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Chapter 1. 
Introduction to CUDA 

1.1 The Graphics Processor Unit as a 
Data-Parallel Computing Device 
In a matter of just a few years, the programmable graphics processor unit has 
evolved into an absolute computing workhorse, as illustrated by Figure 1-1. With 
multiple cores driven by very high memory bandwidth, today's GPUs offer 
incredible resources for both graphics and non-graphics processing. 

 

 
 

GFLOPS 

G80GL = Quadro 5600 FX 

G80 = GeForce 8800 GTX 

G71 = GeForce 7900 GTX 

G70 = GeForce 7800 GTX 

NV40 = GeForce 6800 Ultra 

NV35 = GeForce FX 5950 Ultra 

NV30 = GeForce FX 5800 

G80GL 

Figure 1-1. Floating-Point Operations per Second for the  
CPU and GPU 

 

The main reason behind such an evolution is that the GPU is specialized for 
compute-intensive, highly parallel computation – exactly what graphics rendering is 
about – and therefore is designed such that more transistors are devoted to data 
processing rather than data caching and flow control, as schematically illustrated by 
Figure 1-2.  
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Figure 1-2. The GPU Devotes More Transistors to Data 
Processing 

 

More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations – the same program is executed on many 
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control; and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets such as arrays can use a data-parallel 
programming model to speed up the computations. In 3D rendering large sets of 
pixels and vertices are mapped to parallel threads. Similarly, image and media 
processing applications such as post-processing of rendered images, video encoding 
and decoding, image scaling, stereo vision, and pattern recognition can map image 
blocks and pixels to parallel processing threads. In fact, many algorithms outside the 
field of image rendering and processing are accelerated by data-parallel processing, 
from general signal processing or physics simulation to computational finance or 
computational biology. 

Up until now, however, accessing all that computational power packed into the 
GPU and efficiently leveraging it for non-graphics applications remained tricky: 

 The GPU could only be programmed through a graphics API, imposing a high 
learning curve to the novice and the overhead of an inadequate API to the non-
graphics application. 

 The GPU DRAM could be read in a general way – GPU programs can gather 
data elements from any part of DRAM – but could not be written in a general 
way – GPU programs cannot scatter information to any part of DRAM –, 
removing a lot of the programming flexibility readily available on the CPU. 

 Some applications were bottlenecked by the DRAM memory bandwidth, under-
utilizing the GPU’s computational power. 

This document describes a novel hardware and programming model that is a direct 
answer to these problems and exposes the GPU as a truly generic data-parallel 
computing device. 

 

2  CUDA Programming Guide Version 1.0 
 



 Chapter 1. Introduction to CUDA 
 

1.2 CUDA: A New Architecture for Computing on 
the GPU 
CUDA stands for Compute Unified Device Architecture and is a new hardware 
and software architecture for issuing and managing computations on the GPU as a 
data-parallel computing device without the need of mapping them to a graphics 
API. It is available for the GeForce 8 Series, Quadro FX 5600/4600, and Tesla 
solutions. The operating system’s multitasking mechanism is responsible for 
managing the access to the GPU by several CUDA and graphics applications 
running concurrently. 

The CUDA software stack is composed of several layers as illustrated in Figure 1-3: 
a hardware driver, an application programming interface (API) and its runtime, and 
two higher-level mathematical libraries of common usage, CUFFT and CUBLAS 
that are both described in separate documents. The hardware has been designed to 
support lightweight driver and runtime layers, resulting in high performance. 

 

 

GPU 

CPU 

CUDA Runtime 

CUDA Libraries 

CUDA Driver 

Application 

Figure 1-3. Compute Unified Device Architecture Software 
Stack 

 

The CUDA API comprises an extension to the C programming language for a 
minimum learning curve (see Chapter 4). 
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CUDA provides general DRAM memory addressing as illustrated in Figure 1-4 for 
more programming flexibility: both scatter and gather memory operations. From a 
programming perspective, this translates into the ability to read and write data at any 
location in DRAM, just like on a CPU. 
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Figure 1-4. The Gather and Scatter Memory Operations 
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CUDA features a parallel data cache or on-chip shared memory with very fast 
general read and write access, that threads use to share data with each other (see 
Chapter 3). As illustrated in Figure 1-5, applications can take advantage of it by 
minimizing overfetch and round-trips to DRAM and therefore becoming less 
dependent on DRAM memory bandwidth. 

 

 

Without shared memory 

With shared memory 
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ALU Control 

Cache 
ALU ALU ... 

d0 d1 d2 d3 

ALU Control

Cache
ALU ALU ... 
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… 

… 
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Figure 1-5. Shared Memory Brings Data Closer to the ALUs 
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1.3 Document’s Structure 
This document is organized into the following chapters: 

 Chapter 1 contains a general introduction to CUDA. 
 Chapter 2 outlines the programming model. 
 Chapter 3 describes its hardware implementation. 
 Chapter 4 describes the CUDA API and runtime. 
 Chapter 5 gives some guidance on how to achieve maximum performance. 
 Chapter 6 illustrates the previous chapters by walking through the code of some 

simple example. 
 Appendix A gives the technical specifications of various devices. 
 Appendix B lists the mathematical functions supported in CUDA. 
 Appendix C lists the atomic functions supported in CUDA. 
 Appendix D is the CUDA runtime API reference. 
 Appendix E is the CUDA driver API reference. 
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Chapter 2. 
Programming Model 

2.1 A Highly Multithreaded Coprocessor 
When programmed through CUDA, the GPU is viewed as a compute device capable of 
executing a very high number of threads in parallel. It operates as a coprocessor to 
the main CPU, or host: In other words, data-parallel, compute-intensive portions of 
applications running on the host are off-loaded onto the device. 

More precisely, a portion of an application that is executed many times, but 
independently on different data, can be isolated into a function that is executed on 
the device as many different threads. To that effect, such a function is compiled to 
the instruction set of the device and the resulting program, called a kernel, is 
downloaded to the device. 

Both the host and the device maintain their own DRAM, referred to as host memory 
and device memory, respectively. One can copy data from one DRAM to the other 
through optimized API calls that utilize the device’s high-performance Direct 
Memory Access (DMA) engines. 

2.2 Thread Batching 
The batch of threads that executes a kernel is organized as a grid of thread blocks as 
described in Sections 2.2.1 and 2.2.2 and illustrated in Figure 2-1. 

2.2.1 Thread Block 
A thread block is a batch of threads that can cooperate together by efficiently 
sharing data through some fast shared memory and synchronizing their execution to 
coordinate memory accesses. More precisely, one can specify synchronization points 
in the kernel, where threads in a block are suspended until they all reach the 
synchronization point. 

Each thread is identified by its thread ID, which is the thread number within the 
block. To help with complex addressing based on the thread ID, an application can 
also specify a block as a two- or three-dimensional array of arbitrary size and 
identify each thread using a 2- or 3-component index instead. For a two-
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dimensional block of size (Dx, Dy), the thread ID of a thread of index (x, y) is 
(x + y Dx) and for a three-dimensional block of size (Dx, Dy, Dz), the thread ID of a 
thread of index (x, y, z) is (x + y Dx + z Dx Dy). 

2.2.2 Grid of Thread Blocks 
There is a limited maximum number of threads that a block can contain. However, 
blocks of same dimensionality and size that execute the same kernel can be batched 
together into a grid of blocks, so that the total number of threads that can be 
launched in a single kernel invocation is much larger. This comes at the expense of 
reduced thread cooperation, because threads in different thread blocks from the 
same grid cannot communicate and synchronize with each other. This model allows 
kernels to efficiently run without recompilation on various devices with different 
parallel capabilities: A device may run all the blocks of a grid sequentially if it has 
very few parallel capabilities, or in parallel if it has a lot of parallel capabilities, or 
usually a combination of both. 

Each block is identified by its block ID, which is the block number within the grid. 
To help with complex addressing based on the block ID, an application can also 
specify a grid as a two-dimensional array of arbitrary size and identify each block 
using a 2-component index instead. For a two-dimensional block of size (Dx, Dy), 
the block ID of a block of index (x, y) is (x + y Dx). 
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Figure 2-1. Thread Batching 
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2.3 Memory Model 
A thread that executes on the device has only access to the device’s DRAM and 
on-chip memory through the following memory spaces, as illustrated in Figure 2-2: 

 Read-write per-thread registers, 
 Read-write per-thread local memory, 
 Read-write per-block shared memory, 
 Read-write per-grid global memory, 
 Read-only per-grid constant memory, 
 Read-only per-grid texture memory. 

The global, constant, and texture memory spaces can be read from or written to by 
the host and are persistent across kernel launches by the same application. 

The global, constant, and texture memory spaces are optimized for different 
memory usages (see Sections 5.1.2.1, 5.1.2.2, and 5.1.2.3). Texture memory also 
offers different addressing modes, as well as data filtering, for some specific data 
formats (see Section 4.3.4). 
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Figure 2-2. Memory Model 
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Chapter 3. 
Hardware Implementation 

3.1 A Set of SIMD Multiprocessors with On-Chip 
Shared Memory 
The device is implemented as a set of multiprocessors as illustrated in Figure 3-1. Each 
multiprocessor has a Single Instruction, Multiple Data architecture (SIMD): At any 
given clock cycle, each processor of the multiprocessor executes the same 
instruction, but operates on different data. 

Each multiprocessor has on-chip memory of the four following types: 

 One set of local 32-bit registers per processor, 
 A parallel data cache or shared memory that is shared by all the processors and 

implements the shared memory space, 
 A read-only constant cache that is shared by all the processors and speeds up reads 

from the constant memory space, which is implemented as a read-only region of 
device memory, 

 A read-only texture cache that is shared by all the processors and speeds up reads 
from the texture memory space, which is implemented as a read-only region of 
device memory. 

The local and global memory spaces are implemented as read-write regions of 
device memory and are not cached. 

Each multiprocessor accesses the texture cache via a texture unit that implements the 
various addressing modes and data filtering mentioned in Section 2.3. 
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A set of SIMD multiprocessors with on-chip shared memory. 

Figure 3-1. Hardware Model 
 

3.2 Execution Model 
A grid of thread blocks is executed on the device by executing one or more blocks 
on each multiprocessor using time slicing: Each block is split into SIMD groups of 
threads called warps; each of these warps contains the same number of threads, 
called the warp size, and is executed by the multiprocessor in a SIMD fashion; a thread 
scheduler periodically switches from one warp to another to maximize the use of the 
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multiprocessor’s computational resources. A half-warp is either the first or second 
half of a warp. 

The way a block is split into warps is always the same; each warp contains threads of 
consecutive, increasing thread IDs with the first warp containing thread 0. 
Section 2.2.1 describes how thread IDs relate to thread indices in the block. 

A block is processed by only one multiprocessor, so that the shared memory space 
resides in the on-chip shared memory leading to very fast memory accesses. The 
multiprocessor’s registers are allocated among the threads of the block. If the 
number of registers used per thread multiplied by the number of threads in the 
block is greater than the total number of registers per multiprocessor, the block 
cannot be executed and the corresponding kernel will fail to launch.    

Several blocks can be processed by the same multiprocessor concurrently by 
allocating the multiprocessor’s registers and shared memory among the blocks. 

The issue order of the warps within a block is undefined, but their execution can be 
synchronized, as mentioned in Section 2.2.1, to coordinate global or shared memory 
accesses. 

The issue order of the blocks within a grid of thread blocks is undefined and there is 
no synchronization mechanism between blocks, so threads from two different 
blocks of the same grid cannot safely communicate with each other through global 
memory during the execution of the grid. 

If a non-atomic instruction executed by a warp writes to the same location in global 
or shared memory for more than one of the threads of the warp, the number of 
serialized writes that occur to that location and the order in which they occur is 
undefined, but one of the writes is guaranteed to succeed. If an atomic instruction 
(see Section 4.4.6) executed by a warp reads, modifies, and writes to the same 
location in global memory for more than one of the threads of the warp, each read, 
modify, write to that location occurs and they are all serialized, but the order in 
which they occur is undefined. 

3.3 Compute Capability 
The compute capability of a device is defined by a major revision number and a minor 
revision number. 

Devices with the same major revision number are of the same core architecture. The 
GeForce 8 Series, Quadro FX 5600/4600, and Tesla solutions are of compute 
capability 1.x (Their major revision number is 1). 

The minor revision number corresponds to an incremental improvement to the core 
architecture, possibly including new features. The GeForce 8800 Series, 
Quadro FX 5600/4600, and Tesla solutions are of compute capability 1.0 (their 
minor revision number is 0) and the GeForce 8600 and 8500 Series of compute 
capability 1.1. 

The technical specifications of the various compute capabilities are given in 
Appendix A. 
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3.4 Multiple Devices 
The use of multiple GPUs as CUDA devices by an application running on a multi-
GPU system is only guaranteed to work if theses GPUs are of the same type. If the 
system is in SLI mode however, only one GPU can be used as a CUDA device since 
all the GPUs are fused at the lowest levels in the driver stack. SLI mode needs to be 
turned off in the control panel for CUDA to be able to see each GPU as separate 
devices. 

3.5 Mode Switches 
GPUs dedicate some DRAM memory to the so-called primary surface, which is used 
to refresh the display device whose output is viewed by the user. When users initiate 
a mode switch of the display by changing the resolution or bit depth of the display 
(using NVIDIA control panel or the Display control panel on Windows), the 
amount of memory needed for the primary surface changes. For example, if the user 
changes the display resolution from 1280x1024x32-bit to 1600x1200x32-bit, the 
system must dedicate 7.68 MB to the primary surface rather than 5.24 MB. (Full-
screen graphics applications running with anti-aliasing enabled may require much 
more display memory for the primary surface.) On Windows, other events that may 
initiate display mode switches include launching a full-screen DirectX application, 
hitting Alt+Tab to task switch away from a full-screen DirectX application, or 
hitting Ctrl+Alt+Del to lock the computer. 

If a mode switch increases the amount of memory needed for the primary surface, 
the system may have to cannibalize memory allocations dedicated to CUDA 
applications, resulting in a crash of these applications.
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Chapter 4. 
Application Programming Interface 

4.1 An Extension to the C Programming 
Language 
The goal of the CUDA programming interface is to provide a relatively simple path 
for users familiar with the C programming language to easily write programs for 
execution by the device. 

It consists of: 

 A minimal set of extensions to the C language, described in Section 4.2, that 
allow the programmer to target portions of the source code for execution on the 
device; 

 A runtime library split into: 
 A host component, described in Section 4.5, that runs on the host and 

provides functions to control and access one or more compute devices 
from the host; 

 A device component, described in Section 4.4, that runs on the device and 
provides device-specific functions; 

 A common component, described in Section 4.3, that provides built-in 
vector types and a subset of the C standard library that are supported in 
both host and device code. 

It should be emphasized that the only functions from the C standard library that are 
supported to run on the device are the functions provided by the common runtime 
component. 

4.2 Language Extensions 
The extensions to the C programming language are four-fold: 

 Function type qualifiers to specify whether a function executes on the host or on 
the device and whether it is callable from the host or from the device 
(Section 4.2.1); 

 Variable type qualifiers to specify the memory location on the device of a 
variable (Section 4.2.2); 
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 A new directive to specify how a kernel is executed on the device from the
(Section 

 host 

es (Section 4.2.4). 

com Section 4.2.5. A detailed description of nvcc 

 or a warning on some violations of these 

4.2.1 
 

lifier declares a function that is: 

vice 

4.2.1.2 
lifier declares a function as being a kernel. Such a function is: 

vice, 

4.2.1.3 

e host, 

unction with only the __host__ qualifier or to declare 
, __device__, or __global__ qualifier; in either 

th the host and 

4.2.1.4 
 functions are always inlined. 

 __global__ functions do not support recursion. 

annot declare static variables inside 

 functi her hand, are supported. 

4.2.3); 
 Four built-in variables that specify the grid and block dimensions and the block 

and thread indic
Each source file containing these extensions must be compiled with the CUDA 

piler nvcc, as briefly described in 
can be found in a separate document. 

Each of these extensions come with some restrictions described in each of the 
sections below. nvcc will give an error
restrictions, but some of them cannot be detected. 

Function Type Qualifiers 
4.2.1.1 __device__ 

The __device__ qua

 Executed on the de
 Callable from the device only. 

__global__ 
The __global__ qua

 Executed on the de
 Callable from the host only. 

__host__ 
The __host__ qualifier declares a function that is: 

 Executed on th
 Callable from the host only. 

It is equivalent to declare a f
it without any of the __host__
case the function is compiled for the host only. 

However, the __host__ qualifier can also be used in combination with the 
__device__ qualifier, in which case the function is compiled for bo
the device. 

Restrictions 
__device__

__device__ and

__device__ and __global__ functions c
their body. 

__device__ and __global__ functions cannot have a variable number of 
arguments. 

__device__ functions cannot have their address taken; function pointers to 
__global__ ons, on the ot
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The __global__ and __host__ qualifiers cannot be used together. 

__global__ functions must have void return type. 

Any call to a __global__ function must specify its execution configuration as 

ecution. 

4.2.2 iers 
 

riable that resides on the device. 

er type qualifiers defined in the next three sections may be 
he 

ithin the grid and from the host through the 

4.2.2.2 
ptionally used together with __device__, 

 application, 
hin the grid and from the host through the 

4.2.2.3 
Th ualifier, optionally used together with __device__, declares a 

the block, 

y of shared variables within a thread, however 
 a __syncthreads() 
eed to be visible. The 

described in Section 4.2.3. 

A call to a __global__ function is asynchronous, meaning it returns before the 
device has completed its ex

__global__ function parameters are currently passed via shared memory to the 
device and limited to 256 bytes. 

Variable Type Qualif
4.2.2.1 __device__ 

 declares a vaThe __device__ qualifier

At most one of the oth
used together with __device__ to further specify which memory space t
variable belongs to. If none of them is present, the variable: 

 Resides in global memory space, 
 Has the lifetime of an application, 
 Is accessible from all the threads w

runtime library. 

__constant__ 
The __constant__ qualifier, o
declares a variable that: 

 Resides in constant memory space, 
 Has the lifetime of an
 Is accessible from all the threads wit

runtime library. 

__shared__ 
e __shared__ q

variable that: 

 Resides in the shared memory space of a thread block, 
 Has the lifetime of 
 Is only accessible from all the threads within the block. 

There is full sequential consistenc
relaxed ordering across threads. Only after the execution of
(Section 4.4.2) do the writes from other threads are guarant
compiler is free to optimize the reads and writes to shared memory as long as the 
previous statement is met. 

When declaring a variable in shared memory as an external array such as 
extern __shared__ float shared[]; 
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the size of the array is determined at launch time (see Section 4.2.3). All variables 

if 
declared in this fashion, start at the same address in memory, so that the layout of 
the variables in the array must be explicitly managed through offsets. For example, 
one wants the equivalent of 
short array0[128]; 
float array1[64]; 
int   array2[256]; 

in dynamically allocated shared memory, one could declare and initialize the arrays 
the following way: 
extern __shared__ char array[]; 
__device__ void func()      // __device__ or __global__ function 
{ 
    short* array0 = (short*)array;  
    float* array1 = (float*)&array0[128]; 
    int*   array2 =   (int*)&array1[64]; 
} 

4.2.2.4 strictions 
e not allowed on struct and union members, on formal 

her. 

. 

the 

red__ variables cannot have an initialization as part of their declaration. 

se to 

ot 

l if a 

ill 

 executed on the device are supported as long as the compiler 

memory in code that is executed 

. 

Re
These qualifiers ar
parameters and on local variables within a function that executes on the host. 

__shared__ and __constant__ cannot be used in combination with each ot

__shared__ and __constant__ variables have implied static storage. 

__device__ and __constant__ variables are only allowed at file scope

__constant__ variables cannot be assigned to from the device, only from 
host. 

__sha

An automatic variable declared in device code without any of these qualifiers 
generally resides in a register. However in some cases the compiler might choo
place it in local memory. This is often the case for large structures or arrays that 
would consume too much register space, and arrays for which the compiler cann
determine that they are indexed with constant quantities. Inspection of the ptx 
assembly code (obtained by compiling with the –ptx or -keep option) will tel
variable has been placed in local memory during the first compilation phases as it 
will be declared using the .local mnemonic and accessed using the ld.local 
and st.local mnemonics. If it has not, subsequent compilation phases might st
decide otherwise though if they find it consumes too much register space for the 
targeted architecture. 

Pointers in code that is
is able to resolve whether they point to either the shared memory space or the 
global memory space, otherwise they are restricted to only point to memory 
allocated or declared in the global memory space. 

Dereferencing a pointer either to global or shared 
on the host or to host memory in code that is executed on the device results in an 
undefined behavior, most often in a segmentation fault and application termination
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4.2.3 Execution Configuration 
Any call to a __global__ function must specify the execution configuration for that 
call. 

The execution configuration defines the dimension of the grid and blocks that will 
be used to execute the function on the device. It is specified by inserting an 
expression of the form <<< Dg, Db, Ns >>> between the function name and 
the parenthesized argument list, where: 

 Dg is of type dim3 (see Section 4.3.1.2) and specifies the dimension and size of 
the grid, such that Dg.x * Dg.y equals the number of blocks being launched; 

 Db is of type dim3 (see Section 4.3.1.2) and specifies the dimension and size of 
each block, such that Db.x * Db.y * Db.z equals the number of threads per 
block; 

 Ns is of type size_t and specifies the number of bytes in shared memory that 
is dynamically allocated per block for this call in addition to the statically 
allocated memory; this dynamically allocated memory is used by any of the 
variables declared as an external array as mentioned in Section 4.2.2.3; Ns is an 
optional argument which defaults to 0. 

