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Abstract:  
The Matrix Algebra on GPU and Multicore Architectures (MAGMA) project aims to develop 
the next generation of LAPACK/ScaLAPACK-compliant linear algebra libraries for 
heterogeneous multicore-GPU architectures. The functionality covered in LAPACK and 
ScaLAPACK is a fundamental building block for many scientific computing applications, 
underlining the importance and potential for broad impact in developing these libraries for 
heterogeneous architectures. Currently, MAGMA’s broad impact in the general area of 
technical computing is established through its incorporation in Matlab, contributions to 
CUBLAS, and use (starting) in a number of community codes, such as ABINIT, Quantum-
Espresso, and the R project for statistical computing, just to name a few. Here, we 
describe a major breakthrough in the development of efficient solvers for eigenvalue 
problems on heterogeneous systems. The available implementations in LAPACK are 
bandwidth limited and therefore do not scale on multicore CPU systems. Indeed, 
performance improvements using state-of-the-art multicore hardware and vendor LAPACK 
implementations have been small. The new algorithms on the same multicore system, but 
enhanced with NVIDIA GPUs, improved the performance and hardware use more than 
one order of magnitude. 
   
Background: 
Scientific computing applications, ranging from computing frequencies that will propagate 
through a medium, to earthquake response of a bridge, or energy levels of electrons in 
nanostructure materials, require the solution of eigenvalue problems. There are many 
ways to formulate mathematically and solve these problems numerically [1]. In this work, 
we are interested in dense eigen-solvers, and in particular, generalized Hermitian-definite 
problems of the form 

A x = λ B x                                                                (1) 
where A is a Hermitian dense matrix and B is Hermitian positive definite. These solvers 
are needed in practically all electronic structure methods [2, 3, 4]. 
 
Problem scope: 
Solving (1) requires the development of a number of routines, e.g., first matrix B is 
factored using a Cholesky factorization B = L LH, next the L factors are used to transform 
(1) to a standard eigenvalue problem ( Ã  = L−1AL−H, Ãy = λy ). Finally, the eigenvectors of 
Ã must be transformed back to x = L−H y. The standard eigenvalue problem by itself can 
also be divided into sub problems; first tridiagonalize Ã, next solve the tridiagonal 
eigenproblem, and finally, transform the eigenvectors of the tridiagonal problem back to 
the eigenvectors of Ã. All of these steps are now developed in MAGMA. Asymptotically, 



for large enough matrices, all of these algorithms, except the tridiagonalization, can be 
represented in terms of Level 3 BLAS, and hence can be efficiently implemented on 
current heterogeneous architectures. The tridiagonalization, though, has 50% of its flops in 
Level 2 BLAS, i.e., it is memory bound and would not scale on multicore platforms, and 
therefore it is the main target of this work. 
 
Fast BLAS: 
As 50% of the flops are in SYMV, we developed optimized versions in MAGMA. These are 
extensions of the MAGMA kernels presented at SC’11 [5], designed and optimized for 
Fermi GPUs. We used various blocking techniques, data reuse for the symmetry, and 
autotuning to optimize performance [6]. Performance is illustrated on Figure 1 below for 
single GPU (left) and multiGPUs (right). The performance improvement over CUBLAS 4.1 
on Fermi is more than 2x, and scales properly when adding GPUs. The speedups for the 
other precisions (single real and complex single and double) are similar. 

 
 

Figure 1. Performance of MAGMA DSYMV versions compared to CUBLAS 4.1 on one 
Fermi M2090 GPU (Left) and three Fermi M2090 GPUs (Right).  
 
From fast BLAS to fast Eigen-Solvers: 
To develop the tridiagonalization, we followed the hybridization methodology in MAGMA, 
where the algorithms are split into BLAS-based tasks and properly scheduled over the 
multicore host and the GPUs. Serial parts of the panels are scheduled on the multicore, 
and the large SYMV is scheduled on the GPUs. The trailing matrices are updated on the 
GPUs and reside on the GPUs to minimize communications. The results in Figure 2 
demonstrate about an 8x performance improvement over 12 Intel X5660 2.8 GHz cores. 
Details on the techniques used can be found in the ICL technical report [6] (submitted to 
SC’12). 

 
 
Figure 2. Performance of MAGMA 
DSYTRD using multiGPUs on a node of 
the Keeneland system (2 x 6 Intel X5660  
2.8 GHz and 3 NVIDIA M2090 1.3 GHz 
GPUs) compared to MKL using all 12 
cores.  
 
 



An additional 4x speedup! 
The top challenges in designing algorithms for current architectures revolve around the 
development of parallel algorithms that reduce synchronizations and maximize data-reuse. 
We developed a new tridiagonalization algorithm that addresses these challenges by 
considering the hybridization of a “two-stage” approach to tridiagonalization—reduction to 
band-diagonal, followed by reduction to tridiagonal. The first step of this approach can be 
represented in terms of Level 3 BLAS calls, and hence implemented very efficiently. The 
second involves “bulge chasing” operations that are challenging to develop [7]. We 
managed to extend this approach to heterogeneous systems to an additional 4x 
performance improvement over the previous results using a single GPU. This is 
illustrated on Figure 3. Details on the approach can be found in the ICL technical report [7] 
(submitted to SC’12). 

 
 
Figure 3. Performance of the two-
stage approach in double precision 
using a single GPU on the 
Keeneland system (2x6 Intel X5660  
2.8 GHz and 3 NVIDIA M2090 1.3 
GHz GPUs). 
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DSYTRD_2stages   1 GPU
DSYTRD                  3 GPUs
DSYTRD                  2 GPUs
DSYTRD                  1 GPU
DSYTRD_MKL       12 cores 4x


