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Abstract:  
The CUDA Center of Excellence (CCOE) at UTK targets the development of innovative 
algorithms and technologies to tackle challenges in Heterogeneous High Performance 
Computing. Over the last year, the CCOE at UTK developed CUDA-based breakthrough 
technologies in sparse solvers for GPUs. Here, we describe the main ones – a sparse 
iterative solvers package, a communication-avoiding (CA) sparse iterative solver (CA-
GMRES), preconditioners based on dense linear algebra (DLA) operations including batched 
GEMM, GEMV and batched LU, QR, and Cholesky for the parallel factorization of many 
small matrices, and a mixed-precision orthogonallization with application to sparse linear and 
eigenproblem solvers. Sparse linear algebra computations comprise a fundamental building 
block for many scientific computing applications, ranging from national security to medical 
advances, highlighting their importance and potential for broad impact. The new 
developments harness our expertise in DLA – namely, the MAGMA libraries, providing 
LAPACK for GPUs and auto-tuned BLAS – to develop high-performance sparse solvers, and 
building blocks for sparse computations in general.  
 
 
MAGMA Sparse 
Solving linear systems of equations is a fundamental problem in scientific computing. 
Numerical simulations involving complex systems represented in terms of unknown variables 
and relations between them often lead to linear systems of equations that must be solved as 
fast as possible. Recent hardware trends require the redesign of what were considered 
conventional solvers in order to make them efficient on modern architectures. In particular, the 
following two trends are most challenging to address: 

• The explosion of parallelism where a single GPU can have thousands of cores 
(e.g., there are 2,880 CUDA cores in a K40), and algorithms must account for this 
level of parallelism in order to use the GPUs efficiently; 

• The growing gap of compute vs. data-movement capabilities that has been in- 
creasing over the years (exponentially). To use modern architectures efficiently, new 
algorithms must be designed to reduce their data movements. Current discrepancies 
between the compute- vs. memory-bound computations can be orders of magnitude, 
e.g., from 1,200 GFlop/s on DGEMM to only 46 GFlop/s on DGEMV to even less on 
SpMV, all on a K40 NVIDIA GPU (see Figure 1). 
 

To tackle these challenges in the area of sparse computations, we developed a number of 
innovative algorithms and technologies (described in the main sections below) and packaged 
them in the MAGMA Sparse library. MAGMA Sparse is currently under evaluation from 
collaborators, friendly users, and MathWorks (for inclusion in Matlab), in preparation for a Beta 
Release. Included are the following: 

• Krylov subspace iterative solvers: CG, BiCGSTAB, GMRES, LOBPCG; 
• Accelerated versions of BiCGSTAB and CG [1]; 



• Support for various matrix formats, including DENSE, CSR, Block-CSR, ELLPACK, 
ELLPACKT, ELLPACKRT, HYB, COO, CSC, SELLC/SELLC-σ; 

• SpMV in CSR, Block-CSR, ELLPACK, ELLPACKT, and SELLC/SELLC-σ [2]; 
• Support for all four main arithmetic operations (single and double, real and complex), 

extended precision (double-double), mixed precision solvers based on  
Communication-avoiding GMRES [3]; 

• Jacobi, sparse direct LU, ILU [6], and building blocks for other algebraic 
preconditioners [8], including for low-rank approximations of HSS matrices [5].  

 

Figure 1. Performance and scalability of compute-intensive routines, e.g., current MAGMA LU 
for dense matrices on up to two K40 GPUs (Left), vs. memory- and latency-bound 
computations, e.g., SpMVs on K40 GPUs (Right).  
     
MAGMA Sparse is a breakthrough as it provides highly optimized implementations of state-of-
the-art LA developments to GPUs. On the other hand, sparse computations can not use 
GPUs as efficiently as DLA operations (illustrated on Figure 1), raising the need for new 
algorithms and techniques to address this challenge (next). 
 
Building Blocks – SpMV kernels, batched LU, QR, and Cholesky factorizations 
A common technique is to redesign the sparse solvers to use more DLA operations, Examples 
are block eigensolvers, higher order finite elements, properly designed direct multifrontal 
solvers and preconditioners, etc. (next). We developed a number of building blocks for many 
of these algorithms, including optimize SpMV kernels (and SpMM, e.g. for blocked solvers) 
with support for various matrix-formats [2], and batched LU, QR, and Cholesky for the 
simultaneous factorization of many very small dense matrices [8]. This is a breakthrough 
because it enables sparse solvers to become very efficient on GPUs. The new developments 
leveraged our extensive expertise in developing highly efficient DLA libraries like LAPACK, 
MAGMA, and MAGMA BLAS. Auto-tuning frameworks for BLAS on GPUs are in place to 
develop on demand application-specific kernels for matrices of particular sizes. 
 
Preconditioners 
The effectiveness of iterative solvers for sparse linear systems strongly depends on the use of 
properly designed preconditioners. We developed preconditioners that rely on DLA 
computations, and thus are efficient on GPUs. In particular, we develop a multi-elimination 
preconditioner for GPUs that is based on a multi-level incomplete LU factorization and uses a 
direct dense solver for the bottom-level system; numerous tests show its competiveness 
against other popular preconditioners (see [6] for more detail). Further, we developed dense 
QR factorizations with column pivoting and rank-revealing QR factorizations to compute the 
low-rank approximations for constructing preconditioners within sparse solvers (StruMF) that 
exploit Hierarchically Semi-Separable (HSS) matrix structures [5].  



 
   
Orthogonalization prcedures 
We developed a number of GPU-accelerated orthogonalizations – a key component for many 
sparse linear system and eigenproblem iterative solvers. The Cholesky QR showed superior 
performance as it is based on DLA operations, but unfortunately can be numerically unstable. 
We designed a mixed-precision extension that resolved the stability issues by applying 
extended precision calculations at critical places, and studied its effect in CA-GMRES [4].  
 
CA-GMRES 
GMRES is one of the most widely used iterative methods. In recent years, techniques to avoid 
communication in GMRES have gained attention, leading to the development of the CA-
GMRES algorithms. We developed it for heterogeneous systems with multiple GPUs [3]. 
 
High-order FEMs 
We worked on complete applications to further establish the appeal of high-order FEMs on 
new architectures. Despite their better approximation properties, higher-order FEMs are often 
avoided due to their high computational cost. GPUs have the potential to make them the 
method of choice, as the increased computational cost is also localized, e.g., cast as DLA 
operations, and thus can be done very efficiently. To this end we collaborated on a 
Hydrodynamic simulation that needed to compute thousands of 81*64 GEMMs or GEMVs, for 
which we developed high-performance batched versions [7]. 
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