The arguments to the execution configuration are evaluated before the actual 
function arguments. 

As an example, a function declared as 
__global__ void Func(float* parameter); 

must be called like this: 
Func<<< Dg, Db, Ns >>>(parameter); 

4.2.4 Built-in Variables 
4.2.4.1 gridDim 

This variable is of type dim3 (see Section 4.3.1.2) and contains the dimensions of 
the grid. 

4.2.4.2 blockIdx 
This variable is of type uint3 (see Section 4.3.1.1) and contains the block index 
within the grid. 

4.2.4.3 blockDim 
This variable is of type dim3 (see Section 4.3.1.2) and contains the dimensions of 
the block. 

4.2.4.4 threadIdx 
This variable is of type uint3 (see Section 4.3.1.1) and contains the thread index 
within the block. 

4.2.4.5 Restrictions 
 It is not allowed to take the address of any of the built-in variables. 
 It is not allowed to assign values to any of the built-in variables. 
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4.2.5 Compilation with NVCC 
nvcc is a compiler driver that simplifies the process of compiling CUDA code: It 
provides simple and familiar command line options and executes them by invoking 
the collection of tools that implement the different compilation stages. 

nvcc’s basic workflow consists in separating device code from host code and 
compiling the device code into a binary form or cubin object. The generated host 
code is output either as C code that is left to be compiled using another tool or as 
object code directly by invoking the host compiler during the last compilation stage. 

Applications can either ignore the generated host code and load the cubin object 
onto the device and launch the device code using the CUDA driver API (see 
Section 4.5.3), or link to the generated host code, which includes the cubin object as 
a global initialized data array and contains a translation of the execution 
configuration syntax described in Section 4.2.3 into the necessary CUDA runtime 
startup code to load and launch each compiled kernel (see Section 4.5.2). 

The front end of the compiler processes CUDA source files according to C++ 
syntax rules. However, only the C subset of C++ is supported. This means that 
C++ specific features such as classes, inheritance, or declaration of variables within 
basic blocks are not supported. As a consequence of the use of C++ syntax rules, 
void pointers (e.g. returned by malloc()) cannot be assigned to non-void pointers 
without a typecast. 

A detailed description of nvcc can be found in a separate document. 

4.3 Common Runtime Component 
The common runtime component can be used by both host and device functions. 

4.3.1 Built-in Vector Types 
4.3.1.1 char1, uchar1, char2, uchar2, char3, uchar3, 

char4, uchar4, short1, ushort1, short2, ushort2, 
short3, ushort3, short4, ushort4, int1, uint1, 
int2, uint2, int3, uint3, int4, uint4, long1, 
ulong1, long2, ulong2, long3, ulong3, long4, 
ulong4, float1, float2, float3, float4 
These are vector types derived from the basic integer and floating-point types. They 
are structures and the 1st, 2nd, 3rd, and 4th components are accessible through the 
fields x, y, z, and w, respectively. They all come with a constructor function of the 
form make_<type name>; for example, 
int2 make_int2(int x, int y); 

which creates a vector of type int2 with value (x, y). 
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4.3.1.2 dim3 Type 
This type is an integer vector type based on uint3 that is used to specify 
dimensions. When defining a variable of type dim3, any component left unspecified 
is initialized to 1. 

4.3.2 Mathematical Functions 
Table B-1 contains a comprehensive list of the C/C++ standard library 
mathematical functions that are currently supported, along with their respective 
error bounds when executed on the device. 

When executed in host code, a given function uses the C runtime implementation if 
available. 

4.3.3 Time Function 
clock_t clock(); 

returns the value of a counter that is incremented every clock cycle. 

Sampling this counter at the beginning and at the end of a kernel, taking the 
difference of the two samples, and recording the result per thread provides a 
measure for each thread of the number of clock cycles taken by the device to 
completely execute the thread, but not of the number of clock cycles the device 
actually spent executing thread instructions. The former number is greater that the 
latter since threads are time sliced. 

4.3.4 Texture Type 
CUDA supports a subset of the texturing hardware that the GPU uses for graphics 
to access texture memory. Reading data from texture memory instead of global 
memory can have several performance benefits as described in Section 5.4. 

Texture memory is read from kernels using device functions called texture fetches, 
described in Section 4.4.5. The first parameter of a texture fetch specifies an object 
called a texture reference. 

A texture reference defines which part of texture memory is fetched. It must be 
bound through host runtime functions (Sections 0 and 4.5.3.7) to some region of 
memory, called a texture, before it can be used by a kernel. Several distinct texture 
references might be bound to the same texture or to textures that overlap in 
memory. 

A texture reference has several attributes. One of them is its dimensionality that 
specifies whether the texture is addressed as a one-dimensional array using one 
texture coordinate, or as a two-dimensional array using two texture coordinates. 
Elements of the array are called texels, short for “texture elements.” 

Other attributes define the input and output data types of the texture fetch, as well 
as how the input coordinates are interpreted and what processing should be done. 
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4.3.4.1 Texture Reference Declaration 
Some of the attributes of a texture reference are immutable and must be known at 
compile time; they are specified when declaring the texture reference. A texture 
reference is declared at file scope as a variable of type texture: 
texture<Type, Dim, ReadMode> texRef; 

where: 

 Type specifies the type of data that is returned when fetching the texture; Type 
is restricted to the basic integer and floating-point types and any of the 1-, 2-, 
and 4-component vector types defined in Section 4.3.1.1; 

 Dim specifies the dimensionality of the texture reference and is equal to 1 or 2; 
Dim is an optional argument which defaults to 1; 

 ReadMode is equal to cudaReadModeNormalizedFloat or 
cudaReadModeElementType; if it is cudaReadModeNormalizedFloat 
and Type is a 16-bit or 8-bit integer type, the value is actually returned as 
floating-point type and the full range of the integer type is mapped to [0.0, 1.0]; 
for example, an unsigned 8-bit texture element with the value 0xff reads as 1; if it 
is cudaReadModeElementType, no conversion is performed; ReadMode is 
an optional argument which defaults to cudaReadModeElementType. 

4.3.4.2 Runtime Texture Reference Attributes 
The other attributes of a texture reference are mutable and can be changed at 
runtime through the host runtime (Section 4.5.2.4 for the runtime API and 
Section 4.5.3.7 for the driver API). They specify whether texture coordinates are 
normalized or not, the addressing mode, and texture filtering, as detailed below. 

By default, textures are referenced using floating-point coordinates in the range 
[0, N) where N is the size of the texture in the dimension corresponding to the 
coordinate. For example, a texture that is 64×32 in size will be referenced with 
coordinates in the range [0, 63] and [0, 31] for the x and y dimensions, respectively. 
Normalized texture coordinates cause the coordinates to be specified in the range 
[0.0, 1.0) instead of [0, N), so the same 64×32 texture would be addressed by 
normalized coordinates in the range [0, 1) in both the x and y dimensions. 
Normalized texture coordinates are a natural fit to some applications’ requirements, 
if it is preferable for the texture coordinates to be independent of the texture size. 

The addressing mode defines what happens when texture coordinates are out of 
range. When using unnormalized texture coordinates, texture coordinates outside 
the range [0, N) are clamped: Values below 0 are set to 0 and values greater or equal 
to N are set to N-1. Clamping is also the default addressing mode when using 
normalized texture coordinates: Values below 0.0 or above 1.0 are clamped to the 
range [0.0, 1.0). For normalized coordinates, the “wrap” addressing mode also may 
be specified. Wrap addressing is usually used when the texture contains a periodic 
signal. It uses only the fractional part of the texture coordinate; for example, 1.25 is 
treated the same as 0.25 and -1.25 is treated the same as 0.75. 

Linear texture filtering may be done only for textures that are configured to return 
floating-point data. It performs low-precision interpolation between neighboring 
texels. When enabled, the texels surrounding a texture fetch location are read and 
the return value of the texture fetch is interpolated based on where the texture 
coordinates fell between the texels. Simple linear interpolation is performed for one-
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dimensional textures and bilinear interpolation is performed for two-dimensional 
textures. 

Appendix F gives more details on texture fetching.  

4.3.4.3 Texturing from Linear Memory versus CUDA Arrays 
A texture can be any region of linear memory or a CUDA array (see Section 4.5.1.2). 

Textures allocated in linear memory: 

 Can only be of dimensionality equal to 1; 
 Do not support texture filtering; 
 Can only be addressed using a non-normalized integer texture coordinate; 
 Do not support the various addressing modes: Out-of-range texture accesses 

return zero. 
The hardware enforces an alignment requirement on texture base addresses. To 
abstract this alignment requirement from developers, the functions to bind texture 
references onto device memory pass back a byte offset that must be applied to 
texture fetches in order to read from the desired memory. The base pointers 
returned by CUDA’s allocation routines conform to this alignment constraint, so 
applications can avoid the offsets altogether by passing allocated pointers to 
cudaBindTexture()/cuTexRefSetAddress(). 

4.4 Device Runtime Component 
The device runtime component can only be used in device functions. 

4.4.1 Mathematical Functions 
For some of the functions of Table B-1, a less accurate, but faster version exists in 
the device runtime component; it has the same name prefixed with __ (such as 
__sin(x)). These intrinsic functions are listed in Table B-2, along with their 
respective error bounds. 

The compiler has an option (-use_fast_math) to force every function to compile 
to its less accurate counterpart if it exists. 

4.4.2 Synchronization Function 
void __syncthreads(); 

synchronizes all threads in a block. Once all threads have reached this point, 
execution resumes normally. 

__syncthreads() is used to coordinate communication between the threads of a 
same block. When some threads within a block access the same addresses in shared 
or global memory, there are potential read-after-write, write-after-read, or write-
after-write hazards for some of these memory accesses. These data hazards can be 
avoided by synchronizing threads in-between these accesses.  
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__syncthreads() is allowed in conditional code but only if the conditional 
evaluates identically across the entire thread block, otherwise the code execution is 
likely to hang or produce unintended side effects. 

4.4.3 Type Conversion Functions 
The suffixes in the function below indicate IEEE-754 rounding modes: 

 rn is round-to-nearest-even, 
 rz is round-towards-zero, 
 ru is round-up (to positive infinity), 
 rd is round-down (to negative infinity). 

int __float2int_[rn,rz,ru,rd](float); 

converts the floating-point argument to an integer, using the specified rounding 
mode. 
unsigned int __float2uint_[rn,rz,ru,rd](float); 

converts the floating-point argument to an unsigned integer, using the specified 
rounding mode. 
float __int2float_[rn,rz,ru,rd](int); 

converts the integer argument to a floating-point number, using the specified 
rounding mode. 
float __uint2float_[rn,rz,ru,rd](unsigned int); 

converts the unsigned integer argument to a floating-point number, using the 
specified rounding mode. 

4.4.4 Type Casting Functions 
float __int_as_float(int); 

performs a floating-point type cast on the integer argument, leaving the value 
unchanged. For example, __int_as_float(0xC0000000) is equal to -2. 
int __float_as_int(float); 

performs an integer type cast on the floating-point argument, leaving the value 
unchanged. For example, __float_as_int(1.0f) is equal to 0x3f800000. 

4.4.5 Texture Functions 

 

4.4.5.1 Texturing from Device Memory 
When texturing from device memory, the texture is accessed with the 
tex1Dfetch() family of functions; for example: 
template<class Type> 
Type tex1Dfetch( 
   texture<Type, 1, cudaReadModeElementType> texRef, 
   int x); 
 
float tex1Dfetch( 
   texture<unsigned char, 1, cudaReadModeNormalizedFloat> texRef, 
   int x); 
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float tex1Dfetch( 
   texture<signed char, 1, cudaReadModeNormalizedFloat> texRef, 
   int x); 
 
float tex1Dfetch( 
   texture<unsigned short, 1, cudaReadModeNormalizedFloat> texRef, 
   int x); 
 
float tex1Dfetch( 
   texture<signed short, 1, cudaReadModeNormalizedFloat> texRef, 
   int x); 

These functions fetch the region of linear memory bound to texture reference 
are 

 

shown above, 2-, and 4-tuples are supported; for example: 

texRef using texture coordinate x. No texture filtering and addressing modes 
supported. For integer types, these functions may optionally promote the integer to
32-bit floating point. 

Besides the functions 
float4 tex1Dfetch( 
   texture<uchar4, 1, cudaReadModeNormalizedFloat> texRef, 
   int x); 

fetches the linear memory bound to texture reference  using texture 

ture is accessed with the  or 

texRef
coordinate x. 

4.4.5.2 Texturing from CUDA Arrays 
When texturing from CUDA arrays, the tex tex1D()
tex2D(): 
template<class Type, enum cudaTextureReadMode readMode> 
Type tex1D(texture<Type, 1, readMode> texRef, float x); 
 
template<class Type, enum cudaTextureReadMode readMode> 
Type tex2D(texture<Type, 2, readMode> texRef, float x, float y); 

 

e 

ilable for devices of compute capability 1.1. They are 

rforms a read-modify-write atomic operation on one 32-bit 
 

 

ad 

signed integers. 

These functions fetches the CUDA array bound to texture reference texRef using
texture coordinates x and y. A combination of the texture reference’s immutable 
(compile-time) and mutable (runtime) attributes determine how the coordinates ar
interpreted, what processing occurs during the texture fetch, and the return value 
delivered by the texture fetch (see Sections 4.3.4.1 and 4.3.4.2). 

4.4.6 Atomic Functions 
Atomic functions are only ava
listed in Appendix C. 

An atomic function pe
word residing in global memory.  For example, atomicAdd() reads a 32-bit word
at some address in global memory, adds an integer to it, and writes the result back to
the same address. The operation is atomic in the sense that it is guaranteed to be 
performed without interference from other threads. In other words, no other thre
can access this address until the operation is complete. 

Atomic operations only work with 32-bit signed and un
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4.5 Host Runtime Component 
The host runtime component can only be used by host functions. 

It provides functions to handle: 

 Device management, 
 Context management, 
 Memory management, 
 Code module management, 
 Execution control, 
 Texture reference management, 
 Interoperability with OpenGL and Direct3D. 

It is composed of two APIs: 

 A low-level API called the CUDA driver API, 
 A higher-level API called the CUDA runtime API that is implemented on top of 

the CUDA driver API. 
These APIs are mutually exclusive: An application should use either one or the 
other. 

The CUDA runtime eases device code management by providing implicit 
initialization, context management, and module management. The C host code 
generated by nvcc is based on the CUDA runtime (see Section 4.2.5), so 
applications that link to this code must use the CUDA runtime API. 

In contrast, the CUDA driver API requires more code, is harder to program and 
debug, but offers a better level of control and is language-independent since it only 
deals with cubin objects (see Section 4.2.5). In particular, it is more difficult to 
configure and launch kernels using the CUDA driver API, since the execution 
configuration and kernel parameters must be specified with explicit function calls 
instead of the execution configuration syntax described in Section 4.2.3. Also, device 
emulation (see Section 4.5.2.5) does not work with the CUDA driver API. 

The CUDA driver API is delivered through the cuda dynamic library and all its 
entry points are prefixed with cu. 

The CUDA runtime API is delivered through the cudart dynamic library and all 
its entry points are prefixed with cuda. 

4.5.1 Common Concepts 
4.5.1.1 Device 

Both APIs provide a way to enumerate the devices available on the system, query 
their properties, and select one of them for kernel executions. 

Several host threads can execute device code on the same device, but by design, a 
host thread can execute device code on only one device. As a consequence, multiple 
host threads are required to execute device code on multiple devices. Also, any 
CUDA resources created through the runtime in one host thread cannot be used by 
the runtime from another host thread. 
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4.5.1.2 Memory 
Device memory can be allocated either as linear memory or as CUDA arrays. 

Linear memory exists on the device in a 32-bit address space, so separately allocated 
entities can reference one another via pointers, for example, in a binary tree. 

CUDA arrays are opaque memory layouts optimized for texture fetching. They are 
one-dimensional or two-dimensional and composed of elements, each of which has 
1, 2 or 4 components that may be signed or unsigned 8-, 16- or 32-bit integers, 
16-bit floats (currently only supported through the driver API), or 32-bit floats. 
CUDA arrays are only readable by kernels through texture fetching and may only be 
bound to texture references with the same number of packed components. 

Both linear memory and CUDA arrays are only readable and writable by the host 
through the memory copy functions described in Sections 4.5.2.3 and 4.5.3.6. 

4.5.1.3 OpenGL Interoperability 
OpenGL buffer objects may be mapped into the address space of CUDA, either to 
enable CUDA to read data written by OpenGL or to enable CUDA to write data 
for consumption by OpenGL. 

4.5.1.4 Direct3D Interoperability 
Direct3D 9.0 vertex buffers may be mapped into the address space of CUDA, either 
to enable CUDA to read data written by Direct3D or to enable CUDA to write data 
for consumption by Direct3D. 

A CUDA context may interoperate with only one Direct3D device at a time, 
bracketed by calls to the begin/end functions described in Sections 4.5.2.6 and 
4.5.3.9. The Direct3D device must be created with the 
D3DCREATE_HARDWARE_VERTEXPROCESSING flag. 

CUDA does not yet support: 

 Versions other than Direct3D 9.0, 
 Direct3D objects other than vertex buffers. 

4.5.1.5 Asynchronicity 
__global__ functions and most runtime functions are asynchronous: Control is 
returned to the application before the device has completed the requested task. 

cudaThreadSynchronize() for the runtime API and cuCtxSynchronize() 
for the driver API (described in Sections D.2.1 and E.3.5 respectively) provide 
applications with a way to explicitly force the runtime to wait until all preceding 
device tasks have finished. To avoid unnecessary slowdowns, these functions are 
best used for timing purposes or to isolate a launch or memory copy that is failing. 

The only functions from the runtime that are not asynchronous are the functions 
that perform memory copies between the host and the device, the functions that 
initializes and terminates interoperability with a OpenGL or Direct3D, the functions 
that register, unregister, map, and unmap an OpenGL buffer object or a Direct3D 
vertex buffer, and the functions that free memory. 
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4.5.2 Runtime API 
4.5.2.1 Initialization 

There is no explicit initialization function for the runtime API; it initializes the first 
time a runtime function is called. One needs to keep this in mind when timing 
runtime function calls and when interpreting the error code from the first call into 
the runtime. 

4.5.2.2 Device Management 
The functions from Section D.1 are used to manage the devices present in the 
system. 

cudaGetDeviceCount() and cudaGetDeviceProperties() provide a way 
to enumerate these devices and retrieve their properties: 
int deviceCount; 
cudaGetDeviceCount(&deviceCount); 
int device; 
for (device = 0; device < deviceCount; ++device) { 
    cudaDeviceProp deviceProp; 
    cudaGetDeviceProperties(&deviceProp, device); 
} 

cudaSetDevice() is used to select the device associated to the host thread: 
cudaSetDevice(device); 

A device must be selected before any __global__ function or any function from 
Appendix D is called. If this is not done by an explicit call to cudaSetDevice(), 
device 0 is automatically selected and any subsequent explicit call to 
cudaSetDevice() will have no effect. 

4.5.2.3 Memory Management 
The functions from Section D.3 are used to allocate and free device memory, access 
the memory allocated for any variable declared in global memory space, and transfer 
data between host and device memory. 

Linear memory is allocated using cudaMalloc() or cudaMallocPitch() and 
freed using cudaFree(). 

The following code sample allocates an array of 256 floating-point elements in linear 
memory: 
float* devPtr; 
cudaMalloc((void**)&devPtr, 256 * sizeof(float)); 

cudaMallocPitch() is recommended for allocations of 2D arrays as it makes 
sure that the allocation is appropriately padded to meet the alignment requirements 
described in Section 5.1.2.1, therefore ensuring best performance when accessing 
the row addresses or performing copies between 2D arrays and other regions of 
device memory (using the cudaMemcpy2D() functions). The returned pitch (or 
stride) must be used to access array elements. The following code sample allocates a 
width×height 2D array of floating-point values and shows how to loop over the 
array elements in device code: 
// host code 
float* devPtr; 
int pitch; 
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cudaMallocPitch((void**)&devPtr, &pitch, 
                width * sizeof(float), height); 
myKernel<<<100, 192>>>(devPtr, pitch); 
 
// device code 
__global__ void myKernel(float* devPtr, int pitch) 
{ 
    for (int r = 0; r < height; ++r) { 
        float* row = (float*)((char*)devPtr + r * pitch); 
        for (int c = 0; c < width; ++c) { 
            float element = row[c]; 
        } 
    } 
} 

CUDA arrays are allocated using cudaMallocArray() and freed using 
cudaFreeArray(). cudaMallocArray() requires a format description created 
using cudaCreateChannelDesc(). 

