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 Abstract 
Histograms are a commonly used analysis tool in image processing and data mining 
applications. They show the frequency of occurrence of each data element. 

Although trivial to compute on the CPU, histograms are traditionally quite difficult to 
compute efficiently on the GPU. Previously proposed methods include using the occlusion 
query mechanism (which requires a rendering pass for each histogram bucket), or sorting the 
pixels of the image and then searching for the start of each bucket, both of which are quite 
expensive. 

We can use CUDA and the shared memory to efficiently produce histograms, which can 
then either be read back to the host or kept on the GPU for later use. The two CUDA SDK 
samples: histogram64 and histogram256 demonstrate different approaches to 
efficient histogram computation on GPU using CUDA. 
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Introduction 

 

Figure 1: An example of an image histogram 
 

An image histogram shows the distribution of pixel intensities within an image. 
Figure 1 is an example of a histogram with amplitude (or color) on the horizontal axis and 
pixel count on the vertical axis.  

Histogram64 demonstrates a simple and high-performance implementation of 
a 64-bin histogram. Due to the current hardware resource limitations, its approach cannot be 
scaled to higher resolutions. 64-bin are enough for many applications, but it’s not well suited 
for many image processing applications, like for example histogram equalization. 

Histogram256 demonstrates an efficient implementation of a 256-bin 
histogram, which makes it suitable for image processing applications that require higher 
precision than 64 bins can provide. 
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Motivation 
Calculating an image histogram on a sequential device with single thread of execution is 
fairly easy: 

 
  Listing 1. Histogram calculation on a single-threaded device. (pseudocode) 

Distribution of the computation process between multiple execution threads is possible. 
It amounts to: 

1) Subdivision of the input data array between execution threads 

2) Processing of the sub-arrays by each dedicated execution thread and storing the result 
into a certain number of sub histograms. In some cases it may also be possible to reduce the 
number of histograms by using atomic operations, but resolving collisions between threads 
may turn out to be more expensive. 

3) Finally all the sub-histograms need to be merged into a single histogram. 

When adapting this algorithm to the GPU several constraints should be kept in mind: 

Access to the data[] array is predicatable, but access to result[] array is data-
dependent (random). Due to inherent performance difference between shared and device 
memory, especially on random patterns, shared memory is the most optimal storage for the 
result[] array. 

On G8x hardware, the total size of the shared memory variables is limited by 16KB. 

A single thread block should contain 128-256 threads for efficient execution. 

G8x hardware does not have native support for atomic shared memory operations. 

An immediate deduction from point 3 is to follow “one scalar thread per subhistogram” 
tactic, implemented in histogram64 CUDA SDK sample. It has obvious limitations: 16 
KB per average 192 threads per block amount to max. 85 bytes per thread. So at a 
maximum, per-thread subhistograms with up to 64 single-byte bin counters can fit into shared 
memory with this approach. Byte counters also introduce 255-byte limit to the data size 
processed by single execution thread, which must be taken into account during data 
subdivision between the execution threads. 

However, since the hardware executes threads in SIMD-groups, called warps (32 threads on 
G80), we can take advantage of this important property for manual (software) 
implementation of atomic shared memory operations. With this approach, implemented in 
histogram256 CUDA SDK sample, we store per-warp subhistograms, greatly relieving 
shared memory size pressure: 6 warps (192 threads) * 256 byte * 4 bytes per counter == 
6KB 

The details of the implementation as well as benefits and disadvantages of these two 
approaches are described in the following sections. 

for(int i = 0; i < BIN_COUNT; i++) 
    result[i] = 0; 
 
for(int i = 0; i < dataN; i++){ 
    result[data[i]]++; 
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Implementation of histogram64 

 
Figure 1. s_Hist[] array layout for histogram64. 
s_Hist[] (per-block subhistogram storage) is a 2D byte array with BIN_COUNT rows and 
THREAD_N columns as shown in Figure 1. Although it is stored in fast on-chip shared 
memory, a bank-conflict-free access pattern needs to be ensured for best performance, if 
possible.  

For each thread with its own threadPos and pixel color value (which may be the same 
for some other threads in the thread block), the shared memory bank number is equal to 
(threadPos + color * THREAD_N) / 4) % 16.  (See section 5.1.2.4 of the 
Programming Guide.) 

If THREAD_N is a multiple of 64, the expression reduces to (threadPos / 4) % 16, 
which is independent of color value. (threadPos / 4) % 16 is equal to bits 

]2:5[ of threadPos. A half-warp can be defined as a group of threads in which all 
threads have the same upper bits [31 : 4] of threadIdx.x, but any combination of bits [3 
: 0]. 
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If we just set threadPos equal to threadIdx.x, all thread within a half-warp will access 
its own byte “lane”, but these lanes will map to only 4 banks, thus introducing 4-way bank 
conflicts. However, shuffling the [5 : 4] and [3 : 0] bit ranges of threadIdx.x will cause all 
threads within each warp to access the same byte within double words, stored in 16 different 
banks, thus completely avoiding bank conflicts. 

