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 Abstract 
The pricing of options is a very important problem encountered in financial engineering 
since the creation of organized option trading in 1973. As more computation has been 
applied to finance-related problems, finding efficient ways to implement option pricing 
models on modern architectures has become more important. This sample shows an 
implementation of the Monte-Carlo approach to the problem of option pricing in CUDA. 
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Introduction 
The most common definition of an option is an agreement between two parties, the option 
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation), 
secured by the option seller, to carry out some operation (or exercise the option) at some 
moment in the future. [1] 

Options come in several varieties: A call option grants its holder the right to buy some 
underlying asset (stock, real estate, or any other good with inherent value) at a fixed 
predetermined price at some moment in the future. The predetermined price is referred to as 
strike price, and future date is called expiration date. Similarly, a put option gives its holder the 
right to sell the underlying asset at a strike price on the expiration date. 

For a call option, the profit made at expiration date – assuming a same-day sale transaction – 
is the difference between the price of the asset at expiration date and the strike price, minus 
the option price. For a put option, the profit made at expiration date is the difference 
between the strike price and the price of the asset at expiration date, minus the option price. 

The price of the asset at expiration date and the strike price therefore strongly influence how 
much one would be willing to pay for an option. 

Other factors are: 

The time to the expiration date, T: Longer periods imply wider range of possible values 
for the underlying asset on the expiration date, and thus more uncertainty about the value of 
the option. 

The riskless rate of return, R, which is the annual interest rate of bonds or other “risk-
free” investment: any amount P of dollars is guaranteed to be worth rTeP •  dollars T years 
from now if placed today in one of theses investments or in other words, if an asset is worth 
P dollars T years from now, it is worth rTeP −•  today, which must be taken in account 
when evaluating the value of the option today. 

Exercise restrictions: So far only so-called European options, which can be exercised only 
on the expiration date, have been discussed. But options with different types of exercise 
restriction also exist. For example, American-style options are more flexible as they may be 
exercised at any time up to and including expiration date and as such, they are generally 
priced at least as high as corresponding European options. 
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The Monte-Carlo Method in Finance 

The price of the underlying asset tS  follows a geometric Brownian motion with constant 

drift µ  and volatility v : tttt dWSvdtSdS += µ  (where tW is Wiener random process: 

),0(~0 TNWWX T −= ). 

The solution of this equation is: 
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The expected future value is: 
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0 NTvTvrSST +−•=  - the possible stock end price, depending on 

the random sample N(0, 1), “describing” how exactly the stock price was moving. 

The possible prices of derivatives at the period end are derived from the possible underlying 
asset’s price: 

)0,max(),( XSTSV Tcall −=  (If the market stock price at the exercise date is greater than 

the strike price, a call option makes its holder a profit of XST −  dollars, zero otherwise.) 

)0,max(),( Tput SXTSV −=  (If the strike price at the exercise date is greater than the 

market stock price, a put option makes its holder profit of TSX − , zero otherwise). 

One of the possible solutions to estimate the mathematical expectations of ),( TSVcall and 

),( TSVput is to take some amount of N(0, 1) random samples, calculate the derivative end-
period prices corresponding to each of the samples, and average the generated prices: 
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This is the core of the Monte-Carlo approach to option pricing. 

Discounting the approximation of future price by discount factor of Tre ⋅− we get an 
approximation of the present-day fair derivative price: Tr

meanfair eTSVSV ⋅−•= ),()0,(  
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Though in our particular problem closed-form expressions for )),(( TSVE call  and 

)),(( TSVE put  are known from the Black-Scholes formula, (which is used to compute 
reference analytical values for comparison against Monte-Carlo simulation results), in most 
applications of the Monte-Carlo approach closed-form expressions are unknown. 

 

Implementation Details 
The first stage of the computation is the generation of a normally distributed pseudo-
random number sequence. For this sample we use a parallel version of the Mersenne Twister 
random number generator to generate a uniformly distributed [0, 1] sequence, and the 
Cartesian form of the Box-Muller transformation to transform the distribution into a normal 
one. For more details on the efficient CUDA implementation of the Mersenne Twister and 
Box-Muller transformation please refer to the “MersenneTwister” SDK sample. 

Once we’ve generated the desired amount of N(0, 1) samples, the rest of the process of 
Monte-Carlo simulation maps very well onto the CUDA programming model: 

 
Listing 1. Main pass of Monte-Carlo simulation.  

 

const int     tid = blockDim.x * blockIdx.x + threadIdx.x; 
const int threadN = blockDim.x * gridDim.x; 
//... 
 
for(int iAccum = tid; iAccum < accumN; iAccum += threadN){ 
    float sum = 0, sum2 = 0; 
 
    for(int iPath = iAccum; iPath < pathN; iPath += accumN){ 
        float r = d_Random[iPath]; 
        //... 
        sum  += endOptionPrice; 
        sum2 += endOptionPrice * endOptionPrice; 
    } 
 
    d_Sum[iAccum] = sum; 
    d_Sum2[iAccum] = sum2; 
} 
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Figure 1. The structure of the reduction loop. 

Each CUDA thread is responsible for the computation of several simulation paths and 
accumulation into several accumulators. Let’s briefly describe the structure of the kernel:   

In this sample the computation grid can be simply treated as an implicit for loop, 
encapsulating the code of the CUDA kernel:  

for(tid = 0; tid < threadN; tid++) MonteCarloKernelGPU(tid, …); 

The first level of nesting within the kernel is the accumulation loop; after the completion of 
iAccum iterations, ds_Sum[iAccum] and ds_Sum2[iAccum] contain partial sums and partial sums 
of squares. The innermost loop performs the actual “problem-related” computations for 
dedicated indices in the random samples array d_Random[] and accumulates the produced 
results into iAccum-th position of the accumulation arrays. 

After the kernel execution is complete, all the accumN accumulators and all the pathN 
simulation paths are covered. d_Sum and d_Sum2 now contain exactly accumN partial sums 
and partial sums of squares, which can be processed further. 

As long as accumN and the number of threads in the computation grid are multiples of the 
warp size (32), memory accesses are perfectly coalesced. The situation where the thread 
block sizes are not multiples of the warp size is very rare though, since normally there is no 
sense in having under-populated warps and thus hardware resources idling. 

The last stage of computation is the completion of the reduction and the computation of the 
present day fair option price value and the confidence width. Although this stage is carried 
out on the CPU and involves memory readback from the GPU, as long as accumN is small 
enough (we’ve chosen 16384), this stage takes only a fraction of the total processing time.  
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Performance 
The time for processing a single option on an 80M sample domain is less than 11 ms on the 
GeForce8800 GTX 

Conclusion 
This sample demonstrates that CUDA-enabled GPUs are capable of efficient Monte-Carlo 
simulation, significantly outperforming the best available CPU implementations in the field 
of option pricing. 
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