

Last modified on: <10-18-2011>

The CUDA

Compiler Driver

NVCC

nvcc.pdf v4.1 1
October 2011

 Introduction

Overview

CUDA programming model
The CUDA Toolkit targets a class of applications whose control part runs as a
process on a general purpose computer (Linux, Windows), and which use one or
more NVIDIA GPUs as coprocessors for accelerating SIMD parallel jobs. Such
jobs are „self- contained‟, in the sense that they can be executed and completed by a
batch of GPU threads entirely without intervention by the „host‟ process, thereby
gaining optimal benefit from the parallel graphics hardware.

Dispatching GPU jobs by the host process is supported by the CUDA Toolkit in
the form of remote procedure calling. The GPU code is implemented as a collection
of functions in a language that is essentially „C‟, but with some annotations for
distinguishing them from the host code, plus annotations for distinguishing different
types of data memory that exists on the GPU. Such functions may have parameters,
and they can be „called‟ using a syntax that is very similar to regular C function
calling, but slightly extended for being able to specify the matrix of GPU threads
that must execute the „called‟ function. During its life time, the host process may
dispatch many parallel GPU tasks. See Figure 1.

CUDA sources
Hence, source files for CUDA applications consist of a mixture of conventional
C++ „host‟ code, plus GPU „device‟ (i.e. GPU-) functions. The CUDA compilation
trajectory separates the device functions from the host code, compiles the device
functions using proprietary NVIDIA compilers/assemblers, compiles the host code
using a general purpose C/C++ compiler that is available on the host platform, and
afterwards embeds the compiled GPU functions as load images in the host object
file. In the linking stage, specific CUDA runtime libraries are added for supporting
remote SIMD procedure calling and for providing explicit GPU manipulation such
as allocation of GPU memory buffers and host-GPU data transfer.

Purpose of nvcc
This compilation trajectory involves several splitting, compilation, preprocessing,
and merging steps for each CUDA source file, and several of these steps are subtly
different for different modes of CUDA compilation (such as compilation for device
emulation, or the generation of device code repositories). It is the purpose of the
CUDA compiler driver nvcc to hide the intricate details of CUDA compilation from
developers. Additionally, instead of being a specific CUDA compilation driver,

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 2
October 2011

nvcc mimics the behavior of the GNU compiler gcc: it accepts a range of
conventional compiler options, such as for defining macros and include/library
paths, and for steering the compilation process. All non-CUDA compilation steps
are forwarded to a general purpose C compiler that is supported by nvcc, and on
Windows platforms, where this compiler is an instance of the Microsoft Visual
Studio compiler, nvcc will translate its options into appropriate „cl‟ command
syntax. This extended behavior plus „cl‟ option translation is intended for support of
portable application build and make scripts across Linux and Windows platforms.

Supported host compilers

Nvcc will use the following compilers for host code compilation:

On Linux platforms: The GNU compiler, gcc

On Windows platforms: The Microsoft Visual Studio compiler, cl

On both platforms, the compiler found on the current execution search path will be
used, unless nvcc option –compiler-bindir is specified (see page 13).

Supported build environments

Nvcc can be used in the following build environments:

Linux Any shell

Windows DOS shell

Windows CygWin shells, use nvcc‟s drive prefix options (see page 14).

Windows MinGW shells, use nvcc‟s drive prefix options (see page 14).

Although a variety of POSIX style shells is supported on Windows, nvcc will still
assume the Microsoft Visual Studio compiler for host compilation. Use of gcc is not
supported on Windows.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 3
October 2011

#define ACOS_TESTS (5)

#define ACOS_THREAD_CNT (128)

#define ACOS_CTA_CNT (96)

struct acosParams {

 float *arg;

 float *res;

 int n;

};

__global__ void acos_main (struct acosParams parms)

{

 int i;

 int totalThreads = gridDim.x * blockDim.x;

 int ctaStart = blockDim.x * blockIdx.x;

 for (i = ctaStart + threadIdx.x; i < parms.n; i += totalThreads) {

 parms.res[i] = acosf(parms.arg[i]);

 }

}

int main (int argc, char *argv[])