Since G80 can efficiently work with arrays of only 4, 8 and 16 bytes per element, input data 
is loaded as four-byte words. For the reasons mentioned above, the data size processed by 
each thread is limited to 63 double words, and the data size processed by the entire thread 
block is limited to THREAD_N * 63 double words. (48,384 bytes for 192 threads) 

 
Figure 2. Shifting start accumulation positions (blue) in order to avoid bank conflicts 
during the reduction stage in histogram64. 
The last phase of computations in histogram64Kernel() function is the reduction 
of per-thread subhistograms into a per-block subhistogram. At this stage each thread is 
responsible for its own pixel value (dedicated s_Hist[] row), running through THREAD_N 
columns of s_Hist[]. Similarly to the above, the shared memory bank index is equal to 
((accumPos + threadIdx.x * THREAD_N) / 4) % 16. If THREAD_N is a multiple 
of 64, the expression reduces to (accumPos / 4) % 16. If each thread within a half-
warp starts accumulation at the same position [0 .. THREAD_N-1, then we get 16-way 
bank conflicts. However, simply by shifting the thread accumulation start position by 4 * 
(threadIdx.x % 16) bytes relative to the half-warp base, we can completely avoid bank 
conflicts at this stage as well.  This is demonstrated in Figure 2. 
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Listing 2. Writing block subhistogram into global memory. 
The per-block histogram is written to global memory. If atomic global memory operations 
are available (exposed in CUDA via atomic*() functions) concurrent threads (within the 
same block, or within different blocks) can update the same global memory locations 
atomically, so thread blocks can merge their results within a single CUDA kernel. Otherwise, 
each block must output its own subhistogram, and a separate final reduction kernel 
reduceHistogram64Kernel() must be applied. 

 

Implementation of histogram256 

Figure 3. s_Hist[] layout for histogram256. 
s_Hist[] (per-block sub histogram storage) is 2D word array of WARP_N rows per 
BIN_COUNT columns, where each warp of a thread block is responsible for its own sub-
histogram, processing dedicated row. Compared to histogram64, threads no longer 
have isolated sub-histograms, but each group of 32 threads (warp) shares the same memory 
range, thus introducing intra-warp shared memory collisions. Since atomic shared memory 
operations are not natively supported on G8x, special care has to be taken in order to 
resolve these collisions and produce correct results. 

 

const int value = threadIdx.x; 
 
#if ATOMICS 
    atomicAdd(d_Result + value, sum); 
#else 
    d_Result[IMUL(BIN_COUNT, blockIdx.x) + value] = sum; 

#endif 
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Listing 3. Avoiding intra-warp shared memory collisions. 
addData256() is the core of the 256-bin histogram implementation. Let’s describe its 
logic in detail. 

According to data value (lying within 0 .. 255 range), read from global memory, each warp 
thread must increment corresponding value in the s_WarpHistp[] array -- a 
“frame”(row) within s_Hist[] array, corresponding to current warp.  

Each warp thread reads current warp counter s_WarpHist[data], corresponding to 
data value, then locally increments, tags it by warp-local thread ID (equal to 
threadIdx.x % 32), and  writes it back to the same s_WarpHist[data] position. 
In case each warp thread received unique data values (from global memory), there are no 
collisions at all and no additional actions need to be done. Otherwise, when two or more 
threads collide on the same bin counter, the hardware performs shared memory write 
combining, resulting in acceptance of the tagged counter from one thread and rejection from 
all other pending threads. After the write attempt each thread queries the shared memory 
count value (the same s_WarpHist[data]) and owing to the tag decides whether its 
pending increment made its way to shared memory. If true, it becomes idle (masked out by 
hardware) until the entire warp is done (all the collisions are resolved). Otherwise, some 
other thread has submitted its increment into s_WarpHist[], and current thread needs 
to grab the new counter value and perform the same actions. Since each warp is isolated and 
warp threads are always synchronized we do not rely on warp scheduling order (which is 
undefined). Not more than after 32 loop iterations all the warp threads submit their 
increments into s_WarpHist[]. 

 

__device__ void addData256( 
volatile unsigned int *s_WarpHist,  
unsigned int data,  
unsigned int threadTag 

){ 
    unsigned int count; 
 
    do{ 
        count = s_WarpHist[data] & 0x07FFFFFFU; 
        count = threadTag | (count + 1); 
        s_WarpHist[data] = count; 
    }while(s_WarpHist[data] != count); 

}  
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Listing 4. Writing block sub-histogram into global memory. 
 

The last phase of computations in histogram256Kernel() is the reduction of per-
warp sub-histograms into a per-block one. Similarly to histogram64Kernel(), the 
per-block histogram is written to global memory. If atomic global memory operations are 
available (exposed in CUDA via atomic*() functions) concurrent threads (within the 
same block, or within different blocks) can update the same global memory locations 
atomically, so thread blocks can merge their results within a single CUDA kernel. Otherwise, 
each block must output its own sub-histogram, and a separate final reduction kernel 
reduceHistogram256Kernel() must be applied. 

 

 

 

Performance 
Since histogram64 is 100% free from bank conflicts and intra-warp branching 
divergence, it runs at extremely high data-independent performance rate, which reaches 
10GB/s on G80. 

On the other side, the performance of histogram256 depends on the input data, and 
that causes bank conflicts and intra-warp branching divergence. When using a random 
distribution of input values,  histogram256 runs at 5.5GB/s on G80. 
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for(int pos = threadIdx.x; pos < BIN_COUNT; pos += blockDim.x) 
{ 
    unsigned int sum = 0; 
 
    for(int base = 0; base < BLOCK_MEMORY; base += BIN_COUNT) 
        sum += s_Hist[base + pos] & 0x07FFFFFFU; 
 
#if ATOMICS 
        atomicAdd(d_Result + pos, sum); 
#else 
        d_Result[IMUL(BIN_COUNT, blockIdx.x) + pos] = sum; 
#endif 

} 
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