atomic operations, but resolving collisions between threads
may turn out to be more expensive.

3) Finally all the sub-histograms need to be merged into a single histogram.

When adapting this algorithm to the GPU several constraints should be kept in mind:

Access to the data[] array is predicatable, but access to result[] array is data-
dependent (random). Due to inherent performance difference between shared and device
memory, especially on random patterns, shared memory is the most optimal storage for the
result[] array.

On G8x hardware, the total size of the shared memory variables is limited by 16KB.

A single thread block should contain 128-256 threads for efficient execution.

G8x hardware does not have native support for atomic shared memory operations.

An immediate deduction from point 3 is to follow “one scalar thread per subhistogram”
tactic, implemented in histogram64 CUDA SDK sample. It has obvious limitations: 16
KB per average 192 threads per block amount to max. 85 bytes per thread. So at a
maximum, per-thread subhistograms with up to 64 single-byte bin counters can fit into shared
memory with this approach. Byte counters also introduce 255-byte limit to the data size
processed by single execution thread, which must be taken into account during data
subdivision between the execution threads.

However, since the hardware executes threads in SIMD-groups, called warps (32 threads on
G80), we can take advantage of this important property for manual (software)
implementation of atomic shared memory operations. With this approach, implemented in
histogram256 CUDA SDK sample, we store per-warp subhistograms, greatly relieving
shared memory size pressure: 6 warps (192 threads) * 256 byte * 4 bytes per counter ==
6KB

The details of the implementation as well as benefits and disadvantages of these two
approaches are described in the following sections.

for(int i = 0; i < BIN_COUNT; i++)
 result[i] = 0;

for(int i = 0; i < dataN; i++){
 result[data[i]]++;

November 2007

Implementation of histogram64

Figure 1. s_Hist[] array layout for histogram64.
s_Hist[] (per-block subhistogram storage) is a 2D byte array with BIN_COUNT rows and
THREAD_N columns as shown in Figure 1. Although it is stored in fast on-chip shared
memory, a bank-conflict-free access pattern needs to be ensured for best performance, if
possible.

For each thread with its own threadPos and pixel color value (which may be the same
for some other threads in the thread block), the shared memory bank number is equal to
(threadPos + color * THREAD_N) / 4) % 16. (See section 5.1.2.4 of the
Programming Guide.)

If THREAD_N is a multiple of 64, the expression reduces to (threadPos / 4) % 16,
which is independent of color value. (threadPos / 4) % 16 is equal to bits

]2:5[of threadPos. A half-warp can be defined as a group of threads in which all
threads have the same upper bits [31 : 4] of threadIdx.x, but any combination of bits [3
: 0].

November 2007

If we just set threadPos equal to threadIdx.x, all thread within a half-warp will access
its own byte “lane”, but these lanes will map to only 4 banks, thus introducing 4-way bank
conflicts. However, shuffling the [5 : 4] and [3 : 0] bit ranges of threadIdx.x will cause all
threads within each warp to access the same byte within double words, stored in 16 different
banks, thus completely avoiding bank conflicts.

Since G80 can efficiently work with arrays of only 4, 8 and 16 bytes per element, input data
is loaded as four-byte words. For the reasons mentioned above, the data size processed by
each thread is limited to 63 double words, and the data size processed by the entire thread
block is limited to THREAD_N * 63 double words. (48,384 bytes for 192 threads)

Figure 2. Shifting start accumulation positions (blue) in order to avoid bank conflicts
during the reduction stage in histogram64.
The last phase of computations in histogram64Kernel() function is the reduction
of per-thread subhistograms into a per-block subhistogram. At this stage each thread is
responsible for its own pixel value (dedicated s_Hist[] row), running through THREAD_N
columns of s_Hist[]. Similarly to the above, the shared memory bank index is equal to
((accumPos + threadIdx.x * THREAD_N) / 4) % 16. If THREAD_N is a multiple
of 64, the expression reduces to (accumPos / 4) % 16. If each thread within a half-
warp starts accumulation at the same position [0 .. THREAD_N-1, then we get 16-way
bank conflicts. However, simply by shifting the thread accumulation start position by 4 *
(threadIdx.x % 16) bytes relative to the half-warp base, we can completely avoid bank
conflicts at this stage as well. This is demonstrated in Figure 2.