{

 volatile float acosRef;

 float* acosRes = 0;

 float* acosArg = 0;

 float* arg = 0;

 float* res = 0;

 float t;

 struct acosParams funcParams;

 int errors;

 int i;

 cudaMalloc ((void **)&acosArg, ACOS_TESTS * sizeof(float));

 cudaMalloc ((void **)&acosRes, ACOS_TESTS * sizeof(float));

 arg = (float *) malloc (ACOS_TESTS * sizeof(arg[0]));

 res = (float *) malloc (ACOS_TESTS * sizeof(res[0]));

 cudaMemcpy (acosArg, arg, ACOS_TESTS * sizeof(arg[0]),

 cudaMemcpyHostToDevice);

 funcParams.res = acosRes;

 funcParams.arg = acosArg;

 funcParams.n = opts.n;

 acos_main<<<ACOS_CTA_CNT,ACOS_THREAD_CNT>>>(funcParams);

 cudaMemcpy (res, acosRes, ACOS_TESTS * sizeof(res[0]),

 cudaMemcpyDeviceToHost);

 Figure 1: Example of CUDA source file

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 4
October 2011

Compilation Phases

Nvcc identification macro

Nvcc predefines the macro __CUDACC__. This macro can be used in sources to
test whether they are currently being compiled by nvcc.

Nvcc phases

A compilation phase is the a logical translation step that can be selected by
command line options to nvcc. A single compilation phase can still be broken up by
nvcc into smaller steps, but these smaller steps are „just‟ implementations of the
phase: they depend on seemingly arbitrary capabilities of the internal tools that nvcc
uses, and all of these internals may change with a new release of the CUDA Toolkit
Hence, only compilation phases are stable across releases, and although nvcc
provides options to display the compilation steps that it executes, these are for
debugging purposes only and must not be copied and used into build scripts.

Nvcc phases are selected by a combination of command line options and input file
name suffixes, and the execution of these phases may be modified by other command
line options. In phase selection, the input file suffix defines the phase input, while
the command line option defines the required output of the phase.

The following paragraphs will list the recognized file name suffixes and the
supported compilation phases. A full explanation of the nvcc command line options
can be found in the next chapter.

Supported input file suffixes

The following table defines how nvcc interprets its input files

.cu CUDA source file, containing host code and device functions

.cup Preprocessed CUDA source file, containing host code and device functions

.c „C‟ source file

.cc, .cxx, .cpp C++ source file

.gpu Gpu intermediate file (see 0)

.ptx Ptx intermeditate assembly file (see 0)

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 5
October 2011

.o, .obj Object file

.a, .lib Library file

.res Resource file

.so Shared object file

Notes:

 Nvcc does not make any distinction between object, library or resource files. It
just passes files of these types to the linker when the linking phase is executed.

 Nvcc deviates from gcc behavior with respect to files whose suffixes are
„unknown‟ (i.e., that do not occur in the above table): instead of assuming that
these files must be linker input, nvcc will generate an error.

Supported phases

The following table specifies the supported compilation phases, plus the option to
nvcc that enables execution of this phase. It also lists the default name of the output
file generated by this phase, which will take effect when no explicit output file name
is specified using option –o:

CUDA compilation to C/C++
source file

-cuda .c/.cpp appended to source file name, as in
x.cu.c/x.cu.cpp.ii. This output file can be compiled by
the host compiler that was used by nvcc to
preprocess the .cu file

C/C++ preprocesing -E < result on standard output >

C/C++ compilation to object
file

-c Source file name with suffix replaced by “o” on
Linux, or “obj” on Windows

Cubin generation from CUDA
source files

-cubin Source file name with suffix replaced by “cubin”

Cubin generation from .gpu
intermediate files

-cubin Source file name with suffix replaced by “cubin”

Cubin generation from Ptx
intermediate files.

-cubin Source file name with suffix replaced by “cubin”

Ptx generation from CUDA
source files

-ptx Source file name with suffix replaced by “ptx”

Ptx generation from .gpu
intermediate files

-ptx Source file name with suffix replaced by “ptx”

Fatbin generation from source,
ptx or cubin files

-fatbin Source file name with suffix replaced by “fatbin”

Gpu generation from CUDA
source files

-gpu Source file name with suffix replaced by “gpu”

Linking an executable, or dll < no phase
option >

a.out on Linux, or a.exe on Windows

Constructing an object file
archive, or library

-lib a.a on Linux, or a.lib on Windows

„Make‟ dependency generation -M < result on standard output >

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 6
October 2011

Running an executable -run -

Notes:

 The last phase in this list is more of a convenience phase. It allows running the
compiled and linked executable without having to explicitly set the library path
to the CUDA dynamic libraries. Running using nvcc will automatically set the
environment variables that are specified in nvcc.profile (see page 8) prior to
starting the executable.