The following code sample allocates a width×height CUDA array of one 32-bit 
floating-point component: 
cudaChannelFormatDesc channelDesc =                           
                             cudaCreateChannelDesc<float>(); 
cudaArray* cuArray; 
cudaMallocArray(&cuArray, &channelDesc, width, height); 

cudaGetSymbolAddress() is used to retrieve the address pointing to the 
memory allocated for a variable declared in global memory space. The size of the 
allocated memory is obtained through cudaGetSymbolSize(). 

Section D.3 lists all the various functions used to copy memory between linear 
memory allocated with cudaMalloc(), linear memory allocated with 
cudaMallocPitch(), CUDA arrays, and memory allocated for variables declared 
in global or constant memory space. 

The following code sample copies the 2D array to the CUDA array allocated in the 
previous code samples: 
cudaMemcpy2DToArray(cuArray, 0, 0, devPtr, pitch, 
                    width * sizeof(float), height, 
                    cudaMemcpyDeviceToDevice); 

The following code sample copies some host memory array to device memory: 
float data[256]; 
int size = sizeof(data); 
float* devPtr; 
cudaMalloc((void**)&devPtr, size); 
cudaMemcpy(devPtr, data, size, cudaMemcpyHostToDevice); 

The following code sample copies some host memory array to constant memory: 
__constant__ float constData[256]; 
float data[256]; 
cudaMemcpyToSymbol(constData, data, sizeof(data)); 

Finally, cudaMallocHost()from Section D.3.6 and cudaFreeHost() from 
Section D.3.7 can be used to allocate and free page-locked host memory. The 
bandwidth between host memory and device memory is higher for page-locked host 
memory than for regular pageable memory allocated using malloc(). However, 
page-locked memory is a scarce resource, so allocations in page-locked memory will 
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start failing long before allocations in pageable memory. In addition, by reducing the 
amount of physical memory available to the operating system for paging, allocating 
too much page-locked memory reduces overall system performance 

4.5.2.4 Texture Reference Management 
The functions from Section D.4 are used to manage texture references. 

The texture type defined by the high-level API is a structure publicly derived 
from the textureReference type defined by the low-level API as such: 

struct textureReference 
{ 
  int                           normalized; 
  enum cudaTextureFilterMode    filterMode; 
  enum cudaTextureAddressMode   addressMode[2]; 
  struct cudaChannelFormatDesc  channelDesc; 
} 

 normalized specifies whether texture coordinates are normalized or not; if it is 
non-zero, all elements in the texture are addressed with texture coordinates in 
the range [0,1] rather than in the range [0,width-1] or [0,height-1], 
where width and height are the texture sizes; 

 filterMode specifies the filtering mode, that is how the value returned when 
fetching the texture is computed based on the input texture coordinates; 
filterMode is equal to cudaFilterModePoint or 
cudaFilterModeLinear; if it is cudaFilterModePoint, the returned 
value is the texel whose texture coordinates are the closest to the input texture 
coordinates; if it is cudaFilterModeLinear, the returned value is the linear 
interpolation of the two (for a one-dimensional texture) or four (for a 
two-dimensional texture) texels whose texture coordinates are the closest to the 
input texture coordinates; cudaFilterModeLinear is only valid for returned 
values of floating-point type; 

 addressMode specifies the addressing mode, that is how out-of-range texture 
coordinates are handled; addressMode is an array of size two whose first and 
second elements specify the addressing mode for the first and second texture 
coordinates, respectively; the addressing mode is equal to either 
cudaAddressModeClamp, in which case out-of-range texture coordinates are 
clamped to the valid range, or cudaAddressModeWrap, in which case out-of-
range texture coordinates are wrapped to the valid range; 
cudaAddressModeWrap is only supported for normalized texture coordinates; 

 channelDesc describes the format of the value that is returned when fetching 
the texture; channelDesc is of the following type: 
struct cudaChannelFormatDesc { 
  int x, y, z, w; 
  enum cudaChannelFormatKind f; 
}; 

where x, y, z, and w are equal to the number of bits of each component of the 
returned value and f is: 

 cudaChannelFormatKindSigned if these components are of signed 
integer type, 

 cudaChannelFormatKindUnsigned if they are of unsigned integer 
type, 
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 cudaChannelFormatKindFloat if they are of floating point type. 
normalized, addressMode, and filterMode may be directly modified in host 
code. They only apply to texture references bound to CUDA arrays. 

Before a kernel can use a texture reference to read from texture memory, the texture 
reference must be bound to a texture using cudaBindTexture() or 
cudaBindTextureToArray(). 

The following code samples bind a texture reference to linear memory pointed to by 
devPtr: 

 Using the low-level API: 
texture<float, 2, cudaReadModeElementType> texRef; 
textureReference* texRefPtr; 
cudaGetTextureReference(&texRefPtr, “texRef”); 
cudaChannelFormatDesc channelDesc = 
                             cudaCreateChannelDesc<float>(); 
cudaBindTexture(0, texRefPtr, devPtr, &channelDesc, size); 

 Using the high-level API: 
texture<float, 2, cudaReadModeElementType> texRef; 
cudaBindTexture(0, texRef, devPtr, size); 

The following code samples bind a texture reference to a CUDA array cuArray:  

 Using the low-level API: 
texture<float, 2, cudaReadModeElementType> texRef; 
textureReference* texRefPtr; 
cudaGetTextureReference(&texRefPtr, “texRef”); 
cudaChannelFormatDesc channelDesc; 
cudaGetChannelDesc(&channelDesc, cuArray); 
cudaBindTextureToArray(texRef, cuArray, &channelDesc); 

 Using the high-level API: 
texture<float, 2, cudaReadModeElementType> texRef; 
cudaBindTextureToArray(texRef, cuArray); 

The format specified when binding a texture to a texture reference must match the 
parameters specified when declaring the texture reference; otherwise, the results of 
texture fetches are undefined. 

cudaUnbindTexture() is used to unbind a texture reference. 

4.5.2.5 OpenGL Interoperability 
The functions from Section D.6 are used to control interoperability with OpenGL. 

A buffer object must be registered to CUDA before it can be mapped. This is done 
with cudaGLRegisterBufferObject(): 
GLuint bufferObj; 
cudaGLRegisterBufferObject(bufferObj); 

Once it is registered, a buffer object can be read from or written to by kernels using 
the device memory address returned by cudaGLMapBufferObject(): 
GLuint bufferObj; 
float* devPtr; 
cudaGLMapBufferObject((void**)&devPtr, bufferObj); 

Unmapping is done with cudaGLUnmapBufferObject() and unregistering with 
cudaGLUnregisterBufferObject(). 
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4.5.2.6 Direct3D Interoperability 
The functions from Section D.7 are used to control interoperability with Direct3D. 

Interoperability with Direct3D must be initialized using cudaD3D9Begin() and 
terminated using cudaD3D9End(). 

In between these calls, a vertex object must be registered to CUDA before it can be 
mapped. This is done with cudaD3D9RegisterVertexBuffer(): 
LPDIRECT3DVERTEXBUFFER9 vertexBuffer; 
cudaD3D9RegisterVertexBuffer(vertexBuffer); 

Once it is registered, a vertex buffer can be read from or written to by kernels using 
the device memory address returned by cudaD3D9MapVertexBuffer(): 
LPDIRECT3DVERTEXBUFFER9 vertexBuffer; 
float* devPtr; 
cudaD3D9MapVertexBuffer((void**)&devPtr, vertexBuffer); 

Unmapping is done with cudaD3D9UnmapVertexBuffer() and unregistering 
with cudaD3D9UnregisterVertexBuffer(). 

4.5.2.7 Debugging using the Device Emulation Mode 
The programming environment does not include any native debug support for code 
that runs on the device, but comes with a device emulation mode for the purpose of 
debugging. When compiling an application is this mode (using the -deviceemu 
option), the device code is compiled for and runs on the host, allowing the 
developer to use the host’s native debugging support to debug the application as if it 
were a host application. The preprocessor macro __DEVICE_EMULATION__ is 
defined in this mode. All code for an application, including any libraries used, must 
be compiled consistently either for device emulation or for device execution. 
Linking code compiled for device emulation with code compiled for device 
execution causes the following runtime error to be returned upon initialization: 
cudaErrorMixedDeviceExecution. 

When running an application in device emulation mode, the programming model is 
emulated by the runtime. For each thread in a thread block, the runtime creates a 
thread on the host. The developer needs to make sure that: 

 The host is able to run up to the maximum number of threads per block, plus 
one for the master thread. 

 Enough memory is available to run all threads, knowing that each thread gets 
256 KB of stack. 

Many features provided through the device emulation mode make it a very effective 
debugging tool: 

 By using the host’s native debugging support developers can use all features that 
the debugger supports, like setting breakpoints and inspecting data. 

 Since device code is compiled to run on the host, the code can be augmented 
with code that cannot run on the device, like input and output operations to files 
or to the screen (printf(), etc.). 

 Since all data resides on the host, any device- or host-specific data can be read 
from either device or host code; similarly, any device or host function can be 
called from either device or host code. 
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 In case of incorrect usage of the synchronization intrinsic, the runtime detects 
dead lock situations. 

Developers must keep in mind that device emulation mode is emulating the device, 
not simulating it. Therefore, device emulation mode is very useful in finding 
algorithmic errors, but certain errors are hard to find: 

 When a memory location is accessed in multiple threads within the grid at 
potentially the same time, the results when running in device emulation mode 
potentially differ from the results when running on the device, since in emulation 
mode threads execute sequentially. 

 When dereferencing a pointer to global memory on the host or a pointer to host 
memory on the device, device execution almost certainly fails in some undefined 
way, whereas device emulation can produce correct results. 

 Most of the time the same floating-point computation will not produce exactly 
the same result when performed on the device as when performed on the host in 
device emulation mode. This is expected since in general, all you need to get 
different results for the same floating-point computation are slightly different 
compiler options, let alone different compilers, different instruction sets, or 
different architectures. 
In particular, some host platforms store intermediate results of single-precision 
floating-point calculations in extended precision registers, potentially resulting in 
significant differences in accuracy when running in device emulation mode. 
When this occurs, developers can try any of the following methods, none of 
which is guaranteed to work: 

 Declare some floating-point variables as volatile to force single-precision 
storage; 

 Use the –ffloat-store compiler option of gcc, 
 Use the /Op or /fp compiler options of the Visual C++ compiler, 
 Use  _FPU_GETCW() and _FPU_SETCW() on Linux or _controlfp() 

on Windows to force single-precision floating-point computation for a 
portion of the code by surrounding it with 
unsigned int originalCW; 
_FPU_GETCW(originalCW); 
unsigned int cw = (originalCW & ~0x300) | 0x000; 
_FPU_SETCW(cw); 

or 
unsigned int originalCW = _controlfp(0, 0); 
_controlfp(_PC_24, _MCW_PC); 

at the beginning, to store the current value of the control word and change 
it to force the mantissa to be stored in 24 bits using, and with 
_FPU_SETCW(originalCW); 

or 
_controlfp(originalCW, 0xfffff); 

at the end, to restore the original control word. 

Unlike compute devices (see Appendix A), host platforms also usually support 
denormalized numbers. This can lead to dramatically different results between 
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device emulation and device execution modes since some computation might 
produce a finite result in one case and an infinite result in the other. 

4.5.3 Driver API 
The driver API is a handle-based, imperative API: Most objects are referenced by 
opaque handles that may be specified to functions to manipulate the objects. 

The objects available in CUDA are summarized in Table 4-1. 

Table 4-1. Objects Available in the CUDA Driver API 

Object Handle Description 
Device CUdevice CUDA-capable device 

Context CUcontext Roughly equivalent to a CPU process 

Module CUmodule Roughly equivalent to a dynamic library 

Function CUfunction Kernel 

Heap memory CUdeviceptr Pointer to device memory 

CUDA array CUarray Opaque container for one-dimensional or two-dimensional 
data on the device, readable via texture references 

Texture reference CUtexref Object that describes how to interpret texture memory data 

4.5.3.1 Initialization 
Initialization with cuInit() is required before any function from Appendix E is 
called (see Section E.1). 

4.5.3.2 Device Management 
The functions from Section E.2 are used to manage the devices present in the 
system. 

cuDeviceGetCount() and cuDeviceGet() provide a way to enumerate these 
devices and other functions from Section E.2 to retrieve their properties: 
int deviceCount; 
cuDeviceGetCount(&deviceCount); 
int device; 
for (int device = 0; device < deviceCount; ++device) { 
    CUdevice cuDevice; 
    cuDeviceGet(&cuDevice, device); 
    int major, minor; 
    cuDeviceComputeCapability(&major, &minor, cuDevice); 
} 

4.5.3.3 Context Management 
The functions from Section E.3 are used to create, attach, and detach CUDA 
contexts. 

A CUDA context is analogous to a CPU process. All resources and actions 
performed within the compute API are encapsulated inside a CUDA context, and 
the system automatically cleans up these resources when the context is destroyed. 
Besides objects such as modules and texture references, each context has its own 
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distinct 32-bit address space. As a result, CUdeviceptr values from different 
CUDA contexts reference different memory locations. 

Contexts have a one-to-one correspondence with host threads. A host thread may 
have only one device context current at a time. When a context is created with 
cuCtxCreate(), it is made current to the calling host thread. 

CUDA functions that operate in a context (most functions that do not involve 
device enumeration or context management) will return 
CUDA_ERROR_INVALID_CONTEXT if a valid context is not current to the thread. 

To facilitate interoperability between third party authored code operating in the 
same context, the driver API maintains a usage count that is incremented by each 
distinct client of a given context. For example, if three libraries are loaded to use the 
same CUDA context, each library must call cuCtxAttach() to increment the 
usage count and cuCtxDetach() to decrement the usage count when the library is 
done using the context. The context is destroyed when the usage count goes to 0. 
For most libraries, it is expected that the application will have created a CUDA 
context before loading or initializing the library; that way, the application can create 
the context using its own heuristics, and the library simply operates on the context 
handed to it. 

4.5.3.4 Module Management 
The functions from Section E.4 are used to load and unload modules and to retrieve 
handles or pointers to variables or functions defined in the module. 

Modules are dynamically loadable packages of device code and data, akin to DLLs in 
Windows, that are output by nvcc (see Section 4.2.5). The names for all symbols, 
including functions, global variables, and texture references, are maintained at 
module scope so that modules written by independent third parties may interoperate 
in the same CUDA context. 

This code sample loads a module and retrieves a handle to some kernel: 
CUmodule cuModule; 
cuModuleLoad(&cuModule, “myModule.cubin”); 
CUfunction cuFunction; 
cuModuleGetFunction(&cuFunction, cuModule, “myKernel”); 

4.5.3.5 Execution Control 
The functions described in Section E.5 manage the execution of a kernel on the 
device. cuFuncSetBlockShape() sets the number of threads per block for a 
given function, and how their threadIDs are assigned. cuFuncSetSharedSize() 
sets the size of shared memory for the function. The cuParam*() family of 
functions is used specify the parameters that will be provided to the kernel the next 
time cuLaunchGrid() or cuLaunch() is invoked to launch the kernel: 
cuFuncSetBlockShape(cuFunction, blockWidth, blockHeight, 1); 
int offset = 0; 
int i; 
cuParamSeti(cuFunction, offset, i); 
offset += sizeof(i); 
float f; 
cuParamSetf(cuFunction, offset, f); 
offset += sizeof(f); 
char data[256]; 
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cuParamSetv(cuFunction, offset, (void*)data, sizeof(data)); 
offset += sizeof(data); 
cuParamSetSize(cuFunction, offset); 
cuFuncSetSharedSize(cuFunction, numElements * sizeof(float)); 
cuLaunchGrid(cuFunction, gridWidth, gridHeight); 

4.5.3.6 Memory Management 
The functions from Section E.6 are used to allocate and free device memory and 
transfer data between host and device memory. 

Linear memory is allocated using cuMemAlloc() or cuMemAllocPitch() and 
freed using cuMemFree(). 

The following code sample allocates an array of 256 floating-point elements in linear 
memory: 
CUdeviceptr devPtr; 
cuMemAlloc(&devPtr, 256 * sizeof(float)); 

cuMemAllocPitch() is recommended for allocations of 2D arrays as it makes 
sure that the allocation is appropriately padded to meet the alignment requirements 
described in Section 5.1.2.1, therefore ensuring best performance when accessing 
the row addresses or performing copies between 2D arrays and other regions of 
device memory (using the cuMemcpy2D()). The returned pitch (or stride) must be 
used to access array elements. The following code sample allocates a 
width×height 2D array of floating-point values and shows how to loop over the 
array elements in device code: 
// host code 
CUdeviceptr devPtr; 
int pitch; 
cuMemAllocPitch(&devPtr, &pitch, 
                width * sizeof(float), height, 4); 
cuModuleGetFunction(&cuFunction, cuModule, “myKernel”); 
cuFuncSetBlockShape(cuFunction, 192, 1, 1); 
cuParamSeti(cuFunction, 0, devPtr); 
cuParamSetSize(cuFunction, sizeof(devPtr)); 
cuLaunchGrid(cuFunction, 100, 1); 
 
// device code 
__global__ void myKernel(float* devPtr) 
{ 
    for (int r = 0; r < height; ++r) { 
        float* row = (float*)((char*)devPtr + r * pitch); 
        for (int c = 0; c < width; ++c) { 
            float element = row[c]; 
        } 
    } 
} 

CUDA arrays are created using cuArrayCreate() and destroyed using 
cuArrayDestroy(). 

The following code sample allocates a width×height CUDA array of one 32-bit 
floating-point component: 
CUDA_ARRAY_DESCRIPTOR desc; 
desc.Format = CU_AD_FORMAT_FLOAT; 
desc.NumChannels = 1; 
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desc.Width = width; 
desc.Height = height; 
CUarray cuArray; 
cuArrayCreate(&cuArray, &desc); 

Section E.6 lists all the various functions used to copy memory between linear 
memory allocated with cuMemAlloc(), linear memory allocated with 
cuMemAllocPitch(), and CUDA arrays. The following code sample copies the 
2D array to the CUDA array allocated in the previous code samples: 
CUDA_MEMCPY2D copyParam; 
memset(&copyParam, 0, sizeof(copyParam)); 
copyParam.dstMemoryType = CU_MEMORYTYPE_ARRAY; 
copyParam.dstArray = cuArray; 
copyParam.srcMemoryType = CU_MEMORYTYPE_DEVICE; 
copyParam.srcDevice = devPtr; 
copyParam.srcPitch = pitch; 
copyParam.WidthInBytes = width * sizeof(float); 
copyParam.Height = height; 
cuMemcpy2D(&copyParam); 

The following code sample copies some host memory array to device memory: 
float data[256]; 
int size = sizeof(data); 
CUdeviceptr devPtr; 
cuMemAlloc(&devPtr, size); 
cuMemcpyHtoD(devPtr, data, size); 

Finally, cuMemAllocHost()from Section E.6.5 and cuMemFreeHost() from 
Section E.6.6 can be used to allocate and free page-locked host memory. The 
bandwidth between host memory and device memory is higher for page-locked host 
memory than for regular pageable memory allocated using malloc(). However, 
page-locked memory is a scarce resource, so allocations in page-locked memory will 
start failing long before allocations in pageable memory. In addition, by reducing the 
amount of physical memory available to the operating system for paging, allocating 
too much page-locked memory reduces overall system performance. 

4.5.3.7 Texture Reference Management 
The functions from Section E.7 are used to manage texture references. 

Before a kernel can use a texture reference to read from texture memory, the texture 
reference must be bound to a texture using cuTexRefSetAddress() or 
cuTexRefSetArray(). 

If a module cuModule contains some texture reference texRef defined as 
texture<float, 2, cudaReadModeElementType> texRef; 

the following code sample retrieves texRef‘s handle: 
CUtexref cuTexRef; 
cuModuleGetTexRef(&cuTexRef, cuModule, “texRef”); 

The following code sample binds texRef to some linear memory pointed to by 
devPtr: 
cuTexRefSetAddress(NULL, cuTexRef, devPtr, size); 

The following code samples bind texRef to a CUDA array cuArray:  
cuTexRefSetArray(cuTexRef, cuArray, CU_TRSA_OVERRIDE_FORMAT); 
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Section E.7 lists various functions used to set address mode, filter mode, format, 
and other flags for some texture reference. The format specified when binding a 
texture to a texture reference must match the parameters specified when declaring 
the texture reference; otherwise, the results of texture fetches are undefined. 

4.5.3.8 OpenGL Interoperability 
The functions from Section E.8 are used to control interoperability with OpenGL. 

Interoperability with OpenGL must be initialized using cuGLInit(). 

A buffer object must be registered to CUDA before it can be mapped. This is done 
with cuGLRegisterBufferObject(): 
GLuint bufferObj; 
cuGLRegisterBufferObject(bufferObj); 

Once it is registered, a buffer object can be read from or written to by kernels using 
the device memory address returned by cuGLMapBufferObject(): 
GLuint bufferObj; 
CUdeviceptr devPtr; 
int size; 
cuGLMapBufferObject(&devPtr, &size, bufferObj); 

Unmapping is done with cuGLUnmapBufferObject() and unregistering with 
cuGLUnregisterBufferObject(). 

4.5.3.9 Direct3D Interoperability 
The functions from Section D.7 are used to control interoperability with Direct3D. 

Interoperability with Direct3D must be initialized using cuD3D9Begin() and 
terminated using cuD3D9End(). 

