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 Abstract 
This sample demonstrates how general (non-separable) 2D convolution with large 
convolution kernel sizes can be efficiently implemented in CUDA using CUFFT library. 
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Introduction 
The whitepaper of the convolutionSeparable CUDA SDK sample introduces 
convolution and shows how separable convolution of a 2D data array can be efficiently 
implemented using the CUDA programming model. However, the approach doesn’t extend 
very well to general 2D convolution kernels. In such cases, a better approach is through 
Discrete Fourier Transformation. This latter approach is based on the theorem, central to 
Digital Signal Processing applications, that convolution in geometric space amounts to 
point-wise multiplication (modulation) in frequency space. Therefore, given an efficient 
direct/inverse Discrete Fourier Transformation implementation, Fourier-based convolution 
can be more efficient than a straightforward implementation. 

Implementation Details 
Fast Fourier Transformation (FFT) is a highly parallel “divide and conquer” algorithm for 
the calculation of Discrete Fourier Transformation of single-, or multidimensional signals. It 
can be efficiently implemented using the CUDA programming model and the CUDA 
distribution package includes CUFFT, a CUDA-based FFT library, whose API is modeled 
after the widely used CPU-based “FFTW” library. 

The basic outline of Fourier-based convolution is: 

•  Apply direct FFT to the convolution kernel, 

•  Apply direct FFT to the input data array (or image), 

•  Perform the point-wise multiplication of the two preceding results, 

•  Apply inverse FFT to the result of the multiplication. 

However, there are some issues that need to be taken into account: 

1) The DSP theorem applies to input data (both the image and the convolution kernel) of 
same size. Therefore, assuming the image is bigger than the convolution kernel, which is 
usually the case in practice, the convolution kernel needs to be expanded to the image 
size and padded according to Figure 1. As can be seen on figures 2 and 3 (see below), 
cyclic convolution with the expanded kernel is equivalent to cyclic convolution with 
initial convolution kernel. 
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Figure 1. Expansion of the convolution kernel to the image size: cyclically shift the 
original convolution kernel, so that the central element of the kernel is at (0, 0) 
2) The FFT “performs” cyclic convolution: The convolution kernel wraps around image 
borders in both dimensions. Figure 2 illustrates the convolution computation in the non-
border case – that is when the kernel does not cross any image borders – and Figure 3 
illustrates the same computation in the border case for a cyclic convolution. 

Figure 2. Cyclic convolution: non-border case  

 

 
Figure 3. Cyclic convolution: border case.  
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However, most image processing applications require a different behavior in the border case: 
Instead of wrapping around image borders the convolution kernel should clamp to zero or 
clamp to border when going past a border. For the Fourier-based convolution to exhibit a clamp 
to border behavior, the image needs to be expanded and padded in both dimensions as 
illustrated in Figures 4, 5, 6, and 7. The convolution kernel just needs to be adjusted to the 
new padded sizes (fftW, fftH) as illustrated in Figure 1. 
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Figure 4. Cyclic convolution of the padded image: left border case. Wrapped around 
kernel elements get multiplied by correct data value (pixels). 
 

 
Figure 5. Cyclic convolution of the padded image: right border case. Wrapped 
around kernel elements get multiplied by correct data values (pixels). 
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Figure 6. Cyclic convolution of the padded image: top border case. Wrapped around 
kernel elements are multiplied by correct data values (pixels). 

 
Figure 7. Cyclic convolution of the padded image: bottom border case. Wrapped 
around kernel elements are multiplied by correct data values (pixels). 
Required padding is only kernelW – 1 elements in width and kernelH – 1 elements in height, 
but for different data sizes CUFFT operates with different speeds and different precision. In 
particular, if FFT dimensions are small multiples of powers of N, where N varies from 2 to 8 
for CUFFT, the performance and precision are best. For this reason, we round up each 
padded dimension (dataW + kernelW – 1) and (dataH + kernelH – 1)   to fftW and fftH 
respectively as follows: We round up to the nearest power of two if the padded dimension is 
less than or equal to 1024, or only to the nearest multiple of 512 otherwise, in order to save 
computations and memory bandwidth, since the per-element computation complexity of the 
FFT algorithms grows as the sizes of the Fourier transformation increase. 
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Performance 
Benchmarking FFT-based convolution is somewhat ambiguous issue to be expressed in a 
single rate of filtered pixels per second, since per-element computation complexity of the 
underlying FFT algorithms depends only on the padded image size, and in its turn padded 
image size depends both on the image and convolution kernel sizes. For power of two 
padded image size (fftW, fftH), effective per-element computation complexity is: 

))log()(log())log(( fftHfftWO
dataHdataW

ftHfftWfftHfftWO +≈
⋅

⋅⋅⋅
 

against O(kernelW * kernelH) of a straightforward convolution implementation. 
Increasing the convolution kernel size, still assuming it to be much smaller than of the image 
(as usually observed on practice), we can see that the value of the former expression remains 
approximately the same, but the value of the latter expression increases proportionally to the 
number of elements in the convolution kernel. So, for each “big enough” input image size, 
starting from certain convolution kernel size, FFT-based convolution becomes more 
advantageous than a straightforward implementation in terms of performance. 

 

Table below gives performance rates  

FFT size  256x256 512x512 1024x1024 1536x1536 2048x2048 2560x2560 3072x3072 3584x3584

Execution 
time, ms 

0.75 2.08 6.73 28 42 89 146 178 

FFT 
convolution 
rate, 
MPix/s 

87 125 155 85 98 73 64 71 

 

So, performance depends on FFT size in a non linear way. On average, FFT convolution 
execution rate is 94 MPix/s (including padding). 

The 2D FFT-based approach described in this paper does not take advantage of separable 
filters, which are effectively 1D. Therefore, it should not come as a surprise that for 
separable convolutions, the approach used in convolutionSeparable performs at much higher 
rates. The 2D FFT-based approach is however the better choice for large non-separable 2D 
convolutions, for which straightforward shared memory-based approaches either do not 
perform as well because they require a big apron that introduces too much memory read 
overhead, or are simply not applicable because they require more shared memory than is 
available 
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