 Files with extension .cup are assumed to be the result of preprocessing CUDA
source files, by nvcc commands as “nvcc –E x.cu –o x.cup”, or “nvcc –E x.cu >
x.cup”.
Similar to regular compiler distributions, such as Microsoft Visual Studio or gcc,
preprocessed source files are the best format to include in compiler bug reports.
They are most likely to contain all information necessary for reproducing the
bug.

Supported phase combinations

The following phase combinations are supported by nvcc:

 CUDA compilation to object file.
This is a combination of CUDA Compilation and C compilation, and invoked by
option –c.

 Preprocessing is usually implicitly performed as first step in compilation phases

 Unless a phase option is specified, nvcc will compile and link all its input files

 When –lib is specified, nvcc will compile all its input files, and store the resulting
object files into the specified archive/library.

Keeping intermediate phase files

Nvcc will store intermediate results by default into temporary files that are deleted
immediately before nvcc completes. The location of the temporary file directories
that are used are, depending on the current platform, as follows:

Windows temp directory Value of environment variable TEMP, or c:/Windows/temp

Linux temp directory /tmp

Options –keep or –save-temps (these options are equivalent) will instead store these
intermediate files in the current directory, with names as described in the table on
page 5.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 7
October 2011

Cleaning up generated files

All files generated by a particular nvcc command can be cleaned up by repeating the
command, but with additional option –clean. This option is particularly useful after
using –keep, because the keep option usually leaves quite an amount of intermediate
files around.

Example:

 nvcc acos.cu –keep

 nvcc acos.cu –keep –clean

Because using –clean will remove exactly what the original nvcc command created,
it is important to exactly repeat all of the options in the original command. For
instance, in the above example, omitting –keep, or adding –c will have different
cleanup effects.

Use of platform compiler

A general purpose C compiler is needed by nvcc in the following situations:

1. During non-CUDA phases (except the run phase), because these phases will
be forwarded by nvcc to this compiler

2. During CUDA phases, for several preprocessing stages (see also chapter
“The CUDA Compilation Trajectory”).

On Linux platforms, the compiler is assumed to be „gcc‟, or „g++‟ for linking. On
Windows platforms, the compiler is assumed to be „cl‟. The compiler executables are
expected to be in the current executable search path, unless option --compiler-bindir is
specified, in which case the value of this option must be the name of the directory in
which these compiler executables reside.

„Proper‟ compiler installations
On both Linux and Windows, „properly‟ installed compilers have some form of
„internal knowledge‟ that enables them to locate system include files, system libraries
and dlls, include files and libraries related the compiler installation itself, and
include files and libraries that implement libc and libc++.

A properly installed gcc compiler has this knowledge built in, while a properly
installed Microsoft Visual Studio compiler has this knowledge available in a batch
script vsvars.bat, at a known place in its installation tree. This script must be executed
prior to running the cl compiler, in order to place the correct settings into specific
environment variables that the cl compiler recognizes.

On Windows platforms, nvcc will locate vsvars.bat via the specified --compiler-bindir
and execute it so that these environment variables become available.

On Linux platforms, nvcc will always assume that the compiler is properly installed.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 8
October 2011

Non „proper‟ compiler installations
The platform compiler can still be „improperly‟ used, but in this case the user of
nvcc is responsible for explicitly providing the correct include and library paths on
the nvcc command line. Especially using gcc compilers, this requires intimate
knowledge of gcc and Linux system issues, and these may vary over different gcc
distributions. Therefore, this practice is not recommended.

Nvcc.profile

Nvcc expects a configuration file nvcc.profile in the directory where the nvcc
executable itself resides. This profile contains a sequence of assignments to
environment variables which are necessary for correct execution of executables that
nvcc invokes. Typical is extending the variables PATH, LD_LIBRARY_PATH with
the bin and lib directories in the CUDA Toolkit installation.

The single purpose of nvcc.profile is to define the directory structure of the CUDA
release tree to nvcc. It is not intended as a configuration file for nvcc users.