In between these calls, a vertex object must be registered to CUDA before it can be 
mapped. This is done with cuD3D9RegisterVertexBuffer(): 
LPDIRECT3DVERTEXBUFFER9 vertexBuffer; 
cuD3D9RegisterVertexBuffer(vertexBuffer); 

Once it is registered, a vertex buffer can be read from or written to by kernels using 
the device memory address returned by cuD3D9MapVertexBuffer(): 
LPDIRECT3DVERTEXBUFFER9 vertexBuffer; 
CUdeviceptr devPtr; 
int size; 
cuD3D9MapVertexBuffer(&devPtr, &size, vertexBuffer); 

Unmapping is done with cuD3D9UnmapVertexBuffer() and unregistering with 
cuD3D9UnregisterVertexBuffer(). 
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Chapter 5. 
Performance Guidelines 

5.1 Instruction Performance 
To process an instruction for a warp of threads, a multiprocessor must: 

 Read the instruction operands for each thread of the warp, 
 Execute the instruction, 
 Write the result for each thread of the warp. 

Therefore, the effective instruction throughput depends on the nominal instruction 
throughput as well as the memory latency and bandwidth. It is maximized by: 

 Minimizing the use of instructions with low throughput (see Section 5.1.1), 
 Maximizing the use of the available memory bandwidth for each category of 

memory (see Section 5.1.2), 
 Allowing the thread scheduler to overlap memory transactions with 

mathematical computations as much as possible, which requires that: 
 The program executed by the threads is of high arithmetic intensity, that is, 

has a high number of arithmetic operations per memory operation; 
 There are many threads that can be run concurrently as detailed in 

Section 5.2. 

5.1.1 Instruction Throughput 
5.1.1.1 Arithmetic Instructions 

To issue one instruction for a warp, a multiprocessor takes: 

 4 clock cycles for floating-point add, floating-point multiply, floating-point 
multiply-add, integer add, bitwise operations, compare, min, max, type 
conversion instruction; 

 16 clock cycles for reciprocal, reciprocal square root, __log(x) (see Table B-2). 
32-bit integer multiplication takes 16 clock cycles, but __mul24 and __umul24 
(see Appendix B) provide signed and unsigned 24-bit integer multiplication in 4 
clock cycles. On future architectures however, __[u]mul24 will be slower than 32-
bit integer multiplication, so we recommend to provide two kernels, one using 
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__[u]mul24 and the other using generic 32-bit integer multiplication, to be called 
appropriately by the application. 

Integer division and modulo operation are particularly costly and should be avoided 
if possible or replaced with bitwise operations whenever possible: If n is a power of 
2, (i/n) is equivalent to (i>>log2(n)) and (i%n) is equivalent to (i&(n-1)); 
the compiler will perform these conversions if n is literal. 

Other functions take more clock cycles as they are implemented as combinations of 
several instructions. 

Floating-point square root is implemented as a reciprocal square root followed by a 
reciprocal, so it takes 32 clock cycles for a warp. 

Floating-point division takes 36 clock cycles, but __fdividef(x, y) provides a 
faster version at 20 clock cycles (see Appendix B). 

__sin(x), __cos(x), __exp(x) take 32 clock cycles. 

Sometimes, the compiler must insert conversion instructions, introducing additional 
execution cycles. This is the case for: 

 Functions operating on char or short whose operands generally need to be 
converted to int, 

 Double-precision floating-point constants (defined without any type suffix) used 
as input to single-precision floating-point computations, 

 Single-precision floating-point variables used as input parameters to the double-
precision version of the mathematical functions defined in Table B-1. 

The two last cases can be avoided by using: 

 Single-precision floating-point constants, defined with an f suffix such as 
3.141592653589793f, 1.0f, 0.5f, 

 The single-precision version of the mathematical functions, defined with an f 
suffix as well, such as sinf(), logf(), expf(). 

For single precision code, we highly recommend use of the float type and the single 
precision math functions. When compiling for devices without native double 
precision support, such as devices of compute capability 1.x, the double type gets 
demoted to float by default and the double precision math functions are mapped to 
their single precision equivalents. However, on those future devices that will support 
double precision, these functions will map to double precision implementations.  

5.1.1.2 Control Flow Instructions 
Any flow control instruction (if, switch, do, for, while) can significantly 
impact the effective instruction throughput by causing threads of the same warp to 
diverge, that is, to follow different execution paths. If this happens, the different 
executions paths have to be serialized, increasing the total number of instructions 
executed for this warp. When all the different execution paths have completed, the 
threads converge back to the same execution path. 

To obtain best performance in cases where the control flow depends on the thread 
ID, the controlling condition should be written so as to minimize the number of 
divergent warps. This is possible because the distribution of the warps across the 
block is deterministic as mentioned in Section 3.2. A trivial example is when the 
controlling condition only depends on (threadIdx / WSIZE) where WSIZE is 
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the warp size. In this case, no warp diverges since the controlling condition is 
perfectly aligned with the warps. 

Sometimes, the compiler may unroll loops or it may optimize out if or switch 
statements by using branch predication instead, as detailed below. In these cases, no 
warp can ever diverge. 

When using branch predication none of the instructions whose execution depends 
on the controlling condition gets skipped. Instead, each of them is associated with a 
per-thread condition code or predicate that is set to true or false based on the 
controlling condition and although each of these instructions gets scheduled for 
execution, only the instructions with a true predicate are actually executed. 
Instructions with a false predicate do not write results, and also do not evaluate 
addresses or read operands. 

The compiler replaces a branch instruction with predicated instructions only if the 
number of instructions controlled by the branch condition is less or equal to a 
certain threshold: If the compiler determines that the condition is likely to produce 
many divergent warps, this threshold is 7, otherwise it is 4. 

5.1.1.3 Memory Instructions 
Memory instructions include any instruction that reads from or writes to shared or 
global memory. A multiprocessor takes 4 clock cycles to issue one memory 
instruction for a warp. When accessing global memory, there are, in addition, 400 to 
600 clock cycles of memory latency. 

As an example, the assignment operator in the following sample code: 
__shared__ float shared[32]; 
__device__ float device[32]; 
shared[threadIdx.x] = device[threadIdx.x]; 

takes 4 clock cycles to issue a read from global memory, 4 clock cycles to issue a 
write to shared memory, but above all 400 to 600 clock cycles to read a float from 
global memory. 

Much of this global memory latency can be hidden by the thread scheduler if there 
are sufficient independent arithmetic instructions that can be issued while waiting 
for the global memory access to complete. 

5.1.1.4 Synchronization Instruction 
__syncthreads takes 4 clock cycles to issue for a warp if no thread has to wait 
for any other threads. 

5.1.2 Memory Bandwidth 
The effective bandwidth of each memory space depends significantly on the 
memory access pattern as detailed in the following sub-sections. 

Since device memory is of much higher latency and lower bandwidth than on-chip 
memory, device memory accesses should be minimized. A typical programming 
pattern is to stage data coming from device memory into shared memory; in other 
words, to have each thread of a block: 

 Load data from device memory to shared memory, 
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 Synchronize with all the other threads of the block so that each thread can safely 
read shared memory locations that were written by different threads, 

 Process the data in shared memory, 
 Synchronize again if necessary to make sure that shared memory has been 

updated with the results, 
 Write the results back to device memory. 

5.1.2.1 Global Memory 
The global memory space is not cached, so it is all the more important to follow the 
right access pattern to get maximum memory bandwidth, especially given how 
costly accesses to device memory are. 

First, the device is capable of reading 32-bit, 64-bit, or 128-bit words from global 
memory into registers in a single instruction. To have assignments such as: 
__device__ type device[32]; 
type data = device[tid]; 

compile to a single load instruction, type must be such that sizeof(type) is 
equal to 4, 8, or 16 and variables of type type must be aligned to 4, 8, or 16 bytes 
(that is, have the 2, 3, or 4 least significant bits of their address equal to zero). 

The alignment requirement is automatically fulfilled for built-in types of 
Section 4.3.1.1 like float2 or float4. 

For structures, the size and alignment requirements can be enforced by the compiler 
using the alignment specifiers __align__(8) or __align__(16), such as 
struct __align__(8) { 
    float a; 
    float b; 
}; 

or 
struct __align__(16) { 
    float a; 
    float b; 
    float c; 
    float d; 
}; 

For structures larger than 16 bytes, the compiler generates several load instructions. 
To ensure that it generates the minimum number of instructions, such structures 
should be defined with __align__(16) , such as 
struct __align__(16) { 
    float a; 
    float b; 
    float c; 
    float d; 
    float e; 
}; 

which is compiled into two 128-bit load instructions instead of five 32-bit load 
instructions. 

Second, the global memory addresses simultaneously accessed by each thread of a 
half-warp during the execution of a single read or write instruction should be 

 

44  CUDA Programming Guide Version 1.0 
 



 Chapter 5. Performance Guidelines 
  

arranged so that the memory accesses can be coalesced into a single contiguous, 
aligned memory access. 

More precisely, in each half-warp, thread number N within the half-warp should 
access address 
    HalfWarpBaseAddress + N 

where HalfWarpBaseAddress is of type type* and type is such that it meets 
the size and alignment requirements discussed above. Moreover, 
HalfWarpBaseAddress should be aligned to 16*sizeof(type) bytes; in other 
words, it should have its log2(16*sizeof(type)) least significant bits equal to 
zero. Any address BaseAddress of a variable residing in global memory or 
returned by one of the memory allocation routines from Sections D.3 or E.6 is 
always aligned to at least 256 bytes, so to satisfy the memory alignment constraint, 
HalfWarpBaseAddress-BaseAddress should be a multiple of 
16*sizeof(type). 

Note that if a half-warp fulfills all the requirements above, the per-thread memory 
accesses are coalesced even if some threads of the half-warp do not actually access 
memory. 

We recommend fulfilling the coalescing requirements for the entire warp as 
opposed to only each of its halves separately because future devices will necessitate 
it for proper coalescing. 

A common global memory access pattern is when each thread of thread ID tid 
accesses one element of an array located at address BaseAddress of type type* 
using the following address: 
    BaseAddress + tid 

To get memory coalescing, type must meet the size and alignment requirements 
discussed above. In particular, this means that if type is a structure larger than 16 
bytes, it should be split into several structures that meet these requirements and the 
data should be laid out in memory as a list of several arrays of these structures 
instead of a single array of type type*. 

Another common global memory access pattern is when each thread of index 
(tx,ty) accesses one element of a 2D array located at address BaseAddress of 
type type* and of width width using the following address: 
    BaseAddress + width * ty + tx 

In such a case, one gets memory coalescing for all half-warps of the thread block 
only if: 

 The width of the thread block is a multiple of half the warp size; 
 width is a multiple of 16. 

In particular, this means that an array whose width is not a multiple of 16 will be 
accessed much more efficiently if it is actually allocated with a width rounded up to 
the closest multiple of 16 and its rows padded accordingly. The 
cuMemAllocPitch() and cudaMallocPitch() functions and associated 
memory copy functions described in Sections D.3 and E.6 enable developers to 
write non-hardware-dependent code to allocate arrays that conform to these 
constraints. 
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5.1.2.2 Constant Memory 
The constant memory space is cached so a read from constant memory costs one 
memory read from device memory only on a cache miss, otherwise it just costs one 
read from the constant cache. 

For all threads of a half-warp, reading from the constant cache is as fast as reading 
from a register as long as all threads read the same address. The cost scales linearly 
with the number of different addresses read by all threads. We recommend having 
all threads of the entire warp read the same address as opposed to all threads within 
each of its halves only, as future devices will require it for full speed read. 

5.1.2.3 Texture Memory 
The texture memory space is cached so a texture fetch costs one memory read from 
device memory only on a cache miss, otherwise it just costs one read from the 
texture cache. The texture cache is optimized for 2D spatial locality, so threads of 
the same warp that read texture addresses that are close together will achieve best 
performance. 

Reading device memory through texture fetching can be an advantageous alternative 
to reading device memory from global or constant memory as detailed in 
Section 5.4. 

5.1.2.4 Shared Memory 
Because it is on-chip, the shared memory space is much faster than the local and 
global memory spaces. In fact, for all threads of a warp, accessing the shared 
memory is as fast as accessing a register as long as there are no bank conflicts 
between the threads, as detailed below. 

To achieve high memory bandwidth, shared memory is divided into equally-sized 
memory modules, called banks, which can be accessed simultaneously. So, any 
memory read or write request made of n addresses that fall in n distinct memory 
banks can be serviced simultaneously, yielding an effective bandwidth that is n times 
as high as the bandwidth of a single module. 

However, if two addresses of a memory request fall in the same memory bank, there 
is a bank conflict and the access has to be serialized. The hardware splits a memory 
request with bank conflicts into as many separate conflict-free requests as necessary, 
decreasing the effective bandwidth by a factor equal to the number of separate 
memory requests. If the number of separate memory requests is n, the initial 
memory request is said to cause n-way bank conflicts. 

To get maximum performance, it is therefore important to understand how memory 
addresses map to memory banks in order to schedule the memory requests so as to 
minimize bank conflicts. 

In the case of the shared memory space, the banks are organized such that 
successive 32-bit words are assigned to successive banks and each bank has a 
bandwidth of 32 bits per two clock cycles. 

For devices of compute capability 1.x, the warp size is 32 and the number of banks 
is 16 (see Section 5.1); a shared memory request for a warp is split into one request 
for the first half of the warp and one request for the second half of the warp. As a 
consequence, there can be no bank conflict between a thread belonging to the first 
half of a warp and a thread belonging to the second half of the same warp. 
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A common case is for each thread to access a 32-bit word from an array indexed by 
the thread ID tid and with some stride s: 
__shared__ float shared[32]; 
float data = shared[BaseIndex + s * tid]; 

In this case, the threads tid and tid+n access the same bank whenever s*n is a 
multiple of the number of banks m or equivalently, whenever n is a multiple of m/d 
where d is the greatest common divisor of m and s. As a consequence, there will be 
no bank conflict only if half the warp size is less than or equal to m/d. For devices 
of compute capability 1.x, this translates to no bank conflict only if d is equal to 1, 
or in other words, only if s is odd since m is a power of two. 

Figure 5-1 and Figure 5-2 show some examples of conflict-free memory accesses 
while Figure 5-3 shows some examples of memory accesses that cause bank 
conflicts. 

Other cases worth mentioning are when each thread accesses an element that is 
smaller or larger than 32 bits in size. For example, there will be bank conflicts if an 
array of char is accessed the following way: 
__shared__ char shared[32]; 
char data = shared[BaseIndex + tid]; 

because shared[0], shared[1], shared[2], and shared[3], for example, 
belong to the same bank. There will not be any bank conflict however, if the same 
array is accessed the following way: 
char data = shared[BaseIndex + 4 * tid]; 

A structure assignment is compiled into as many memory requests as there are 
members in the structure, so the following code, for example: 
__shared__ struct type shared[32]; 
struct type data = shared[BaseIndex + tid]; 

results in: 

 Three separate memory reads without bank conflicts if type is defined as 
struct type { 
 float x, y, z; 
}; 

since each member is accessed with a stride of three 32-bit words; 

 Two separate memory reads with bank conflicts if type is defined as 
struct type { 
 float x, y; 
}; 

since each member is accessed with a stride of two 32-bit words; 

 Two separate memory reads with bank conflicts if type is defined as 
struct type { 
 float f; 
 char  c; 
}; 

since each member is accessed with a stride of five bytes. 

Finally, shared memory also features a broadcast mechanism whereby a 32-bit word 
can be read and broadcast to several threads simultaneously when servicing one 
memory read request. This reduces the number of bank conflicts when several 
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threads of a half-warp read from an address within the same 32-bit word. More 
precisely, a memory read request made of several addresses is serviced in several 
steps over time – one step every two clock cycles – by servicing one conflict-free 
subset of these addresses per step until all addresses have been serviced; at each 
step, the subset is built from the remaining addresses that have yet to be serviced 
using the following procedure: 

 Select one of the words pointed to by the remaining addresses as the broadcast 
word, 

 Include in the subset: 
 All addresses that are within the broadcast word, 
 One address for each bank pointed to by the remaining addresses. 

Which word is selected as the broadcast word and which address is picked up for 
each bank at each cycle are unspecified. 

A common conflict-free case is when all threads of a half-warp read from an address 
within the same 32-bit word. 

Figure 5-4 shows some examples of memory read accesses that involve the 
broadcast mechanism. 
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Left: linear addressing with a stride of one 32-bit word. 
Right: random permutation. 

Figure 5-1. Examples of Shared Memory Access Patterns  
without Bank Conflicts 
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Linear addressing with a stride of three 32-bit words. 

Figure 5-2. Example of a Shared Memory Access Pattern  
without Bank Conflicts 
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Left: Linear addressing with a stride of two 32-bit words causes 2-way bank conflicts. 
Right: Linear addressing with a stride of eight 32-bit words causes 8-way bank conflicts. 

Figure 5-3. Examples of Shared Memory Access Patterns 
with Bank Conflicts 
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Left: This access pattern is conflict-free since all threads read from an address within the same 32-bit 
word. 
Right: This access pattern causes either no bank conflicts if the word from bank 5 is chosen as the 
broadcast word during the first step or 2-way bank conflicts, otherwise. 

Figure 5-4. Example of Shared Memory Read Access 
Patterns with Broadcast 
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5.1.2.5 Registers 
Generally, accessing a register is zero extra clock cycles per instruction, but delays 
may occur due to register read-after-write dependencies and register memory bank 
conflicts. 

The delays introduced by read-after-write dependencies can be ignored as soon as 
there are at least 192 concurrent threads per multiprocessor to hide them. 

The compiler and thread scheduler schedule the instructions as optimally as possible 
to avoid register memory bank conflicts. They achieve best results when the number 
of threads per block is a multiple of 64. Other than following this rule, an 
application has no direct control over these bank conflicts. In particular, there is no 
need to pack data into float4 or int4 types. 

5.2 Number of Threads per Block 
Given a total number of threads per grid, the number of threads per block, or 
equivalently the number of blocks, should be chosen to maximize the utilization of 
the available computing resources. This means that there should be at least as many 
blocks as there are multiprocessors in the device. 

Furthermore, running only one block per multiprocessor will force the 
multiprocessor to idle during thread synchronization and also during device memory 
reads if there are not enough threads per block to cover the load latency. It is 
therefore better to allow for two or more blocks to run concurrently on each 
multiprocessor to allow overlap between blocks that wait and blocks that can run. 
For this to happen, not only should there be at least twice as many blocks as there 
are multiprocessors in the device, but also the amount of allocated shared memory 
per block should be at most half the total amount of shared memory available per 
multiprocessor (see Section 3.2). More thread blocks stream in pipeline fashion 
through the device and amortize overhead even more. 

With a high enough number of blocks, the number of threads per block should be 
chosen as a multiple of the warp size to avoid wasting computing resources with 
under-populated warps, or better, a multiple of 64 for the reason invoked in 
Section 5.1.2.5. Allocating more threads per block is better for efficient time slicing, 
but the more threads per block, the fewer registers are available per thread. This 
might prevent a kernel invocation from succeeding if the kernel compiles to more 
registers than are allowed by the execution configuration.  

For devices of compute capability 1.x, the number of registers available per thread is 
equal to: 

)32,(
R

TceilB×
 

where R is the total number of registers per multiprocessor given in Appendix A, B 
is the number of concurrent blocks, T is the number of threads per block, and 
ceil(T, 32) is T rounded up to the nearest multiple of 32. 

64 threads per block is minimal and makes sense only if there are multiple 
concurrent blocks. 192 or 256 threads per block is better and usually allows for 
enough registers to compile. 
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The number of blocks per grid should be at least 100 if one wants it to scale to 
future devices; 1000 blocks will scale across several generations. 

The ratio of the number of warps running concurrently on a multiprocessor to the 
maximum number of warps that can run concurrently (given in Appendix A) is 
called the multiprocessor occupancy. In order to maximize occupancy, the compiler 
attempts to minimize register usage and programmers need to choose execution 
configurations with care. The CUDA Software Development Kit provides a 
spreadsheet to assist programmers in choosing thread block size based on shared 
memory and register requirements. 

5.3 Data Transfer between Host and Device 
The bandwidth between the device and the device memory is much higher than the 
bandwidth between the device memory and the host memory. Therefore, one 
should strive to minimize data transfer between the host and the device. For 
example, intermediate data structures may be created in device memory, operated on 
by the device, and destroyed without ever being mapped by the host or copied to 
host memory. 

Also, because of the overhead associated with each transfer, batching many small 
transfers into a big one always performs much better than making each transfer 
separately. 

5.4 Benefits of Texture Memory 
Device memory reads through texture fetching present several benefits over reads 
from global or constant memory: 

 They are cached, potentially exhibiting higher bandwidth if there is locality in the 
texture fetches; 

 They are not subject to the constraints on memory access patterns that global or 
constant memory reads must respect to get good performance (see 
Sections 5.1.2.1 and 5.1.2.2); 

 The latency of addressing calculations is hidden better, possibly improving 
performance for applications that perform random accesses to the data; 

 Packed data may be broadcast to separate variables in a single operation; 
 8-bit and 16-bit integer input data may be optionally converted to 32-bit floating-

point values in the range [0, 1]. 
Note that the texture cache is not kept coherent with respect to global memory 
accesses, so the global memory ranges that a kernel is operating on must not overlap 
with memory accessed by the texturing hardware. This restriction only applies 
within a given kernel launch, however; separate kernel launches may freely intermix 
writing to device memory and reading from the same device memory via texture, 
provided the device memory ranges do not overlap during a launch. 

