

June 2007

Monte-Carlo
Option Pricing

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

June 2007

Document Change History

Version Date Responsible Reason for Change
1.0 03/20/2007 vpodlozhnyuk Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract
The pricing of options is a very important problem encountered in financial engineering
since the creation of organized option trading in 1973. As more computation has been
applied to finance-related problems, finding efficient ways to implement option pricing
models on modern architectures has become more important. This sample shows an
implementation of the Monte-Carlo approach to the problem of option pricing in CUDA.

June 2007

Introduction
The most common definition of an option is an agreement between two parties, the option
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation),
secured by the option seller, to carry out some operation (or exercise the option) at some
moment in the future. [1]

Options come in several varieties: A call option grants its holder the right to buy some
underlying asset (stock, real estate, or any other good with inherent value) at a fixed
predetermined price at some moment in the future. The predetermined price is referred to as
strike price, and future date is called expiration date. Similarly, a put option gives its holder the
right to sell the underlying asset at a strike price on the expiration date.

For a call option, the profit made at expiration date – assuming a same-day sale transaction –
is the difference between the price of the asset at expiration date and the strike price, minus
the option price. For a put option, the profit made at expiration date is the difference
between the strike price and the price of the asset at expiration date, minus the option price.

The price of the asset at expiration date and the strike price therefore strongly influence how
much one would be willing to pay for an option.

Other factors are:

The time to the expiration date, T: Longer periods imply wider range of possible values
for the underlying asset on the expiration date, and thus more uncertainty about the value of
the option.

The riskless rate of return, R, which is the annual interest rate of bonds or other “risk-
free” investment: any amount P of dollars is guaranteed to be worth rTeP • dollars T years
from now if placed today in one of theses investments or in other words, if an asset is worth
P dollars T years from now, it is worth rTeP −• today, which must be taken in account
when evaluating the value of the option today.

Exercise restrictions: So far only so-called European options, which can be exercised only
on the expiration date, have been discussed. But options with different types of exercise
restriction also exist. For example, American-style options are more flexible as they may be
exercised at any time up to and including expiration date and as such, they are generally
priced at least as high as corresponding European options.

June 2007

The Monte-Carlo Method in Finance

The price of the underlying asset tS follows a geometric Brownian motion with constant

drift µ and volatility v : tttt dWSvdtSdS += µ (where tW is Wiener random process:

),0(~0 TNWWX T −=).

The solution of this equation is:

))1,0(exp()),0(exp(

)),0(exp())(exp(

0
2

0

000

NTvTSTvNTS

TvNTSWWvTSSdWvdt
S
dS

TTt
t

t

+•=+•

=+•=−+•=⇒+=

µµ

µµµ

The expected future value is:

))5.0exp((

)5.0exp()exp()),0((exp()exp()(
2

0

2
0

2
0

TvS

TvTSTvNETSSE T

+•=

=••=••=

µ
µµ

By definition, 2
0 5.0)exp()(vrrTSSE T −=⇒•= µ , so

))1,0()5.0exp((2
0 NTvTvrSST +−•= - the possible stock end price, depending on

the random sample N(0, 1), “describing” how exactly the stock price was moving.

The possible prices of derivatives at the period end are derived from the possible underlying
asset’s price:

)0,max(),(XSTSV Tcall −= (If the market stock price at the exercise date is greater than

the strike price, a call option makes its holder a profit of XST − dollars, zero otherwise.)

)0,max(),(Tput SXTSV −= (If the strike price at the exercise date is greater than the

market stock price, a put option makes its holder profit of TSX − , zero otherwise).

One of the possible solutions to estimate the mathematical expectations of),(TSVcall and

),(TSVput is to take some amount of N(0, 1) random samples, calculate the derivative end-
period prices corresponding to each of the samples, and average the generated prices:

N

TSV
TSV

N

i
i

mean

∑
== 1

),(
),(

This is the core of the Monte-Carlo approach to option pricing.