Syntax
Lines containing all spaces, or lines that start with zero or more spaces followed by a
„#‟ character are considered comment lines. All other lines in nvcc.profile must have
settings of either of the following forms:

name = <text>

name ?= <text>

name += <text>

name =+ <text>

Each of these three forms will cause an assignment to environment variable name:
the specified text string will be macro- expanded (see next section) and assigned
(„=‟), or conditionally assigned („?=‟), or prepended („+=‟), or appended („=+‟).

Environment variable expansion
The assigned text strings may refer to the current value of environment variables by
either of the following syntax:

 %name% DOS style

 $(name) „make‟ style

HERE, _SPACE_
Prior to evaluating nvcc.profile, nvcc defines _HERE_ to be directory path in
which the profile file was found. Depending on how nvcc was invoked, this may be
an absolute path or a relative path.

Similarly, nvcc will assign a single space string to _SPACE_. This variable can be
used to enforce separation in profile lines such as:

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 9
October 2011

 INCLUDES += -I../common $(_SPACE_)

Omitting the _SPACE_ could cause „glueing‟ effects such as „–I../common-Iapps‟
with previous values of INCLUDES.

Variables interpreted by nvcc itself
The following variables are used by nvcc itself:

compiler-bindir The default value of the directory in which the host compiler resides (see Section 0).
This value can still be overridden by command line option --compiler-bindir

INCLUDES This string extends the value of nvcc command option –Xcompiler. It is intended for
defining additional include paths. It is in actual compiler option syntax, i.e. gcc syntax
on Linux and cl syntax on Windows.

LIBRARIES This string extends the value of nvcc command option –Xlinker. It is intended for
defining additional libraries and library search paths. It is in actual compiler option
syntax, i.e. gcc syntax on Linux and cl syntax on Windows.

PTXAS_FLAGS This string extends the value of nvcc command option –Xptxas. It is intended for
passing optimization options to the CUDA internal tool ptxas.

OPENCC_FLAGS This string extends the value of nvcc command line option –Xopencc. It is intended
to pass optimization options to the CUDA internal tool nvopencc.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 10
October 2011

Example of profile

nvcc and nvcc.profile are in the bin directory of the

cuda installation tree. Hence, this installation tree

is „one up‟:

TO P = $(_HERE_)/..

Define the cuda include directories:

INCLUDES += -I$(TOP)/include -I$(TOP)/include/cudart ${_SPACE_}

Extend dll search path to find cudart.dll and cuda.dll

and add these two libraries to the link line

PATH += $(TOP)/lib;

LIBRARIES =+ ${_SPACE_} -L$(TOP)/lib -lcuda -lcudart

Extend the executable search path to find the

cuda internal tools:

PATH += $(TOP)/open64/bin:$(TOP)/bin:

Location of M icrosoft Visual Studio compiler

compiler-bindir = c:/mvs/bin

No special optimization flags for device code compilation:

PTXAS_FLAGS +=

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 11
October 2011

Nvcc Command Options

Command option types and notation

Nvcc recognizes three types of command options: boolean (flag-) options, single
value options, and list (multivalued-) options.

Boolean options do not have an argument: they are either specified on a command
line or not. Single value options must be specified at most once, and list
(multivalued-) options may be repeated. Examples of each of these option types are,
respectively: -v (switch to verbose mode), -o (specify output file), and –I (specify
include path).

Single value options and list options must have arguments, which must follow the
name of the option itself by either one of more spaces or an equals character. In
some cases of compatibility with gcc (such as –I, -l and -L), the value of the option
may also immediately follow the option itself, without being separated by spaces.
The individual values of multivalued options may be separated by commas in a
single instance of the option, or the option may be repeated, or any combination of
these two cases.

Hence, for the two sample options mentioned above that may take values, the
following notations are legal:

-o file

-o=file

-Idir1,dir2 -I=dir3 -I dir4,dir5

The option type in the tables in the remainder of this section can be recognized as
follows: boolean options do not have arguments specified in the first column, while
the other two types do. List options can be recognized by the repeat indicator “,…”
at the end of the argument.