If the texture is a CUDA array (see Section 4.3.4.2), the hardware provides other 
capabilities that may be useful for different applications, especially image processing: 
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Feature Useful for… Caveat 
Filtering Fast, low-precision interpolation 

between texels 
Only valid if the texture reference 
returns floating-point data 

Normalized texture 
coordinates 

Resolution-independent coding  

Addressing modes Automatic handling of boundary cases Can only be used with normalized 
texture coordinates 
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Chapter 6. 
Example of Matrix Multiplication 

6.1 Overview 
The task of computing the product C of two matrices A and B of dimensions 
(wA, hA) and (wB, wA) respectively, is split among several threads in the following 
way: 

 Each thread block is responsible for computing one square sub-matrix Csub of C; 
 Each thread within the block is responsible for computing one element of Csub. 

The dimension block_size of Csub is chosen equal to 16, so that the number of threads 
per block is a multiple of the warp size (Section 5.2) and remains below the 
maximum number of threads per block (Appendix A). 

As illustrated in Figure 6-1, Csub is equal to the product of two rectangular matrices: 
the sub-matrix of A of dimension (wA, block_size) that has the same line indices as 
Csub, and the sub-matrix of B of dimension (block_size, wA) that has the same column 
indices as Csub. In order to fit into the device’s resources, these two rectangular 
matrices are divided into as many square matrices of dimension block_size as 
necessary and Csub is computed as the sum of the products of these square matrices. 
Each of these products is performed by first loading the two corresponding square 
matrices from global memory to shared memory with one thread loading one 
element of each matrix, and then by having each thread compute one element of the 
product. Each thread accumulates the result of each of these products into a register 
and once done writes the result to global memory. 

By blocking the computation this way, we take advantage of fast shared memory 
and save a lot of global memory bandwidth since A and B are read from global 
memory only (wA / block_size) times. 

Nonetheless, this example has been written for clarity of exposition to illustrate 
various CUDA programming principles, not with the goal of providing a 
high-performance kernel for generic matrix multiplication and should not be 
construed as such. 
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Each thread block computes one sub-matrix Csub of C. Each thread within the block 
computes one element of Csub. 

Figure 6-1. Matrix Multiplication 
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6.2 Source Code Listing 
// Thread block size 
#define BLOCK_SIZE 16 
 
// Forward declaration of the device multiplication function 
__global__ void Muld(float*, float*, int, int, float*); 
 
// Host multiplication function 
// Compute C = A * B 
//   hA is the height of A 
//   wA is the width of A 
//   wB is the width of B 
void Mul(const float* A, const float* B, int hA, int wA, int wB, 
         float* C) 
{ 
    int size; 
 
    // Load A and B to the device 
    float* Ad; 
    size = hA * wA * sizeof(float); 
    cudaMalloc((void**)&Ad, size); 
    cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice); 
    float* Bd; 
    size = wA * wB * sizeof(float); 
    cudaMalloc((void**)&Bd, size); 
    cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice); 
 
    // Allocate C on the device 
    float* Cd; 
    size = hA * wB * sizeof(float); 
    cudaMalloc((void**)&Cd, size); 
 
    // Compute the execution configuration assuming 
    // the matrix dimensions are multiples of BLOCK_SIZE 
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 
    dim3 dimGrid(wB / dimBlock.x, hA / dimBlock.y); 
 
    // Launch the device computation 
    Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd); 
 
    // Read C from the device 
    cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);  
 
    // Free device memory 
    cudaFree(Ad); 
    cudaFree(Bd); 
    cudaFree(Cd); 
} 
 

 

CUDA Programming Guide Version 1.0  59 
 



Chapter 6. Example of Matrix Multiplication 

 

// Device multiplication function called by Mul() 
// Compute C = A * B 
//   wA is the width of A 
//   wB is the width of B 
__global__ void Muld(float* A, float* B, int wA, int wB, float* C) 
{ 
    // Block index 
    int bx = blockIdx.x; 
    int by = blockIdx.y; 
 
    // Thread index 
    int tx = threadIdx.x; 
    int ty = threadIdx.y; 
 
    // Index of the first sub-matrix of A processed by the block 
    int aBegin = wA * BLOCK_SIZE * by; 
 
    // Index of the last sub-matrix of A processed by the block 
    int aEnd   = aBegin + wA - 1; 
 
    // Step size used to iterate through the sub-matrices of A 
    int aStep  = BLOCK_SIZE; 
 
    // Index of the first sub-matrix of B processed by the block 
    int bBegin = BLOCK_SIZE * bx; 
 
    // Step size used to iterate through the sub-matrices of B 
    int bStep  = BLOCK_SIZE * wB; 
 
    // The element of the block sub-matrix that is computed 
    // by the thread 
    float Csub = 0; 
 
    // Loop over all the sub-matrices of A and B required to 
    // compute the block sub-matrix 
    for (int a = aBegin, b = bBegin; 
             a <= aEnd; 
             a += aStep, b += bStep) { 
 
        // Shared memory for the sub-matrix of A 
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 
 
        // Shared memory for the sub-matrix of B 
        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 
 
        // Load the matrices from global memory to shared memory; 
        // each thread loads one element of each matrix 
        As[ty][tx] = A[a + wA * ty + tx]; 
        Bs[ty][tx] = B[b + wB * ty + tx]; 
 
        // Synchronize to make sure the matrices are loaded 
        __syncthreads(); 
 
        // Multiply the two matrices together; 
        // each thread computes one element 
        // of the block sub-matrix 
        for (int k = 0; k < BLOCK_SIZE; ++k) 
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            Csub += As[ty][k] * Bs[k][tx]; 
 
        // Synchronize to make sure that the preceding 
        // computation is done before loading two new 
        // sub-matrices of A and B in the next iteration 
        __syncthreads(); 
    } 
 
    // Write the block sub-matrix to global memory; 
    // each thread writes one element 
    int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 
    C[c + wB * ty + tx] = Csub; 
} 

6.3 Source Code Walkthrough 
The source code contains two functions: 

 Mul(), a host function serving as a wrapper to Muld(); 
 Muld(), a kernel that executes the matrix multiplication on the device. 

6.3.1 Mul() 
Mul() takes as input: 

 Two pointers to host memory that point to the elements of A and B, 
 The height and width of A and the width of B, 
 A pointer to host memory that points where C should be written. 

Mul() performs the following operations: 

 It allocates enough global memory to store A, B, and C using cudaMalloc(); 
 It copies A and B from host memory to global memory using cudaMemcpy(); 
 It calls Muld() to compute C on the device; 
 It copies C from global memory to host memory using cudaMemcpy(); 
 It frees the global memory allocated for A, B, and C using cudaFree(). 

6.3.2 Muld() 
Muld() has the same input as Mul(), except that pointers point to device memory 
instead of host memory. 

For each block, Muld()iterates through all the sub-matrices of A and B required to 
compute Csub. At each iteration: 

 It loads one sub-matrix of A and one sub-matrix of B from global memory to 
shared memory; 

 It synchronizes to make sure that both sub-matrices are fully loaded by all the 
threads within the block; 

 It computes the product of the two sub-matrices and adds it to the product 
obtained during the previous iteration; 
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 It synchronizes again to make sure that the product of the two sub-matrices is 
done before starting the next iteration. 

Once all sub-matrices have been handled, Csub is fully computed and Muld() writes 
it to global memory. 

Muld() is written to maximize memory performance according to Section 5.1.2.1 
and 5.1.2.4. 

Indeed, assuming that wA and wB are multiples of 16 as suggested in Section 5.1.2.1, 
global memory coalescing is ensured because a, b, and c are all multiples of 
BLOCK_SIZE, which is equal to 16. 

There is also no shared memory bank conflict since for each half-warp, ty and k are 
the same for all threads and tx varies from 0 to 15, so each thread accesses a 
different bank for the memory accesses As[ty][tx], Bs[ty][tx], and 
Bs[k][tx] and the same bank for the memory access As[ty][k]. 
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Appendix A. 
Technical Specifications 

All devices with a 1.x compute capability follow the technical specifications detailed 
in this appendix. 

Atomic functions are only available for devices of compute capability 1.1 (see 
Section 4.4.6). 

The number of multiprocessors for the GeForce 8800 Series, 
Quadro FX 5600/4600, and Tesla solutions are given in the following table: 

 Number of 
multiprocessors 

GeForce 8800 Ultra 16 

GeForce 8800 GTX 16 

GeForce 8800 GTS 12 

GeForce 8600 GTS 4 

GeForce 8600 GT 2 

GeForce 8500 GT 2 

Quadro FX 5600 16 

Quadro FX 4600 12 

Tesla C870 16 

Tesla D870 2x16 

Tesla S870 4x16 

 

The clock frequency and total amount of device memory can be queried using the 
runtime (Sections 4.5.2.2 and 4.5.3.2). 

A.1 General Specifications 
 The maximum number of threads per block is 512; 
 The maximum sizes of the x-, y-, and z-dimension of a thread blocks are 512, 

512, and 64, respectively; 
 The maximum size of each dimension of a grid of thread blocks is 65535; 
 The warp size is 32 threads; 
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 The number of registers per multiprocessor is 8192; 
 The amount of shared memory available per multiprocessor is 16 KB organized 

into 16 banks (see Section 5.1.2.4); 
 The amount of constant memory available is 64 KB with a cache working set of 

8 KB per multiprocessor; 
 The cache working set for one-dimensional textures is 8 KB per multiprocessor; 
 The maximum number of blocks that can run concurrently on a multiprocessor 

is 8; 
 The maximum number of warps that can run concurrently on a multiprocessor is 

24; 
 The maximum number of threads that can run concurrently on a multiprocessor 

is 768; 
 For a texture reference bound to a one-dimensional CUDA array, the maximum 

width is 213; 
 For a texture reference bound to a two-dimensional CUDA array, the maximum 

width is 216 and the maximum height is 215; 
 For a texture reference bound to linear memory, the maximum width is 227; 
 The limit on kernel size is 2 million of native instructions; 
 Each multiprocessor is composed of eight processors, so that a multiprocessor is 

able to process the 32 threads of a warp in four clock cycles. 

A.2 Floating-Point Standard 
Compute devices follow the IEEE-754 standard for single-precision binary floating-
point arithmetic with the following deviations: 

 Addition and multiplication are often combined into a single multiply-add 
instruction (FMAD); 

 Division is implemented via the reciprocal in a non-standard-compliant way; 
 Square root is implemented via the reciprocal square root in a non-standard-

compliant way; 
 For addition and multiplication, only round-to-nearest-even and 

round-towards-zero are supported via static rounding modes; directed rounding 
towards +/- infinity is not supported; 

 There is no dynamically configurable rounding mode; 
 Denormalized numbers are not supported; floating-point arithmetic and 

comparison instructions convert denormalized operands to zero prior to the 
floating-point operation; 

 Underflowed results are flushed to zero; 
There is no mechanism for detecting that  a floating-point exception has occurred 
and floating-point exceptions are always masked, but when an exception occurs 
the masked response is standard compliant; 
Signaling NaNs are not supported.  

 The result of an operation involving one or more input NaNs is not one of the 
input NaNs, but a canonical NaN of bit pattern 0x7fffffff. Note that in 
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accordance to the IEEE-754R standard, if one of the input parameters to min() 
or max() is NaN, but not the other, the result is the non-NaN parameter. 

The conversion of a floating-point value to an integer value in the case where the 
floating-point value falls outside the range of the integer format is left undefined by 
IEEE-754. For compute devices, the behavior is to clamp to the end of the 
supported range. This is unlike the x86 architecture behaves. 

 

 

CUDA Programming Guide Version 1.0  65 
 





 

 

 

 

 

 

CUDA Programming Guide Version 1.0  67 
 

Appendix B. 
Mathematical Functions 

Functions from Section B.1 can be used by both host and device functions whereas 
functions from Section B.2 can only be used in device functions. 

B.1 Common Runtime Component 
Table B-1 below lists all the mathematical standard library functions supported by 
the CUDA runtime library. It also specifies the error bounds of each function when 
executed on the device. These error bounds also apply when the function is 
executed on the host in the case where the host does no supply the function. They 
are generated from extensive but not exhaustive tests, so they are not guaranteed 
bounds. 

Addition and multiplication are IEEE-compliant, so have a maximum error of 
0.5 ulp. They are however often combined into a single multiply-add instruction 
(FMAD), which truncates the intermediate result of the multiplication. 

The recommended way to round a floating-point operand to an integer, with the 
result being a floating-point number is rintf(), not roundf(). The reason is that 
roundf() maps to an 8-instruction sequence, whereas rintf() maps to a single 
instruction. 

truncf(), ceilf(), and floorf() each map to a single instruction as well. 

Table B-1. Mathematical Standard Library Functions with 
Maximum ULP Error 

Function Maximum ulp error 
x/y 2 (full range) 

1/x 1 (full range) 

1/sqrtf(x) 
rsqrtf(x) 

2 (full range) 

sqrtf(x) 3 (full range) 

cbrtf(x) 1 (full range) 

hypotf(x) 3 (full range) 

expf(x) 2 (full range) 
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Function Maximum ulp error 
exp2f(x) 2 (full range) 

exp10f(x) 2 (full range) 

expm1f(x) 4 (full range) 

logfx) 1 (full range) 

log2f(x) 3 (full range) 

log10f(x) 3 (full range) 

log1pf(x) 2 (full range) 

sinf(x) 2 (inside interval -48039 ... +48039; larger outside) 
Total loss of accuracy occurs for |x| > 107. 

cosf(x) 2 (inside interval -48039 ... +48039; larger outside) 
Total loss of accuracy occurs for |x| > 107. 

tanf(x) 4 (inside interval -48039 ... +48039; larger outside) 
Total loss of accuracy occurs for |x| > 107. 

sincosf(x,sptr,cptr) 2 (inside interval -48039 ... +48039; larger outside) 
Total loss of accuracy occurs for |x| > 107. 

asinf(x) 4 (full range) 

acosf(x) 3 (full range) 

atanf(x) 2 (full range) 

atan2f(y,x) 3 (full range) 

sinhf(x) 3 (full range) 

coshf(x) 2 (full range) 

tanhf(x) 2 (full range) 

asinhf(x) 3 (full range) 

acoshf(x) 4 (full range) 

atanhf(x) 3 (full range) 

powf(x,y) For x in [0.75, 1.27], the maximum ulp error is 
9 + trunc(1.5 * abs(log(abs(xy)))), 
and 16 otherwise. 

erff(x) 4 (full range) 

erfcf(x) 8 (full range) 

lgammaf(x) 6 (outside interval -10.001 ... -2.264; larger inside) 

tgammaf(x) 11 (full range) 

fmaf(x,y,z) 0 (full range) 

frexpf(x,exp) 0 (full range) 

ldexpf(x,exp) 0 (full range) 

scalbnf(x,n) 0 (full range) 

scalblnf(x,l) 0 (full range) 

logbf(x) 0 (full range) 

ilogbf(x) 0 (full range) 

fmodf(x,y) 0 (full range) 

remainderf(x,y) 0 (full range) 

remquof(x,y,iptr) 0 (full range) 

modff(x,iptr) 0 (full range) 
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Function Maximum ulp error 
fdimf(x,y) 0 (full range) 

truncf(x) 0 (full range) 

roundf(x) 0 (full range) 

rintf(x) 0 (full range) 

nearbyintf(x) 0 (full range) 

ceilf(x) 0 (full range) 

floorf(x) 0 (full range) 

lrintf(x) 0 (full range) 

lroundf(x) 0 (full range) 

signbit(x) N/A 

isinf(x) N/A 

isnan(x) N/A 

isfinite(x) N/A 

copysignf(x,y) N/A 

fminf(x,y) N/A 

fmaxf(x,y) N/A 

fabsf(x) N/A 

nanf(cptr) N/A 

nextafterf(x,y) N/A 
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B.2 Device Runtime Component 
For some of the functions of Table B-1, a less accurate, but faster version exists 
with the same name prefixed with __ (such as __sinf(x)). These instrinsic 
functions are listed in Table B-2. Their error bounds are GPU-specific. 

__fadd_rz(x,y) computes the sum of floating-point parameters x and y using 
the round-towards-zero rounding mode. 

__fmul_rz(x,y) computes the product of floating-point parameters x and y 
using the round-towards-zero rounding mode. 

Both the regular floating-point division and __fdividef(x,y) have the same 
accuracy, but for 2126 < y < 2128, __fdividef(x,y) delivers a result of zero, 
whereas the regular division delivers the correct result to within the accuracy stated 
in Table B-1. Also, for 2126 < y < 2128, if x is infinity, __fdividef(x,y) delivers a 
NaN (as a result of multiplying infinity by zero), while the regular division returns 
infinity. 

__[u]mul24(x,y) computes the product of the 24 least significant bits of the 
integer parameters x and y and delivers the 32 least significant bits of the result. The 
8 most significant bits of x or y are ignored. 

__[u]mulhi(x,y) computes the product of the integer parameters x and y and 
delivers the 32 most significant bits of the 64-bit result. 

__saturate(x) returns 0 if x is less than 0, 1 if x is more than 1, and x 
otherwise. 

Table B-2. Intrinsic Functions Supported by the CUDA 
Runtime Library with Respective Error Bounds 
for Devices of Compute Capability 1.x 

Function Error bounds 
__fadd_rz(x,y) IEEE-compliant. 

__fmul_rz(x,y) IEEE-compliant. 

__fdividef(x,y) For y in [2-126, 2126], the maximum ulp error is 2. 

__expf(x) The maximum ulp error is 
2 + floor(abs(1.16 * x)). 

__exp10f(x) The maximum ulp error is 
2 + floor(abs(2.95 * x)). 

__logf(x) For x in [0.5, 2], the maximum absolute error is 2-21.41, 
otherwise, the maximum ulp error is 3. 

__log2f(x) For x in [0.5, 2], the maximum absolute error is 2-22, 
otherwise, the maximum ulp error is 2. 

__log10f(x) For x in [0.5, 2], the maximum absolute error is 2-24, 
otherwise, the maximum ulp error is 3. 

__sinf(x) For x in [-π, π], the maximum absolute error is 2-21.41, and 
larger otherwise. 

__cosf(x) For x in [-π, π], the maximum absolute error is 2-21.19, and 
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larger otherwise. 

__sincosf(x,sptr,cptr) Same as sinf(x) and cosf(x). 

__tanf(x) Derived from its implementation as 
__sinf(x) * (1 / __cosf(x)). 

__powf(x, y) Derived from its implementation as 
exp2f(y * __log2f(x)). 

__mul24(x,y) 
__umul24(x,y) 

N/A 

__mulhi(x,y) 
__umulhi(x,y) 

N/A 

__int_as_float(x) N/A 

__float_as_int(x) N/A 

__saturate(x) N/A 
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Appendix C. 
Atomic Functions 

Atomic functions can only be used in device functions. 

C.1 Arithmetic Functions 

C.1.1 atomicAdd() 
int atomicAdd(int* address, int val); 
unsigned int atomicAdd(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes (old + val), and stores the result back to global memory at the same 
address. These three operations are performed in one atomic transaction. The 
function returns old. 

C.1.2 atomicSub() 
int atomicSub(int* address, int val); 
unsigned int atomicSub(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes (old - val), and stores the result back to global memory at the same 
address. These three operations are performed in one atomic transaction. The 
function returns old. 

C.1.3 atomicExch() 
int atomicExch(int* address, int val); 
unsigned int atomicExch(unsigned int* address, 
                        unsigned int val); 
float atomicExch(float* address, float val); 
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reads the 32-bit word old located at the address address in global memory and 
stores val back to global memory at the same address. These two operations are 
performed in one atomic transaction. The function returns old. 

C.1.4 atomicMin() 
int atomicMin(int* address, int val); 
unsigned int atomicMin(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes the minimum of old and val, and stores the result back to global 
memory at the same address. These three operations are performed in one atomic 
transaction. The function returns old. 

C.1.5 atomicMax() 
int atomicMax(int* address, int val); 
unsigned int atomicMax(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes the maximum of old and val, and stores the result back to global 
memory at the same address. These three operations are performed in one atomic 
transaction. The function returns old. 

C.1.6 atomicInc() 
unsigned int atomicInc(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes ((old >= val) ? 0 : (old+1)), and stores the result back to 
global memory at the same address. These three operations are performed in one 
atomic transaction. The function returns old. 

C.1.7 atomicDec() 
unsigned int atomicDec(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes (((old == 0) | (old > val)) ? val : (old-1)), and stores 
the result back to global memory at the same address. These three operations are 
performed in one atomic transaction. The function returns old. 

C.1.8 atomicCAS() 
int atomicCAS(int* address, int compare, int val); 
unsigned int atomicCAS(unsigned int* address, 
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                       unsigned int compare, 
                       unsigned int val); 
float atomicCAS(float* address, float compare, float val); 

reads the 32-bit word old located at the address address in global memory, 
computes (old == compare ? val : old), and stores the result back to 
global memory at the same address. These three operations are performed in one 
atomic transaction. The function returns old (Compare And Swap). 