Discounting the approximation of future price by discount factor of Tre ⋅− we get an
approximation of the present-day fair derivative price: Tr

meanfair eTSVSV ⋅−•=),()0,(

June 2007

Though in our particular problem closed-form expressions for)),((TSVE call and

)),((TSVE put are known from the Black-Scholes formula, (which is used to compute
reference analytical values for comparison against Monte-Carlo simulation results), in most
applications of the Monte-Carlo approach closed-form expressions are unknown.

Implementation Details
The first stage of the computation is the generation of a normally distributed pseudo-
random number sequence. For this sample we use a parallel version of the Mersenne Twister
random number generator to generate a uniformly distributed [0, 1] sequence, and the
Cartesian form of the Box-Muller transformation to transform the distribution into a normal
one. For more details on the efficient CUDA implementation of the Mersenne Twister and
Box-Muller transformation please refer to the “MersenneTwister” SDK sample.

Once we’ve generated the desired amount of N(0, 1) samples, the rest of the process of
Monte-Carlo simulation maps very well onto the CUDA programming model:

Listing 1. Main pass of Monte-Carlo simulation.

const int tid = blockDim.x * blockIdx.x + threadIdx.x;
const int threadN = blockDim.x * gridDim.x;
//...

for(int iAccum = tid; iAccum < accumN; iAccum += threadN){
 float sum = 0, sum2 = 0;

 for(int iPath = iAccum; iPath < pathN; iPath += accumN){
 float r = d_Random[iPath];
 //...
 sum += endOptionPrice;
 sum2 += endOptionPrice * endOptionPrice;
 }

 d_Sum[iAccum] = sum;
 d_Sum2[iAccum] = sum2;
}

June 2007

Figure 1. The structure of the reduction loop.

Each CUDA thread is responsible for the computation of several simulation paths and
accumulation into several accumulators. Let’s briefly describe the structure of the kernel:

In this sample the computation grid can be simply treated as an implicit for loop,
encapsulating the code of the CUDA kernel:

for(tid = 0; tid < threadN; tid++) MonteCarloKernelGPU(tid, …);

The first level of nesting within the kernel is the accumulation loop; after the completion of
iAccum iterations, ds_Sum[iAccum] and ds_Sum2[iAccum] contain partial sums and partial sums
of squares. The innermost loop performs the actual “problem-related” computations for
dedicated indices in the random samples array d_Random[] and accumulates the produced
results into iAccum-th position of the accumulation arrays.

After the kernel execution is complete, all the accumN accumulators and all the pathN
simulation paths are covered. d_Sum and d_Sum2 now contain exactly accumN partial sums
and partial sums of squares, which can be processed further.

As long as accumN and the number of threads in the computation grid are multiples of the
warp size (32), memory accesses are perfectly coalesced. The situation where the thread
block sizes are not multiples of the warp size is very rare though, since normally there is no
sense in having under-populated warps and thus hardware resources idling.

The last stage of computation is the completion of the reduction and the computation of the
present day fair option price value and the confidence width. Although this stage is carried
out on the CPU and involves memory readback from the GPU, as long as accumN is small
enough (we’ve chosen 16384), this stage takes only a fraction of the total processing time.

June 2007

Performance
The time for processing a single option on an 80M sample domain is less than 11 ms on the
GeForce8800 GTX

Conclusion
This sample demonstrates that CUDA-enabled GPUs are capable of efficient Monte-Carlo
simulation, significantly outperforming the best available CPU implementations in the field
of option pricing.

June 2007

Bibliography

1. Simon Leger : “Monte Carlo techniques applied to finance”,.
http://homepages.nyu.edu/~sl1544/articles.html

2. Black, Fischer; Myron Scholes (1973). "The Pricing of Options and Corporate
Liabilities". Journal of Political Economy 81 (3): 637-654.

3. Craig Kolb, Matt Pharr (2005). “Option pricing on the GPU”. GPU Gems 2. Chapter 45.

June 2007

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