Each option has a long name and a short name, which can be used interchangedly.
These two variants are distinguished by the number of hyphens that must precede
the option name: long names must be preceded by two hyphens, while short names
must be preceded by a single hyphen. An example of this is the long alias of –I,
which is --include-path.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 12
October 2011

Long options are intended for use in build scripts, where size of the option is less
important than descriptive value. In contrast, short options are intended for
interactive use. For nvcc, this distinction may be of dubious value, because many of
its options are well known compiler driver options, and the names of many other
single- hyphen options were already chosen before nvcc was developed (and not
especially short). However, the distinction is a useful convention, and the „short‟
options names may be shortened in future releases of the CUDA Toolkit.

Long options are described in the first columns of the options tables, and short
options occupy the second columns.

Command option description

Options for specifying the compilation phase

Options of this category specify up to which stage the input files must be compiled.

--cuda -cuda Compile all .cu input files to .cu.cpp.ii output.

--cubin -cubin Compile all .cu/.gpu/.ptx input files to device-

only .cubin files. This step discards the host
code for each .cu input file.

--ptx -ptx Compile all .cu/.gpu input files to device- only

.ptx files. This step discards the host code for
each .cu input file.

--gpu -gpu Compile all .cu input files to device- only .gpu

files. This step discards the host code for each
.cu input file.

--fatbin -fatbin Compile all .cu/.gpu/.ptx/.cubin input files to

device-only .fatbin files. This step discards the
host code for each .cu input file.

--preprocess -E Preprocess all .c/.cc/.cpp/.cxx/.cu input files.

--generate-dependencies -M Generate for the one .c/.cc/.cpp/.cxx/.cu
input file (more than one are not allowed in
this step) a dependency file that can be
included in a make file.

--compile -c Compile each .c/.cc/.cpp/.cxx/.cu input file
into an object file.

--link -link This option specifies the default behavior:
compile and link all inputs.

--lib -lib Compile all input files into object files (if
necessesary), and add the results to the
specified library output file.

--run -run This option compiles and links all inputs into
an executable, and executes it. Or, when the
input is a single executable, it is executed
without any compilation. This step is intended
for developers who do not want to be
bothered with setting the necessary CUDA dll
search paths (these will be set temporarily by
nvcc according to the definitions in
nvcc.profile).

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 13
October 2011

File and path specifications

--output-file file -o Specify name and location of the output file.

Only a single input file is allowed when this
option is present in nvcc non-
linking/archiving mode.

--pre-include include-file,… -include Specify header files that must be preincluded
during preprocessing or compilation.

--library library-file,… -l Specify libraries to be used in the linking stage.

The libraries are searched for on the library
search paths that have been specified using
option '-L'.

--define-macro macrodef,… -D Specify macro definitions for use during
preprocessing or compilation

--undefine-macro macrodef,… -U Undefine a macro definition

--include-path include-path,… -I Specify include search paths.

--sy stem-include include-
path,…

-isy stem Specify system include search paths.

--library -path library-path,… -L Specify library search paths.

--output-directory directory -odir Specify the directory of the output file. This

option is intended for letting the dependency
generation step (--generate-dependencies)
generate a rule that defines the target object file
in the proper directory.

--compiler-bindir directory -ccbin Specify the directory in which the host

compiler executable (Microsoft Visual Studio
cl, or a gcc derivative) resides. By default, this
executable is expected in the current executable
search path.

Options altering compiler/linker behavior
--profile -pg Instrument generated code/executable for use

by gprof (Linux only).

--debug level -g Generate debug-able code.

--dev ice-debug -G Generate debug-able device code

--optimize level -O Generate optimized code.

--shared -shared Generate a shared library during linking. Note:

when other linker options are required for
controlling dll generation, use option –Xlinker.

--machine -m Specify 32 vs. 64 bit architecture.

Options for passing specific phase options
These allow for passing specific options directly to the internal compilation tools
that nvcc encapsulates, without burdening nvcc with too-detailed knowledge on
these tools. A table of useful sub-tool options can be found at the end of this
chapter.

--compiler-options options,… -Xcompiler Specify options directly to the
compiler/preprocessor.

--linker-options options,… -Xlinker Specify options directly to the linker.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 14
October 2011

--cudafe-options -Xcudafe Specify options directly to cudafe.

--opencc-options options,… -Xopencc Specify options directly to nvopencc, typically
for steering nvopencc optimization.

--ptxas-options options,… -Xptxas Specify options directly to the ptx optimizing
assembler.

Options for guiding the compiler driver
--dry run -dry run Do not execute the compilation commands

generated by nvcc. Instead, list them.