C.2 Bitwise Functions 

C.2.1 atomicAnd() 
 
int atomicAnd(int* address, int val); 
unsigned int atomicAnd(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes (old & val), and stores the result back to global memory at the same 
address. These three operations are performed in one atomic transaction. The 
function returns old. 

C.2.2 atomicOr() 
 
int atomicOr(int* address, int val); 
unsigned int atomicOr(unsigned int* address, 
                      unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes (old | val), and stores the result back to global memory at the same 
address. These three operations are performed in one atomic transaction. The 
function returns old. 

C.2.3 atomicXor() 
 
int atomicXor(int* address, int val); 
unsigned int atomicXor(unsigned int* address, 
                       unsigned int val); 

reads the 32-bit word old located at the address address in global memory, 
computes (old ^ val), and stores the result back to global memory at the same 
address. These three operations are performed in one atomic transaction. The 
function returns old. 
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Appendix D. 
Runtime API Reference 

There are two levels for the runtime API. 

The low-level API (cuda_runtime_api.h) is a C-style interface that does not 
require compiling with nvcc. 

The high-level API (cuda_runtime.h) is a C++-style interface built on top of the 
low-level API. It wraps some of the low level API routines, using overloading, 
references and default arguments. These wrappers can be used from C++ code and 
can be compiled with any C++ compiler. The high-level API also has some CUDA-
specific wrappers that wrap low-level routines that deal with symbols, textures, and 
device functions. These wrappers require the use of nvcc because they depend on 
code being generated by the compiler (see Section 4.2.5). For example, the 
execution configuration syntax described in Section 4.2.3 to invoke kernels is only 
available in source code compiled with nvcc. 

D.1 Device Management 

D.1.1 cudaGetDeviceCount() 
cudaError_t cudaGetDeviceCount(int* count); 

returns in *count the number of devices with compute capability greater or equal 
to 1.0 that are available for execution. If there is no such device, 
cudaGetDeviceCount() returns 1 and device 0 only supports device emulation 
mode and is of compute capability less than 1.0. 

D.1.2 cudaGetDeviceProperties() 
cudaError_t cudaGetDeviceProperties(struct cudaDeviceProp* prop, 
                                    int dev); 

returns in *prop the properties of device dev. The cudaDeviceProp structure is 
defined as: 
struct cudaDeviceProp { 
  char   name[256]; 
  size_t totalGlobalMem; 



Appendix D. Runtime API Reference 

 

  size_t sharedMemPerBlock; 
  int    regsPerBlock; 
  int    warpSize; 
  size_t memPitch; 
  int    maxThreadsPerBlock; 
  int    maxThreadsDim[3]; 
  int    maxGridSize[3];  
  size_t totalConstMem;  
  int    major; 
  int    minor; 
  int    clockRate; 
  size_t textureAlignment; 
}; 

where:  

 name is an ASCII string identifying the device; 
 totalGlobalMem is the total amount of global memory available on the device 

in bytes; 
 sharedMemPerBlock is the total amount of shared memory available per 

block in bytes; 
 regsPerBlock is the total number of registers available per block; 
 warpSize is the warp size; 
 memPitch is the maximum pitch allowed by the memory copy functions of 

Section D.3 that involve memory regions allocated through 
cudaMallocPitch() (Section D.3.2); 

 maxThreadsPerBlock is the maximum number of threads per block; 
 maxThreadsDim[3] is the maximum sizes of each dimension of a block; 
 maxGridSize[3] is the maximum sizes of each dimension of a grid; 
 totalConstMem is the total amount of constant memory available on the 

device in bytes; 
 major and minor are the major and minor revision numbers; 
 clockRate is the clock frequency in kilohertz; 
 textureAlignment is the alignment requirement mentioned in 

Section 4.3.4.3; texture base addresses that are aligned to textureAlignment 
bytes do not need an offset applied to texture fetches. 

D.1.3 cudaChooseDevice() 
cudaError_t cudaChooseDevice(int* dev, 
                             const struct cudaDeviceProp* prop); 

returns in *dev the device which properties best match *prop. 

D.1.4 cudaSetDevice() 
cudaError_t cudaSetDevice(int dev); 

records dev as the device on which the active host thread executes the device code. 
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D.1.5 cudaGetDevice() 
cudaError_t cudaGetDevice(int* dev); 

returns in *dev the device on which the active host thread executes the device 
code. 

D.2 Thread Management 

D.2.1 cudaThreadSynchronize() 
cudaError_t cudaThreadSynchronize(void); 

blocks until the device has completed all preceding requested tasks. 
cudaThreadSynchronize() returns an error if one of the preceding tasks failed. 

D.2.2 cudaThreadExit() 
cudaError_t cudaThreadExit(void); 

explicitly cleans up all runtime-related resources associated with the calling host 
thread. Any subsequent API call reinitializes the runtime. cudaThreadExit() is 
implicitly called on host thread exit. 

D.3 Memory Management 

D.3.1 cudaMalloc() 
cudaError_t cudaMalloc(void** devPtr, size_t count); 

allocates count bytes of linear memory on the device and returns in *devPtr a 
pointer to the allocated memory. The allocated memory is suitably aligned for any 
kind of variable. The memory is not cleared. cudaMalloc() returns 
cudaErrorMemoryAllocation in case of failure. 

D.3.2 cudaMallocPitch() 
cudaError_t cudaMallocPitch(void** devPtr,  
                            size_t* pitch, 
                            size_t widthInBytes,  
                            size_t height); 

allocates at least widthInBytes*height bytes of linear memory on the device 
and returns in *devPtr a pointer to the allocated memory. The function may pad 
the allocation to ensure that corresponding pointers in any given row will continue 
to meet the alignment requirements for coalescing as the address is updated from 
row to row (see Section 5.1.2.1). The pitch returned in *pitch by 
cudaMallocPitch() is the width in bytes of the allocation. The intended usage 
of pitch is as a separate parameter of the allocation, used to compute addresses 
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within the 2D array. Given the row and column of an array element of type T, the 
address is computed as 
   T* pElement = (T*)((char*)BaseAddress + Row * pitch) + Column; 

For allocations of 2D arrays, it is recommended that developers consider 
performing pitch allocations using cudaMallocPitch(). Due to pitch alignment 
restrictions in the hardware, this is especially true if the application will be 
performing 2D memory copies between different regions of device memory 
(whether linear memory or CUDA arrays). 

D.3.3 cudaFree() 
cudaError_t cudaFree(void* devPtr); 

frees the memory space pointed to by devPtr, which must have been returned by a 
previous call to cudaMalloc() or cudaMallocPitch(). Otherwise, or if 
cudaFree(devPtr) has already been called before, an error is returned. If 
devPtr is 0, no operation is performed. cudaFree() returns 
cudaErrorInvalidDevicePointer in case of failure. 

D.3.4 cudaMallocArray() 
cudaError_t cudaMallocArray(struct cudaArray** array, 
                         const struct cudaChannelFormatDesc* desc, 
                            size_t width, size_t height); 

allocates a CUDA array according to the cudaChannelFormatDesc structure 
desc and returns a handle to the new CUDA array in *array. 
cudaChannelFormatDesc is described in Section 4.3.4. 

D.3.5 cudaFreeArray() 
cudaError_t cudaFreeArray(struct cudaArray* array); 

frees the CUDA array array. 

D.3.6 cudaMallocHost() 
cudaError_t cudaMallocHost(void** hostPtr, size_t size); 

allocates size bytes of host memory that is page-locked and accessible to the 
device. The driver tracks the virtual memory ranges allocated with this function and 
automatically accelerates calls to functions such as cudaMemcpy*(). Since the 
memory can be accessed directly by the device, it can be read or written with much 
higher bandwidth than pageable memory obtained with functions such as 
malloc(). Allocating excessive amounts of memory with cudaMallocHost() 
may degrade system performance, since it reduces the amount of memory available 
to the system for paging. As a result, this function is best used sparingly to allocate 
staging areas for data exchange between host and device. 
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D.3.7 cudaFreeHost() 
cudaError_t cudaFreeHost(void* hostPtr); 

frees the memory space pointed to by hostPtr, which must have been returned by 
a previous call to cudaMallocHost(). 

D.3.8 cudaMemset() 
cudaError_t cudaMemset(void* devPtr, int value, size_t count); 

fills the first count bytes of the memory area pointed to by devPtr with the 
constant byte value value. 

D.3.9 cudaMemset2D() 
cudaError_t cudaMemset2D(void* dstPtr, size_t pitch,  
                         int value, size_t width, size_t height); 

sets to the specified value value a matrix (height rows of width bytes each) 
pointed to by dstPtr. pitch is the width in memory in bytes of the 2D array 
pointed to by dstPtr, including any padding added to the end of each row (see 
Section D.3.2). 

D.3.10 cudaMemcpy() 
cudaError_t cudaMemcpy(void* dst, const void* src, 
                       size_t count, 
                       enum cudaMemcpyKind kind); 

copies count bytes from the memory area pointed to by src to the memory area 
pointed to by dst, where kind is one of cudaMemcpyHostToHost, 
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or 
cudaMemcpyDeviceToDevice, and specifies the direction of the copy. The 
memory areas may not overlap. Calling cudaMemcpy() with dst and src pointers 
that do not match the direction of the copy results in an undefined behavior. 

D.3.11 cudaMemcpy2D() 
cudaError_t cudaMemcpy2D(void* dst, size_t dpitch, 
                         const void* src, size_t spitch, 
                         size_t width, size_t height, 
                         enum cudaMemcpyKind kind); 

copies a matrix (height rows of width bytes each) from the memory area pointed 
to by src to the memory area pointed to by dst, where kind is one of 
cudaMemcpyHostToHost, cudaMemcpyHostToDevice, 
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies 
the direction of the copy. dpitch and spitch are the widths in memory in bytes 
of the 2D arrays pointed to by dst and src, including any padding added to the 
end of each row (see Section D.3.2). The memory areas may not overlap. Calling 
cudaMemcpy2D() with dst and src pointers that do not match the direction of 
the copy results in an undefined behavior. 

 

CUDA Programming Guide Version 1.0  81 
 



Appendix D. Runtime API Reference 

 

D.3.12 cudaMemcpyToArray() 
cudaError_t cudaMemcpyToArray(struct cudaArray* dstArray, 
                              size_t dstX, size_t dstY, 
                              const void* src, size_t count, 
                              enum cudaMemcpyKind kind); 

copies count bytes from the memory area pointed to by src to the CUDA array 
dstArray starting at the upper left corner (dstX, dstY), where kind is one of 
cudaMemcpyHostToHost, cudaMemcpyHostToDevice, 
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies 
the direction of the copy. 

D.3.13 cudaMemcpy2DToArray() 
cudaError_t cudaMemcpy2DToArray(struct cudaArray* dstArray, 
                                size_t dstX, size_t dstY, 
                                const void* src, size_t spitch, 
                                size_t width, size_t height, 
                                enum cudaMemcpyKind kind); 

copies a matrix (height rows of width bytes each) from the memory area pointed 
to by src to the CUDA array dstArray starting at the upper left corner (dstX, 
dstY), where kind is one of cudaMemcpyHostToHost, 
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or 
cudaMemcpyDeviceToDevice, and specifies the direction of the copy. spitch 
is the width in memory in bytes of the 2D array pointed to by src, including any 
padding added to the end of each row (see Section D.3.2). 

D.3.14 cudaMemcpyFromArray() 
cudaError_t cudaMemcpyFromArray(void* dst, 
                                const struct cudaArray* srcArray, 
                                size_t srcX, size_t srcY, 
                                size_t count, 
                                enum cudaMemcpyKind kind); 

copies count bytes from the CUDA array srcArray starting at the upper left 
corner (srcX, srcY) to the  memory area pointed to by dst, where kind is one of 
cudaMemcpyHostToHost, cudaMemcpyHostToDevice, 
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies 
the direction of the copy. 

D.3.15 cudaMemcpy2DFromArray() 
cudaError_t cudaMemcpy2DFromArray(void* dst, size_t dpitch, 
                                 const struct cudaArray* srcArray, 
                                  size_t srcX, size_t srcY, 
                                  size_t width, size_t height, 
                                  enum cudaMemcpyKind kind); 

copies a matrix (height rows of width bytes each) from the CUDA array 
srcArray starting at the upper left corner (srcX, srcY) to the  memory area 
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pointed to by dst, where kind is one of cudaMemcpyHostToHost, 
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or 
cudaMemcpyDeviceToDevice, and specifies the direction of the copy. dpitch 
is the width in memory in bytes of the 2D array pointed to by dst, including any 
padding added to the end of each row (see Section D.3.2). 

D.3.16 cudaMemcpyArrayToArray() 
cudaError_t cudaMemcpyArrayToArray(struct cudaArray* dstArray, 
                                   size_t dstX, size_t dstY, 
                                 const struct cudaArray* srcArray, 
                                   size_t srcX, size_t srcY, 
                                   size_t count, 
                                   enum cudaMemcpyKind kind); 

copies count bytes from the CUDA array srcArray starting at the upper left 
corner (srcX, srcY) to the CUDA array dstArray starting at the upper left 
corner (dstX, dstY), where kind is one of cudaMemcpyHostToHost, 
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or 
cudaMemcpyDeviceToDevice, and specifies the direction of the copy. 

D.3.17 cudaMemcpy2DArrayToArray() 
cudaError_t cudaMemcpy2DArrayToArray(struct cudaArray* dstArray, 
                                     size_t dstX, size_t dstY, 
                                 const struct cudaArray* srcArray, 
                                     size_t srcX, size_t srcY, 
                                     size_t width, size_t height, 
                                     enum cudaMemcpyKind kind); 

copies a matrix (height rows of width bytes each) from the CUDA array 
srcArray starting at the upper left corner (srcX, srcY) to the CUDA array 
dstArray starting at the upper left corner (dstX, dstY), where kind is one of 
cudaMemcpyHostToHost, cudaMemcpyHostToDevice, 
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies 
the direction of the copy. 

D.3.18 cudaMemcpyToSymbol() 
template<class T> 
cudaError_t cudaMemcpyToSymbol(const T& symbol, const void* src, 
                               size_t count, size_t offset = 0, 
               enum cudaMemcpyKind kind = cudaMemcpyHostToDevice); 

copies count bytes from the memory area pointed to by src to the  memory area 
pointed to by offset bytes from the start of symbol symbol. The memory areas 
may not overlap. symbol can either be a variable that resides in global memory 
space, or it can be a character string, naming a variable that resides in global 
memory space. kind can be either cudaMemcpyHostToDevice or 
cudaMemcpyDeviceToDevice. 
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D.3.19 cudaMemcpyFromSymbol() 
template<class T> 
cudaError_t cudaMemcpyFromSymbol(void *dst, const T& symbol, 
                                 size_t count, size_t offset = 0, 
               enum cudaMemcpyKind kind = cudaMemcpyDeviceToHost); 

copies count bytes from the memory area pointed to by offset bytes from the 
start of symbol symbol to the  memory area pointed to by dst. The memory areas 
may not overlap. symbol can either be a variable that resides in global memory 
space, or it can be a character string, naming a variable that resides in global 
memory space. kind can be either cudaMemcpyDeviceToHost or 
cudaMemcpyDeviceToDevice. 

D.3.20 cudaGetSymbolAddress() 
template<class T> 
cudaError_t cudaGetSymbolAddress(void** devPtr, const T& symbol); 

returns in *devPtr the address of symbol symbol on the device. symbol can 
either be a variable that resides in global memory space, or it can be a character 
string, naming a variable that resides in global memory space. If symbol cannot be 
found, or if symbol is not declared in global memory space, *devPtr is 
unchanged and an error is returned. cudaGetSymbolAddress() returns 
cudaErrorInvalidSymbol in case of failure. 

D.3.21 cudaGetSymbolSize() 
template<class T> 
cudaError_t cudaGetSymbolSize(size_t* size, const T& symbol); 

returns in *size the size of symbol symbol. symbol can either be a variable that 
resides in global or constant memory space, or it can be a character string, naming a 
variable that resides in global or constant memory space. If symbol cannot be 
found, or if symbol is not declared in global or constant memory space, *size is 
unchanged and an error is returned. cudaGetSymbolSize() returns 
cudaErrorInvalidSymbol in case of failure. 

D.4 Texture Reference Management 

D.4.1 Low-Level API 
D.4.1.1 cudaCreateChannelDesc() 

struct cudaChannelFormatDesc 
cudaCreateChannelDesc(int x, int y, int z, int w, 
                      enum cudaChannelFormatKind f); 

returns a channel descriptor with format f and number of bits of each component 
x, y, z, and w. cudaChannelFormatDesc is described in Section 4.3.4. 
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D.4.1.2 cudaGetChannelDesc() 
cudaError_t cudaGetChannelDesc(struct cudaChannelFormatDesc* desc, 
                               const struct cudaArray* array); 

returns in *desc the channel descriptor of the CUDA array array. 

D.4.1.3 cudaGetTextureReference() 
cudaError_t cudaGetTextureReference( 
                                 struct textureReference** texRef, 
                                 const char* symbol); 

returns in *texRef the structure associated to the texture reference defined by 
symbol symbol. 

D.4.1.4 cudaBindTexture() 
cudaError_t cudaBindTexture(size_t* offset, 
                            const struct textureReference* texRef, 
                            const void* devPtr, 
                        const struct cudaChannelFormatDesc* desc, 
                            size_t size = UINT_MAX); 

binds size bytes of the memory area pointed to by devPtr to the texture 
reference texRef. desc describes how the memory is interpreted when fetching 
values from the texture. Any memory previously bound to texRef is unbound. 

Since the hardware enforces an alignment requirement on texture base addresses, 
cudaBindTexture() returns in *offset a byte offset that must be applied to 
texture fetches in order to read from the desired memory. This offset must be 
divided by the texel size and passed to kernels that read from the texture so they can 
be applied to the tex1Dfetch() function. If the device memory pointer was 
returned from cudaMalloc(), the offset is guaranteed to be 0 and NULL may be 
passed as the offset parameter. 

D.4.1.5 cudaBindTextureToArray() 
cudaError_t cudaBindTextureToArray( 
                            const struct textureReference* texRef, 
                            const struct cudaArray* array, 
                        const struct cudaChannelFormatDesc* desc); 

binds the CUDA array array to the texture reference texRef. desc describes 
how the memory is interpreted when fetching values from the texture. Any CUDA 
array previously bound to texRef is unbound. 

D.4.1.6 cudaUnbindTexture() 
cudaError_t cudaUnbindTexture( 
                           const struct textureReference* texRef); 

unbinds the texture bound to texture reference texRef. 

D.4.1.7 cudaGetTextureAlignmentOffset() 
cudaError_t cudaGetTextureAlignmentOffset(size_t* offset, 
                           const struct textureReference* texRef); 

returns in *offset the offset that was returned when texture reference texRef 
was bound. 
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D.4.2 High-Level API 
D.4.2.1 cudaCreateChannelDesc() 

template<class T> 
struct cudaChannelFormatDesc cudaCreateChannelDesc<T>(); 

returns a channel descriptor with format matching type T. T can be any types of 
Section 4.3.1.1. 3-component types default to a 4-component format. 

D.4.2.2 cudaBindTexture() 
template<class T, int dim, enum cudaTextureReadMode readMode> 
static __inline__ __host__ cudaError_t 
cudaBindTexture(size_t* offset, 
                const struct texture<T, dim, readMode>& texRef, 
                const void* devPtr, 
                const struct cudaChannelFormatDesc& desc, 
                size_t size = UINT_MAX); 

binds size bytes of the memory area pointed to by devPtr to texture reference 
texRef. desc describes how the memory is interpreted when fetching values from 
the texture. The offset parameter is an optional byte offset as with the low-level 
cudaBindTexture() function described in Section D.4.1.4. Any memory 
previously bound to texRef is unbound. 
template<class T, int dim, enum cudaTextureReadMode readMode> 
static __inline__ __host__ cudaError_t 
cudaBindTexture(size_t* offset, 
                const struct texture<T, dim, readMode>& texRef, 
                const void* devPtr, 
                size_t size = UINT_MAX); 

binds size bytes of the memory area pointed to by devPtr to texture reference 
texRef. The channel descriptor is inherited from the texture reference type. The 
offset parameter is an optional byte offset as with the low-level 
cudaBindTexture() function described in Section D.4.1.4. Any memory 
previously bound to texRef is unbound. 

D.4.2.3 cudaBindTextureToArray() 
template<class T, int dim, enum cudaTextureReadMode readMode> 
static __inline__ __host__ cudaError_t 
cudaBindTextureToArray( 
                   const struct texture<T, dim, readMode>& texRef, 
                   const struct cudaArray* cuArray, 
                   const struct cudaChannelFormatDesc& desc); 

binds the CUDA array array to texture reference texRef. desc describes how 
the memory is interpreted when fetching values from the texture. Any CUDA array 
previously bound to texRef is unbound. 
template<class T, int dim, enum cudaTextureReadMode readMode> 
static __inline__ __host__ cudaError_t 
cudaBindTextureToArray( 
                   const struct texture<T, dim, readMode>& texRef, 
                   const struct cudaArray* cuArray); 
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binds the CUDA array array to texture reference texRef. The channel descriptor 
is inherited from the CUDA array. Any CUDA array previously bound to texRef 
is unbound. 