November 2007

Listing 2. Writing block subhistogram into global memory.
The per-block histogram is written to global memory. If atomic global memory operations
are available (exposed in CUDA via atomic*() functions) concurrent threads (within the
same block, or within different blocks) can update the same global memory locations
atomically, so thread blocks can merge their results within a single CUDA kernel. Otherwise,
each block must output its own subhistogram, and a separate final reduction kernel
reduceHistogram64Kernel() must be applied.

Implementation of histogram256

Figure 3. s_Hist[] layout for histogram256.
s_Hist[] (per-block sub histogram storage) is 2D word array of WARP_N rows per
BIN_COUNT columns, where each warp of a thread block is responsible for its own sub-
histogram, processing dedicated row. Compared to histogram64, threads no longer
have isolated sub-histograms, but each group of 32 threads (warp) shares the same memory
range, thus introducing intra-warp shared memory collisions. Since atomic shared memory
operations are not natively supported on G8x, special care has to be taken in order to
resolve these collisions and produce correct results.

const int value = threadIdx.x;

#if ATOMICS
 atomicAdd(d_Result + value, sum);
#else
 d_Result[IMUL(BIN_COUNT, blockIdx.x) + value] = sum;

#endif

November 2007

Listing 3. Avoiding intra-warp shared memory collisions.
addData256() is the core of the 256-bin histogram implementation. Let’s describe its
logic in detail.

According to data value (lying within 0 .. 255 range), read from global memory, each warp
thread must increment corresponding value in the s_WarpHistp[] array -- a
“frame”(row) within s_Hist[] array, corresponding to current warp.

Each warp thread reads current warp counter s_WarpHist[data], corresponding to
data value, then locally increments, tags it by warp-local thread ID (equal to
threadIdx.x % 32), and writes it back to the same s_WarpHist[data] position.
In case each warp thread received unique data values (from global memory), there are no
collisions at all and no additional actions need to be done. Otherwise, when two or more
threads collide on the same bin counter, the hardware performs shared memory write
combining, resulting in acceptance of the tagged counter from one thread and rejection from
all other pending threads. After the write attempt each thread queries the shared memory
count value (the same s_WarpHist[data]) and owing to the tag decides whether its
pending increment made its way to shared memory. If true, it becomes idle (masked out by
hardware) until the entire warp is done (all the collisions are resolved). Otherwise, some
other thread has submitted its increment into s_WarpHist[], and current thread needs
to grab the new counter value and perform the same actions. Since each warp is isolated and
warp threads are always synchronized we do not rely on warp scheduling order (which is
undefined). Not more than after 32 loop iterations all the warp threads submit their
increments into s_WarpHist[].

__device__ void addData256(
volatile unsigned int *s_WarpHist,
unsigned int data,
unsigned int threadTag

){
 unsigned int count;

 do{
 count = s_WarpHist[data] & 0x07FFFFFFU;
 count = threadTag | (count + 1);
 s_WarpHist[data] = count;
 }while(s_WarpHist[data] != count);

}

November 2007

Listing 4. Writing block sub-histogram into global memory.

The last phase of computations in histogram256Kernel() is the reduction of per-
warp sub-histograms into a per-block one. Similarly to histogram64Kernel(), the
per-block histogram is written to global memory. If atomic global memory operations are
available (exposed in CUDA via atomic*() functions) concurrent threads (within the
same block, or within different blocks) can update the same global memory locations
atomically, so thread blocks can merge their results within a single CUDA kernel. Otherwise,
each block must output its own sub-histogram, and a separate final reduction kernel
reduceHistogram256Kernel() must be applied.

Performance
Since histogram64 is 100% free from bank conflicts and intra-warp branching
divergence, it runs at extremely high data-independent performance rate, which reaches
10GB/s on G80.

On the other side, the performance of histogram256 depends on the input data, and
that causes bank conflicts and intra-warp branching divergence. When using a random
distribution of input values, histogram256 runs at 5.5GB/s on G80.

Bibliography
1. Wolfram Mathworld. “Histogram” http://mathworld.wolfram.com/Histogram.html

for(int pos = threadIdx.x; pos < BIN_COUNT; pos += blockDim.x)
{
 unsigned int sum = 0;

 for(int base = 0; base < BLOCK_MEMORY; base += BIN_COUNT)
 sum += s_Hist[base + pos] & 0x07FFFFFFU;

#if ATOMICS
 atomicAdd(d_Result + pos, sum);
#else
 d_Result[IMUL(BIN_COUNT, blockIdx.x) + pos] = sum;
#endif

}

November 2007

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