D.4.2.4 cudaUnbindTexture() 
template<class T, int dim, enum cudaTextureReadMode readMode> 
static __inline__ __host__ cudaError_t 
cudaUnbindTexture(const struct texture<T, dim, readMode>& texRef); 

unbinds the texture bound to texture reference texRef. 

D.5 Execution Control 

D.5.1 cudaConfigureCall() 
cudaError_t cudaConfigureCall(dim3 gridDim, dim3 blockDim, 
                              size_t sharedMem = 0, 
                              int tokens = 0); 

specifies the grid and block dimensions for the device call to be executed similar to 
the execution configuration syntax described in Section 4.2.3. 
cudaConfigureCall() is stack based. Each call pushes data on top of an 
execution stack. This data contains the dimension for the grid and thread blocks, 
together with any arguments for the call. 

D.5.2 cudaLaunch() 
template<class T> cudaError_t cudaLaunch(T entry); 

launches the function entry on the device. entry can either be a function that 
executes on the device, or it can be a character string, naming a function that 
executes on the device. entry must be declared as a __global__ function.  
cudaLaunch() must be preceded by a call to cudaConfigureCall() since it 
pops the data that was pushed by cudaConfigureCall() from the execution 
stack. 

D.5.3 cudaSetupArgument() 
cudaError_t cudaSetupArgument(void* arg, 
                              size_t count, size_t offset); 
template<class T> cudaError_t cudaSetupArgument(T arg, 
                                                size_t offset); 

pushes count bytes of the argument pointed to by arg at offset bytes from the 
start of the parameter passing area, which starts at offset 0. The arguments are 
stored in the top of the execution stack. cudaSetupArgument() must be 
preceded by a call to cudaConfigureCall(). 
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D.6 OpenGL Interoperability 

D.6.1 cudaGLRegisterBufferObject() 
cudaError_t cudaGLRegisterBufferObject(GLuint bufferObj); 

registers the buffer object of ID bufferObj for access by CUDA. This function 
must be called before CUDA can map the buffer object. While it is registered, the 
buffer object cannot be used by any OpenGL commands except as a data source for 
OpenGL drawing commands. 

D.6.2 cudaGLMapBufferObject() 
cudaError_t cudaGLMapBufferObject(void** devPtr, 
                                  GLuint bufferObj); 

maps the buffer object of ID bufferObj into the address space of CUDA and 
returns in *devPtr the base pointer of the resulting mapping. 

D.6.3 cudaGLUnmapBufferObject() 
cudaError_t cudaGLUnmapBufferObject(GLuint bufferObj); 

unmaps the buffer object of ID bufferObj for access by CUDA. 

D.6.4 cudaGLUnregisterBufferObject() 
cudaError_t cudaGLUnregisterBufferObject(GLuint bufferObj); 

unregisters the buffer object of ID bufferObj for access by CUDA. 

D.7 Direct3D Interoperability 

D.7.1 cudaD3D9Begin() 
cudaError_t cudaD3D9Begin(IDirect3DDevice9* device); 

initializes interoperability with the Direct3D device device. This function must be 
called before CUDA can map any objects from device. The application can then 
map vertex buffers owned by the Direct3D device until cuD3D9End() is called. 

D.7.2 cudaD3D9End() 
cudaError_t cudaD3D9End(void); 

concludes interoperability with the Direct3D device previously specified to 
cuD3D9Begin(). 
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D.7.3 cudaD3D9RegisterVertexBuffer() 
cudaError_t 
cudaD3D9RegisterVertexBuffer(IDirect3DVertexBuffer9* VB); 

unregisters the Direct3D vertex buffer VB for access by CUDA. 

D.7.4 cudaD3D9MapVertexBuffer() 
cudaError_t cudaD3D9MapVertexBuffer(void** devPtr, 
                                    unsigned int* size, 
                                    IDirect3DVertexBuffer9* VB); 

maps the Direct3D vertex buffer VB into the address space of the current CUDA 
context and returns in *devPtr and *size the base pointer and size of the 
resulting mapping. 

D.7.5 cudaD3D9UnmapVertexBuffer() 
cudaError_t cudaD3D9UnmapVertexBuffer(IDirect3DVertexBuffer9* VB); 

unmaps the vertex buffer VB for access by CUDA. 

D.7.6 cudaD3D9UnregisterVertexBuffer() 
cudaError_t cudaD3D9UnregisterVertexBuffer(IDirect3DVertexBuffer9* 
VB); 

unmaps the vertex buffer VB for access by CUDA. 

D.8 Error Handling 

D.8.1 cudaGetLastError() 
cudaError_t cudaGetLastError(void); 

returns the last error that was returned from any of the runtime calls in the same 
host thread and resets it to cudaSuccess. 

D.8.2 cudaGetErrorString() 
const char* cudaGetErrorString(cudaError_t error); 

returns a message string from an error code. 
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Appendix E. 
Driver API Reference 

E.1 Initialization 

E.1.1 cuInit() 
CUresult cuInit(unsigned int Flags); 

initializes the driver API and must be called before any other function from the 
driver API. Currently, the Flags parameters must be 0. If cuInit() has not been 
called, any function from the driver API will return 
CUDA_ERROR_NOT_INITIALIZED. 

E.2 Device Management 

E.2.1 cuDeviceGetCount() 
CUresult cuDeviceGetCount(int* count); 

returns in *count the number of devices with compute capability greater or equal 
to 1.0 that are available for execution. If there is no such device, 
cuDeviceGetCount() returns 1 and device 0 only supports device emulation 
mode and is of compute capability less than 1.0. 

E.2.2 cuDeviceGet() 
CUresult cuDeviceGet(CUdevice* dev, int ordinal); 

returns in *dev a device handle given an ordinal in the range 
[0, cuDeviceGetCount()-1].  

E.2.3 cuDeviceGetName() 
CUresult cuDeviceGetName(char* name, int len, CUdevice dev); 
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returns an ASCII string identifying the device dev in the NULL-terminated string 
pointed to by name. len specifies the maximum length of the string that may be 
returned. 

E.2.4 cuDeviceTotalMem() 
CUresult cuDeviceTotalMem(unsigned int* bytes, CUdevice dev); 

returns in *bytes the total amount of memory available on the device dev in 
bytes. 

E.2.5 cuDeviceComputeCapability() 
CUresult cuDeviceComputeCapability(int* major, int* minor, 
                                   CUdevice dev); 

returns in *major and *minor the major and minor revision numbers of device 
dev. 

E.2.6 cuDeviceGetProperties() 
cudaError_t cudaGetDeviceProperties(CUdevprop* prop, 
                                    CUdevice dev); 

returns in *prop the properties of device dev. The CUdevprop structure is 
defined as: 
typedef struct CUdevprop_st { 
    int maxThreadsPerBlock; 
    int maxThreadsDim[3]; 
    int maxGridSize[3];  
    int sharedMemPerBlock; 
    int totalConstantMemory; 
    int SIMDWidth; 
    int memPitch; 
    int regsPerBlock; 
    int clockRate; 
    int textureAlign; 
} CUdevprop; 

where:  

 maxThreadsPerBlock is the maximum number of threads per block; 
 maxThreadsDim[3] is the maximum sizes of each dimension of a block; 
 maxGridSize[3] is the maximum sizes of each dimension of a grid; 
 sharedMemPerBlock is the total amount of shared memory available per 

block in bytes; 
 totalConstantMemory is the total amount of constant memory available on 

the device in bytes; 
 SIMDWidth is the warp size; 
 memPitch is the maximum pitch allowed by the memory copy functions of 

Section E.6 that involve memory regions allocated through 
cuMemAllocPitch() (Section E.6.3); 
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 regsPerBlock is the total number of registers available per block; 
 clockRate is the clock frequency in kilohertz; 
 textureAlign is the alignment requirement mentioned in Section 4.3.4.3; 

texture base addresses that are aligned to textureAlign bytes do not need an 
offset applied to texture fetches. 

E.3 Context Management 

E.3.1 cuCtxCreate() 
CUresult cuCtxCreate(CUcontext* pCtx, unsigned int Flags, CUdevice 
dev); 

creates a new context for a device and associates it with the calling thread. Currently 
the Flags parameter must be 0. The context is created with a usage count of 1 and 
the caller of cuCtxCreate() must call cuCtxDetach() when done using the 
context. This function fails if a context is already current to the thread. 

E.3.2 cuCtxAttach() 
CUresult cuCtxAttach(CUcontext* pCtx, unsigned int Flags); 

increments the usage count of the context and passes back a context handle in 
*pCtx that must be passed to cuCtxDetach() when the application is done with 
the context. cuCtxAttach() fails if there is no context current to the thread. 

Currently, the Flags parameter must be 0. 

E.3.3 cuCtxDetach() 
CUresult cuCtxDetach(CUcontext ctx); 

decrements the usage count of the context, and destroys the context if the usage 
count goes to 0. The context must be a handle that was passed back by 
cuCtxCreate() or cuCtxAttach(), and must be current to the calling thread. 

E.3.4 cuCtxGetDevice() 
CUresult cuCtxGetDevice(CUdevice* device); 

returns in *device the ordinal of the current context's device. 

E.3.5 cuCtxSynchronize() 
CUresult cuCtxSynchronize(void); 

blocks until the device has completed all preceding requested tasks. 
cuCtxSynchronize() returns an error if one of the preceding tasks failed. 
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E.4 Module Management 

E.4.1 cuModuleLoad() 
CUresult cuModuleLoad(CUmodule* mod, const char* filename); 

takes a file name filename and loads the corresponding module mod into the 
current context. The CUDA driver API does not attempt to lazily allocate the 
resources needed by a module; if the memory for functions and data (constant and 
global) needed by the module cannot be allocated, cuModuleLoad() fails. The file 
should be a cubin file as output by nvcc (see Section 4.2.5). 

E.4.2 cuModuleLoadData() 
CUresult cuModuleLoadData(CUmodule* mod, const void* image); 

takes a pointer image and loads the corresponding module mod into the current 
context. The pointer may be obtained by mapping a cubin file, passing a cubin file as a 
text string, or incorporating a cubin object into the executable resources and using 
operation system calls such as Windows’ FindResource() to obtain the pointer. 

E.4.3 cuModuleLoadFatBinary() 
CUresult cuModuleLoadFatBinary(CUmodule* mod, const void* fatBin); 

takes a pointer fatBin and loads the corresponding module mod into the current 
context.  The pointer represents a fat binary object, which is a collection of different 
cubin files, all representing the same device code but compiled and optimized for 
different architectures. There is currently no documented API for constructing and 
using fat binary objects by programmers, and therefore this function is an internal 
function in this version of CUDA. More information can be found in the nvcc 
document. 

E.4.4 cuModuleUnload() 
CUresult cuModuleUnload(CUmodule mod); 

unloads a module mod from the current context. 

E.4.5 cuModuleGetFunction() 
CUresult cuModuleGetFunction(CUfunction* func, 
                             CUmodule mod, const char* funcname); 

returns in *func the handle of the function of name funcname located in module 
mod. If no function of that name exists, cuModuleGetFunction() returns 
CUDA_ERROR_NOT_FOUND. 
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E.4.6 cuModuleGetGlobal() 
CUresult cuModuleGetGlobal(CUdeviceptr* devPtr, 
                           unsigned int* bytes, 
                           CUmodule mod, const char* globalname); 

returns in *devPtr and *bytes the base pointer and size of the global of name 
globalname located in module mod. If no variable of that name exists, 
cuModuleGetGlobal() returns CUDA_ERROR_NOT_FOUND. Both parameters 
devPtr and bytes are optional. If one of them is null, it is ignored. 

E.4.7 cuModuleGetTexRef() 
CUresult cuModuleGetTexRef(CUtexref* texRef, 
                           CUmodule hmod, const char* texrefname); 

returns in *texref the handle of the texture reference of name texrefname in 
the module mod. If no texture reference of that name exists, 
cuModuleGetTexRef() returns CUDA_ERROR_NOT_FOUND. This texture 
reference handle should not be destroyed, since it will be destroyed when the 
module is unloaded. 

E.5 Execution Control 

E.5.1 cuFuncSetBlockShape() 
CUresult cuFuncSetBlockShape(CUfunction func, 
                             int x, int y, int z); 

specifies the X, Y and Z dimensions of the thread blocks that are created when the 
kernel given by func is launched. 

E.5.2 cuFuncSetSharedSize() 
CUresult cuFuncSetSharedSize(CUfunction func, unsigned int bytes); 

sets through bytes the amount of shared memory that will be available to each 
thread block when the kernel given by func is launched. 

E.5.3 cuParamSetSize() 
CUresult cuParamSetSize(CUfunction func, unsigned int numbytes); 

sets through numbytes the total size in bytes needed by the function parameters of 
function func. 

E.5.4 cuParamSeti() 
CUresult cuParamSeti(CUfunction func, 
                     int offset, unsigned int value); 

 

CUDA Programming Guide Version 1.0  95 
 



Appendix E. Driver API Reference 

 

sets an integer parameter that will be specified the next time the kernel 
corresponding to func will be invoked. offset is a byte offset. 

E.5.5 cuParamSetf() 
CUresult cuParamSetf(CUfunction func, 
                     int offset, float value); 

sets a floating point parameter that will be specified the next time the kernel 
corresponding to func will be invoked. offset is a byte offset. 

E.5.6 cuParamSetv() 
CUresult cuParamSetv(CUfunction func, 
                     int offset, void* ptr, 
                     unsigned int numbytes); 

copies an arbitrary amount of data into the parameter space of the kernel 
corresponding to func. offset is a byte offset. 

E.5.7 cuParamSetTexRef() 
CUresult cuParamSetTexRef(CUfunction func, 
                          int texunit, CUtexref texRef); 

makes the CUDA array or linear memory bound to the texture reference texRef 
available to a device program as a texture. In this version of CUDA, the texture 
reference must be obtained via cuModuleGetTexRef() and the texunit 
parameter must be set to CU_PARAM_TR_DEFAULT. 

E.5.8 cuLaunch() 
CUresult cuLaunch(CUfunction func); 

invokes the kernel func on a 1×1 grid of blocks. The block contains the number of 
threads specified by a previous call to cuFuncSetBlockShape(). 

E.5.9 cuLaunchGrid() 
CUresult cuLaunchGrid(CUfunction func, 
                      int grid_width, int grid_height); 

invokes the kernel on a grid_width × grid_height grid of blocks. Each 
block contains the number of threads specified by a previous call to 
cuFuncSetBlockShape(). 
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E.6 Memory Management 

E.6.1 cuMemGetInfo() 
CUresult cuMemGetInfo(unsigned int* free, unsigned int* total); 

returns in *free and *total respectively, the free and total amount of memory 
available for allocation by the CUDA context, in bytes. 

E.6.2 cuMemAlloc() 
CUresult cuMemAlloc(CUdeviceptr* devPtr, unsigned int count); 

allocates count bytes of linear memory on the device and returns in *devPtr a 
pointer to the allocated memory. The allocated memory is suitably aligned for any 
kind of variable. The memory is not cleared. If count is 0, cuMemAlloc() returns 
CUDA_ERROR_INVALID_VALUE. 

E.6.3 cuMemAllocPitch() 
CUresult cuMemAllocPitch(CUdeviceptr* devPtr,  
                      unsigned int* pitch, 
                      unsigned int widthInBytes,  
                      unsigned int height,  
                      unsigned int elementSizeBytes); 

allocates at least widthInBytes*height bytes of linear memory on the device 
and returns in *devPtr a pointer to the allocated memory. The function may pad 
the allocation to ensure that corresponding pointers in any given row will continue 
to meet the alignment requirements for coalescing as the address is updated from 
row to row (see Section 5.1.2.1). elementSizeBytes specifies the size of the 
largest reads and writes that will be performed on the memory range. 
elementSizeBytes may be 4, 8 or 16 (since coalesced memory transactions are 
not possible on other data sizes). If elementSizeBytes is smaller than the actual 
read/write size of a kernel, the kernel will run correctly, but possibly at reduced 
speed. The pitch returned in *pitch by cuMemAllocPitch() is the width in 
bytes of the allocation. The intended usage of pitch is as a separate parameter of the 
allocation, used to compute addresses within the 2D array. Given the row and 
column of an array element of type T, the address is computed as 
   T* pElement = (T*)((char*)BaseAddress + Row * Pitch) + Column; 

The pitch returned by cuMemAllocPitch() is guaranteed to work with 
cuMemcpy2D() under all circumstances. For allocations of 2D arrays, it is 
recommended that developers consider performing pitch allocations using 
cuMemAllocPitch(). Due to alignment restrictions in the hardware, this is 
especially true if the application will be performing 2D memory copies between 
different regions of device memory (whether linear memory or CUDA arrays). 

E.6.4 cuMemFree() 
CUresult cuMemFree(CUdeviceptr devPtr); 
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frees the memory space pointed to by devPtr, which must have been returned by a 
previous call to cuMalloc() or cuMallocPitch(). 

E.6.5 cuMemAllocHost() 
CUresult cuMemAllocHost(void** hostPtr, unsigned int count); 

allocates count bytes of host memory that is page-locked and accessible to the 
device. The driver tracks the virtual memory ranges allocated with this function and 
automatically accelerates calls to functions such as cuMemcpy(). Since the memory 
can be accessed directly by the device, it can be read or written with much higher 
bandwidth than pageable memory obtained with functions such as malloc(). 
Allocating excessive amounts of memory with cuMemAllocHost() may degrade 
system performance, since it reduces the amount of memory available to the system 
for paging. As a result, this function is best used sparingly to allocate staging areas 
for data exchange between host and device. 

E.6.6 cuMemFreeHost() 
CUresult cuMemFreeHost(void* hostPtr); 

frees the memory space pointed to by hostPtr, which must have been returned by 
a previous call to cuMemAllocHost(). 

E.6.7 cuMemGetAddressRange() 
CUresult cuMemGetAddressRange(CUdeviceptr* basePtr, 
                              unsigned int* size, 
                              CUdeviceptr devPtr); 

returns the base address in *basePtr and size and *size of the allocation by 
cuMemAlloc() or cuMemAllocPitch() that contains the input pointer 
devPtr. Both parameters basePtr and size are optional. If one of them is null, 
it is ignored. 

E.6.8 cuArrayCreate() 
CUresult cuArrayCreate(CUarray* array, 
                       const CUDA_ARRAY_DESCRIPTOR* desc); 

creates a CUDA array according to the CUDA_ARRAY_DESCRIPTOR structure 
desc and returns a handle to the new CUDA array in *array. The 
CUDA_ARRAY_DESCRIPTOR structure is defined as such: 

typedef struct { 
    unsigned int Width; 
    unsigned int Height; 
    CUarray_format Format; 
    unsigned int NumChannels; 
} CUDA_ARRAY_DESCRIPTOR; 

where: 
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 Width and Height are the width and height of the CUDA array (in elements); 
the CUDA array is one-dimensional if height is 0, two-dimensional, otherwise; 

 NumChannels specifies the number of packed components per CUDA array 
element.; it may be 1, 2 or 4; 

 Format specifies the format of the elements; CUarray_format is defined as 
such: 
typedef enum CUarray_format_enum { 
    CU_AD_FORMAT_UNSIGNED_INT8  = 0x01, 
    CU_AD_FORMAT_UNSIGNED_INT16 = 0x02, 
    CU_AD_FORMAT_UNSIGNED_INT32 = 0x03, 
    CU_AD_FORMAT_SIGNED_INT8    = 0x08, 
    CU_AD_FORMAT_SIGNED_INT16   = 0x09, 
    CU_AD_FORMAT_SIGNED_INT32   = 0x0a, 
    CU_AD_FORMAT_HALF           = 0x10, 
    CU_AD_FORMAT_FLOAT          = 0x20 
} CUarray_format; 

Here are examples of CUDA array descriptions: 

 Description for a CUDA array of 2048 floats: 
CUDA_ARRAY_DESCRIPTOR desc; 
desc.Format = CU_AD_FORMAT_FLOAT; 
desc.NumChannels = 1; 
desc.Width = 2048; 
desc.Height = 1; 

 Description for a 64×64 CUDA array of floats: 
CUDA_ARRAY_DESCRIPTOR desc; 
desc.Format = CU_AD_FORMAT_FLOAT; 
desc.NumChannels = 1; 
desc.Width = 64; 
desc.Height = 64; 

 Description for a width×height CUDA array of 64-bit, 4x16-bit float16's: 
CUDA_ARRAY_DESCRIPTOR desc; 
desc.FormatFlags = CU_AD_FORMAT_HALF; 
desc.NumChannels = 4; 
desc.Width = width; 
desc.Height = height; 

 Description for a width×height CUDA array of 16-bit elements, each of 
which is two 8-bit unsigned chars: 
CUDA_ARRAY_DESCRIPTOR arrayDesc; 
desc.FormatFlags = CU_AD_FORMAT_UNSIGNED_INT8; 
desc.NumChannels = 2; 
desc.Width = width; 
desc.Height = height; 

E.6.9 cuArrayGetDescriptor() 
CUresult cuArrayGetDescriptor(CUDA_ARRAY_DESCRIPTOR* arrayDesc,  
                              CUarray array); 

returns in *arrayDesc the descriptor that was used to create the CUDA array 
array. It is useful for subroutines that have been passed a CUDA array, but need 
to know the CUDA array parameters for validation or other purposes. 
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E.6.10 cuArrayDestroy() 
CUresult cuArrayDestroy(CUarray array); 

destroys the CUDA array array. 

E.6.11 cuMemset() 
CUresult cuMemsetD8(CUdeviceptr dstDevPtr, 
                    unsigned char value, unsigned int count); 
CUresult cuMemsetD16(CUdeviceptr dstDevPtr, 
                     unsigned short value, unsigned int count); 
CUresult cuMemsetD32(CUdeviceptr dstDevPtr, 
                     unsigned int value, unsigned int count); 

sets the memory range of count 8-, 16-, or 32-bit values to the specified value 
value. 

E.6.12 cuMemset2D() 
CUresult cuMemsetD2D8(CUdeviceptr dstDevPtr, 
                      unsigned int dstPitch, 
                      unsigned char value, 
                      unsigned int width, unsigned int height); 
CUresult cuMemsetD2D16(CUdeviceptr dstDevPtr, 
                       unsigned int dstPitch, 
                       unsigned short value, 
                       unsigned int width, unsigned int height); 
CUresult cuMemsetD2D32(CUdeviceptr dstDevPtr, 
                       unsigned int dstPitch, 
                       unsigned int value, 
                       unsigned int width, unsigned int height); 

sets the 2D memory range of width 8-, 16-, or 32-bit values to the specified value 
value. height specifies the number of rows to set, and dstPitch specifies the 
number of bytes between each row (see Section E.6.3). These functions perform 
fastest when the pitch is one that has been passed back by cuMemAllocPitch(). 

E.6.13 cuMemcpyHtoD() 
CUresult cuMemcpyHtoD(CUdeviceptr dstDevPtr, 
                      const void *srcHostPtr, 
                      unsigned int count); 

copies from host memory to device memory. dstDevPtr and srcHostPtr 
specify the base addresses of the destination and source, respectively. count 
specifies the number of bytes to copy. 

E.6.14 cuMemcpyDtoH() 
CUresult cuMemcpyDtoH(void* dstHostPtr, 
                      CUdeviceptr srcDevPtr, 
                      unsigned int count); 
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copies from device to host memory. dstHostPtr and srcDevPtr specify the 
base addresses of the source and destination, respectively. count specifies the 
number of bytes to copy. 

E.6.15 cuMemcpyDtoD() 
CUresult cuMemcpyDtoD(CUdeviceptr dstDevPtr, 
                      CUdeviceptr srcDevPtr, 
                      unsigned int count); 

copies from device memory to device memory. dstDevice and srcDevPtr are 
the base pointers of the destination and source, respectively. count specifies the 
number of bytes to copy. 

E.6.16 cuMemcpyDtoA() 
CUresult cuMemcpyDtoA(CUarray dstArray, unsigned int dstIndex, 
                      CUdeviceptr srcDevPtr, 
                      unsigned int count); 

copies from device memory to a 1D CUDA array. dstArray and dstIndex 
specify the CUDA array handle and starting index of the destination data. 
srcDevPtr specifies the base pointer of the source. count specifies the number 
of bytes to copy. 

E.6.17 cuMemcpyAtoD() 
CUresult cuMemcpyAtoD(CUdeviceptr dstDevPtr, 
                      CUarray srcArray, unsigned int srcIndex, 
                      unsigned int count); 

copies from a 1D CUDA array to device memory. dstDevPtr specifies the base 
pointer of the destination and must be naturally aligned with the CUDA array 
elements. srcArray and srcIndex specify the CUDA array handle and the index 
(in array elements) of the array element where the copy is to begin. count specifies 
the number of bytes to copy and must be evenly divisible by the array element size. 

E.6.18 cuMemcpyAtoH() 
CUresult cuMemcpyAtoH(void* dstHostPtr, 
                      CUarray srcArray, unsigned int srcIndex, 
                      unsigned int count); 

copies from a 1D CUDA array to host memory. dstHostPtr specifies the base 
pointer of the destination. srcArray and srcIndex specify the CUDA array 
handle and starting index of the source data. count specifies the number of bytes 
to copy. 

E.6.19 cuMemcpyHtoA() 
CUresult cuMemcpyHtoA(CUarray dstArray, unsigned int dstIndex, 
                      const void *srcHostPtr, 
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                      unsigned int count); 

copies from host memory to a 1D CUDA array. dstArray and dstIndex specify 
the CUDA array handle and starting index of the destination data. srcHostPtr 
specify the base addresse of the source. count specifies the number of bytes to 
copy. 

E.6.20 cuMemcpyAtoA() 
CUresult cuMemcpyAtoA(CUarray dstArray, unsigned int dstIndex, 
                      CUarray srcArray, unsigned int srcIndex, 
                      unsigned int count); 

copies from one 1D CUDA array to another. dstArray and srcArray specify 
the handles of the destination and source CUDA arrays for the copy, respectively. 
dstIndex and srcIndex specify the destination and source indices into the 
CUDA array. These values are in the range [0, Width-1] for the CUDA array; 
they are not byte offsets. count is the number of bytes to be copied. The size of 
the elements in the CUDA arrays need not be the same format, but the elements 
must be the same size; and count must be evenly divisible by that size. 

E.6.21 cuMemcpy2D() 
CUresult cuMemcpy2D(const CUDA_MEMCPY2D* copyParam); 
CUresult cuMemcpy2DUnaligned(const CUDA_MEMCPY2D* copyParam); 

perform a 2D memory copy according to the parameters specified in copyParam. 
The CUDA_MEMCPY2D structure is defined as such: 

typedef struct CUDA_MEMCPY2D_st { 
 
    unsigned int srcXInBytes, srcY; 
    CUmemorytype srcMemoryType; 
        const void *srcHost; 
        CUdeviceptr srcDevice; 
        CUarray srcArray; 
        unsigned int srcPitch; 
  
    unsigned int dstXInBytes, dstY; 
    CUmemorytype dstMemoryType; 
        void *dstHost; 
        CUdeviceptr dstDevice; 
        CUarray dstArray; 
        unsigned int dstPitch; 
 
    unsigned int WidthInBytes; 
    unsigned int Height; 
} CUDA_MEMCPY2D; 

where: 

 srcMemoryType and dstMemoryType specify the type of memory of the 
source and destination, respectively; Cumemorytype_enum is defined as such: 
typedef enum CUmemorytype_enum { 
    CU_MEMORYTYPE_HOST = 0x01, 
    CU_MEMORYTYPE_DEVICE = 0x02, 
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    CU_MEMORYTYPE_ARRAY = 0x03 
} CUmemorytype; 

If srcMemoryType is CU_MEMORYTYPE_HOST, srcHost and srcPitch 
specify the (host) base address of the source data and the bytes per row to apply. 
srcArray is ignored. 

If srcMemoryType is CU_MEMORYTYPE_DEVICE, srcDevice and 
srcPitch specify the (device) base address of the source data and the bytes per 
row to apply. srcArray is ignored. 

If srcMemoryType is CU_MEMORYTYPE_ARRAY, srcArray specifies the 
handle of the source data. srcHost, srcDevice and srcPitch are ignored. 

If dstMemoryType is CU_MEMORYTYPE_HOST, dstHost and dstPitch 
specify the (host) base address of the destination data and the bytes per row to 
apply. dstArray is ignored. 

If dstMemoryType is CU_MEMORYTYPE_DEVICE, dstDevice and 
dstPitch specify the (device) base address of the destination data and the 
bytes per row to apply. dstArray is ignored. 

If dstMemoryType is CU_MEMORYTYPE_ARRAY, dstArray specifies the 
handle of the destination data. dstHost, dstDevice and dstPitch are 
ignored. 

 srcXInBytes and srcY specify the base address of the source data for the 
copy. 
For host pointers, the starting address is 
void* Start = 
         (void*)((char*)srcHost+srcY*srcPitch + srcXInBytes); 

For device pointers, the starting address is 
CUdeviceptr Start = srcDevice+srcY*srcPitch+srcXInBytes; 
For CUDA arrays, srcXInBytes must be evenly divisible by the array element 
size. 

 dstXInBytes and dstY specify the base address of the destination data for the 
copy. 
For host pointers, the base address is 
void* dstStart = 
         (void*)((char*)dstHost+dstY*dstPitch + dstXInBytes); 

For device pointers, the starting address is 
CUdeviceptr dstStart = dstDevice+dstY*dstPitch+dstXInBytes; 

For CUDA arrays, dstXInBytes must be evenly divisible by the array element 
size. 

 WidthInBytes and Height specify the width (in bytes) and height of the 2D 
copy being performed. Any pitches must be greater than or equal to 
WidthInBytes. 

cuMemAllocPitch() passes back pitches that always work with cuMemcpy2D(). 
On intra-device memory copies (device ↔ device, CUDA array ↔ device, CUDA 
array ↔ CUDA array), cuMemcpy2D() may fail for pitches not computed by 
cuMemAllocPitch(). cuMemcpy2DUnaligned() does not have this 
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restriction, but may run significantly slower in the cases where cuMemcpy2D() 
would have returned an error code. 

E.7 Texture Reference Management 

E.7.1 cuTexRefCreate() 
CUresult cuTexRefCreate(CUtexref* texRef); 

creates a texture reference and returns its handle in *texRef. Once created, the 
application must call cuTexRefSetArray() or cuTexRefSetAddress() to 
associate the reference with allocated memory.  Other texture reference functions 
are used to specify the format and interpretation (addressing, filtering, etc.) to be 
used when the memory is read through this texture reference. To associate the 
texture reference with a texture ordinal for a given function, the application should 
call cuParamSetTexRef(). 

E.7.2 cuTexRefDestroy() 
CUresult cuTexRefDestroy(CUtexref texRef); 

destroys the texture reference. 

E.7.3 cuTexRefSetArray() 
CUresult cuTexRefSetArray(CUtexref texRef, 
                          CUarray array, 
                          unsigned int flags); 

binds the CUDA array array to the texture reference texRef. Any previous 
address or CUDA array state associated with the texture reference is superseded by 
this function. flags must be set to CU_TRSA_OVERRIDE_FORMAT. Any CUDA 
array previously bound to texRef is unbound. 

E.7.4 cuTexRefSetAddress() 
CUresult cuTexRefSetAddress(unsigned int* byteOffset, 
                            CUtexref texRef, 
                            CUdeviceptr devPtr, 
                            int bytes); 

binds a linear address range to the texture reference texRef. Any previous address 
or CUDA array state associated with the texture reference is superseded by this 
function. Any memory previously bound to texRef is unbound. 

Since the hardware enforces an alignment requirement on texture base addresses, 
cuTexRefSetAddress() passes back a byte offset in *byteOffset that must 
be applied to texture fetches in order to read from the desired memory. This offset 
must be divided by the texel size and passed to kernels that read from the texture so 
they can be applied to the tex1Dfetch() function.  
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If the device memory pointer was returned from cuMemAlloc(), the offset is 
guaranteed to be 0 and NULL may be passed as the ByteOffset parameter. 

E.7.5 cuTexRefSetFormat() 
CUresult cuTexRefSetFormat(CUtexref texRef, 
                           CUarray_format format, 
                           int numPackedComponents); 

specifies the format of the data to be read by the texture reference texRef. 
format and numPackedComponents are exactly analogous to the Format and 
NumChannels members of the CUDA_ARRAY_DESCRIPTOR structure: They 
specify the format of each component and the number of components per array 
element. 

E.7.6 cuTexRefSetAddressMode() 
CUresult cuTexRefSetAddressMode(CUtexref texRef, 
                                int dim, CUaddress_mode mode); 

specifies the addressing mode mode for the given dimension of the texture 
reference texRef. If dim is zero, the addressing mode is applied to the first 
parameter of the functions used to fetch from the texture (see Section 4.4.5); if dim 
is 1, the second, and so on. CUaddress_mode is defined as such: 

typedef enum CUaddress_mode_enum { 
     CU_TR_ADDRESS_MODE_WRAP = 0, 
     CU_TR_ADDRESS_MODE_CLAMP = 1, 
     CU_TR_ADDRESS_MODE_MIRROR = 2, 
} CUaddress_mode; 

Note that this call has no effect if texRef is bound to linear memory. 

E.7.7 cuTexRefSetFilterMode() 
CUresult cuTexRefSetFilterMode(CUtexref texRef, 
                               CUfilter_mode mode); 

specifies the filtering mode mode to be used when reading memory through the 
texture reference texRef. CUfilter_mode_enum is defined as such: 

typedef enum CUfilter_mode_enum { 
    CU_TR_FILTER_MODE_POINT = 0, 
    CU_TR_FILTER_MODE_LINEAR = 1 
} CUfilter_mode; 

Note that this call has no effect if texRef is bound to linear memory. 

E.7.8 cuTexRefSetFlags() 
CUresult cuTexRefSetFlags(CUtexref texRef, unsigned int Flags); 

specifies optional flags to control the behavior of data returned through the texture 
reference. The valid flags are: 
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 CU_TRSF_READ_AS_INTEGER, which suppresses the default behavior of 
having the texture promote integer data to floating point data in the range [0, 1]; 

 CU_TRSF_NORMALIZED_COORDINATES, which suppresses the default 
behavior of having the texture coordinates range from [0, Dim) where Dim is 
the width or height of the CUDA array. Instead, the texture coordinates [0, 1.0) 
reference the entire breadth of the array dimension. 

E.7.9 cuTexRefGetAddress() 
CUresult cuTexRefGetAddress(CUdeviceptr* devPtr, CUtexref texRef); 

returns in *devPtr the base address bound to the texture reference texRef, or 
returns CUDA_ERROR_INVALID_VALUE if the texture reference is not bound to 
any device memory range. 

E.7.10 cuTexRefGetArray() 
CUresult cuTexRefGetArray(CUarray* array, CUtexref texRef); 

returns in *array the CUDA array bound by the texture reference texRef, or 
returns CUDA_ERROR_INVALID_VALUE if the texture reference is not bound to 
any CUDA array. 

E.7.11 cuTexRefGetAddressMode() 
CUresult cuTexRefGetAddressMode(CUaddress_mode* mode, 
                                CUtexref texRef, 
                                int dim); 

returns in *mode the addressing mode corresponding to the dimension dim of the 
texture reference texRef. Currently the only valid values for dim are 0 and 1. 

E.7.12 cuTexRefGetFilterMode() 
CUresult cuTexRefGetFilterMode(CUfilter_mode* mode, 
                               CUtexref texRef); 

returns in *mode the filtering mode of the texture reference texRef. 

E.7.13 cuTexRefGetFormat() 
CUresult cuTexRefGetFormat(CUarray_format* format, 
                           int* numPackedComponents, 
                           CUtexref texRef); 

returns in *format and *numPackedComponents the format and number of 
components of the CUDA array bound to the texture reference texRef. If 
format or numPackedComponents is null, it will be ignored. 
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E.7.14 cuTexRefGetFlags() 
CUresult cuTexRefGetFlags(unsigned int* flags, CUtexref texRef); 

returns in *flags the flags of the texture reference texRef. 

E.8 OpenGL Interoperability 

E.8.1 cuGLInit() 
CUresult cuGLInit(void); 

initializes OpenGL interoperability. It must be called before performing any other 
OpenGL interoperability operations. It may fail if the needed OpenGL driver 
facilities are not available. 

E.8.2 cuGLRegisterBufferObject() 
CUresult cuGLRegisterBufferObject(GLuint bufferObj); 

registers the buffer object of ID bufferObj for access by CUDA. This function 
must be called before CUDA can map the buffer object. While it is registered, the 
buffer object cannot be used by any OpenGL commands except as a data source for 
OpenGL drawing commands. 

E.8.3 cuGLMapBufferObject() 
CUresult cuGLMapBufferObject(CUdeviceptr* devPtr, 
                             unsigned int* size, 
                             GLuint bufferObj); 

maps the buffer object of ID bufferObj into the address space of the current 
CUDA context and returns in *devPtr and *size the base pointer and size of the 
resulting mapping. 

E.8.4 cuGLUnmapBufferObject() 
CUresult cuGLUnmapBufferObject(GLuint bufferObj); 

unmaps the buffer object of ID bufferObj for access by CUDA. 

E.8.5 cuGLUnregisterBufferObject() 
CUresult cuGLUnregisterBufferObject(GLuint bufferObj); 

unregisters the buffer object of ID bufferObj for access by CUDA. 
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E.9 Direct3D Interoperability 

E.9.1 cuD3D9Begin() 
CUresult cuD3D9Begin(IDirect3DDevice9* device); 

initializes interoperability with the Direct3D device device. This function must be 
called before CUDA can map any objects from device. The application can then 
map vertex buffers owned by the Direct3D device until cuD3D9End() is called. 

E.9.2 cuD3D9End() 
CUresult cuD3D9End(void); 

concludes interoperability with the Direct3D device previously specified to 
cuD3D9Begin(). 

E.9.3 cuD3D9RegisterVertexBuffer() 
CUresult cuD3D9RegisterVertexBuffer(IDirect3DVertexBuffer9* VB); 

registers the Direct3D vertex buffer VB for access by CUDA. 

E.9.4 cuD3D9MapVertexBuffer() 
CUresult cuD3D9MapVertexBuffer(CUdeviceptr* devPtr, 
                               unsigned int* size, 
                               IDirect3DVertexBuffer9* VB); 

maps the Direct3D vertex buffer VB into the address space of the current CUDA 
context and returns in *devPtr and *size the base pointer and size of the 
resulting mapping. 

E.9.5 cuD3D9UnmapVertexBuffer() 
CUresult cuD3D9UnmapVertexBuffer(IDirect3DVertexBuffer9* VB); 

unmaps the vertex buffer VB for access by CUDA. 

E.9.6 cuD3D9UnregisterVertexBuffer() 
CUresult cuD3D9UnregisterVertexBuffer(IDirect3DVertexBuffer9* VB); 

unregisters the vertex buffer VB for access by CUDA. 
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Appendix F. 
Texture Fetching 

This appendix gives the formula used to compute the value returned by the texture 
functions of Section 4.4.5 depending on the various attributes of the texture 
reference (see Section 4.3.4). 

The texture bound to the texture reference is represented as an array T  of  texels 
for a one-dimensional texture or 

N
MN ×  texels for a two-dimensional texture. It is 

fetched using texture coordinates x  and . y

A texture coordinate must fall within ’s valid addressing range before it can be 
used to address T . The addressing mode specifies how an out-of-range texture 
coordinate 

T

x  is remapped to the valid range. If x  is non-normalized, only the 
clamp addressing mode is supported and x  is replaced by  if  and  if 

. If 
0 0<x 1−N

xN ≤ x  is normalized: 

 In clamp addressing mode, x  is replaced by 0  if 0<x  and N
11−  if , x≤1

 In wrap addressing mode, x  is replaced by , where 
 and  is the largest integer not greater than 

)(xfrac
)()( xfloorxxfrac −= )(xfloor x . 

In the remaining of the appendix, x  and  are the non-normalized texture 
coordinates remapped to ’s valid addressing range. 

y
T x  and  are derived from the 

normalized texture coordinates  and  as such: 
y

x̂ ŷ xNx ˆ=  and . yMy ˆ=
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F.1 Nearest-Point Sampling 
In this filtering mode, the value returned by the texture fetch is 

  for a one-dimensional texture, ][)( iTxtex =

  for a two-dimensional texture, ],[),( jiTyxtex =

where  and )(xfloori = )(yfloorj = . 
Figure F-1 illustrates nearest-point sampling for a one-dimensional texture with 

. 4=N

For integer textures, the value returned by the texture fetch can be optionally 
remapped to [0.0, 1.0] (see Section 4.3.4.1). 
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Figure F-1. Nearest-Point Sampling of a One-Dimensional 
Texture of Four Texels 
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F.2 Linear Filtering 
In this filtering mode, which is only available for floating-point textures, the value 
returned by the texture fetch is 

 ]1[][)1()( ++−= iTiTxtex αα  for a one-dimensional texture, 

 ]1,1[]1,[)1(],1[)1(],[)1)(1(),( ++++−++−+−−= jiTjiTjiTjiTyxtex αββαβαβα
for a two-dimensional texture, 

where: 
 )( Bxfloori = , )( Bxfrac=α , 5.0−= xxB , 

 , )( Byfloorj = )( Byfrac=β , 5.0−= yyB . 
α  and β  are stored in 9-bit fixed point format with 8 bits of fractional value. 

Figure F-2 illustrates nearest-point sampling for a one-dimensional texture with 
. 4=N
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Figure F-2. Linear Filtering of a One-Dimensional Texture of 
Four Texels in Clamp Addressing Mode 
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F.3 Table Lookup 
A table lookup  where )(xTL x  spans the interval  can be implemented as ],0[ R

)5.01()( +
−

= x
R

NtexxTL  in order to ensure that ]0[)0( TTL =  and ]1[)( −= NTRTL . 

Figure F-3 illustrates the use of texture filtering to implement a table lookup with 
 or  from a one-dimensional texture with 4=R 1=R 4=N . 
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Figure F-3. One-Dimensional Table Lookup Using Linear 
Filtering 
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