--verbose -v List the compilation commands generated by

this compiler driver, but do not suppress their
execution.

--keep -keep Keep all intermediate files that are generated
during internal compilation steps.

--save-temps -save-temps This option is an alias of --keep.

--dont-use-profile -noprof Don‟t use the nvcc.profile file to guide the
compilation.

--clean-targets -clean This option reverses the behaviour of nvcc.

When specified, none of the compilation
phases will be executed. Instead, all of the non-
temporary files that nvcc would otherwise
create will be deleted.

--run-args arguments,… -run-args Used in combination with option -R, to specify
command line arguments for the executable.

--input-drive-prefix prefix -idp On Windows platforms, all command line

arguments that refer to file names must be
converted to Windows native format before
they are passed to pure Windows executables.
This option specifies how the 'current'
development environment represents absolute
paths. Use '-idp /cygwin/' for CygWin build
environments, and '-idp /' for Mingw.

--dependency-drive-prefix
prefix

-ddp On Windows platforms, when generating

dependency files (option -M), all file names
must be converted to whatever the used
instance of 'make' will recognize. Some
instances of 'make' have trouble with the colon
in absolute paths in native Windows format,
which depends on the environment in which
this 'make' instance has been compiled. Use '-
ddp /cygwin/' for a CygWin make, and '-ddp /'
for Mingw. Or leave these file names in native
Windows format by specifying nothing.

--drive-prefix prefix -dp Specifies <prefix> as both input-drive-prefix
and dependency-drive-prefix.

Options for steering CUDA compilation
--use_fast_math -use_fast_math Make use of fast math library. –use_fast_math

implies -ftz=true -prec-div=false -prec-
sqrt=false –fmad=true

--ftz -ftz The –ftz option controls single precision

denormals support. When –ftz=false,
denormals are supported and with -ftz=true,
denormals are flushed to 0.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 15
October 2011

--prec-div -prec-div The –prec-div option controls single precision

division.. With –prec-div=true, the division is
IEEE compliant, with –prec-div=false, the
division is approximate

--prec-sqrt -prec-sqrt The –prec-sqrt option controls single precision

square root. With –prec-sqrt=true, the square
root is IEEE compliant, with –prec-sqrt=false,
the square root is approximate

--entries entry,… -e In case of compilation of ptx or gpu files to

cubin: specify the global entry functions for
which code must be generated. By default, code
will be generated for all entries.

--fmad -fmad Enables (disables) the contraction of floating-

point multiplies and adds/subtracts into
floating-point multiply-add operations (FMAD,
FFMA, or DFMA). The default is -fmad=true.

Options for steering GPU code generation

--gpu-architecture gpuarch

-arch Specify the name of the NVIDIA GPU to

compile for. This can either be a „real‟ GPU, or
a „virtual‟ ptx architecture. Ptx code represents
an intermediate format that can still be further
compiled and optimized for, depending on the
ptx version, a specific class of actual GPUs .

The architecture specified by this option is the
architecture that is assumed by the compilation
chain up to the ptx stage, while the
architecture(s) specified with the –code option
are assumed by the last, potentially runtime,
compilation stage.

Currently supported compilation architectures
are: virtual architectures compute_10,
compute_11, compute_12, compute_13 plus
GPU architectures sm_10, sm_11, sm_12 and
sm_13 that implement these.

--gpu-code gpuarch,… -code Specify the name of the NVIDIA GPU to
generate code for.

Unless option –export-dir is specified (see
below), nvcc embeds a compiled code image in
the executable for each specified „code‟
architecture, which is a true binary load image
for each „real‟ architecture, and ptx code for
each virtual architecture.

During runtime, such embedded ptx code will
be dynamically compiled by the CUDA runtime
system if no binary load image is found for the
„current‟ GPU.

Architectures specified for options –arch and –
code may be virtual as well as real, but the
„code‟ architectures must be compatible with
the „arch‟ architecture. When the code option
is used, the value for the –arch option must b a
virtual ptx architecture.

For instance, „arch‟=compute_13 is not
compatible with „code‟=sm_10, because the
earlier compilation stages will assume the
availability of compute_13 features that are not
present on sm_10.

This option defaults to the value of option „-
arch‟. Currently supported GPU architectures:
sm_10, sm_11, sm_12 and sm_13.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 16
October 2011

--generate-code -gencode This option provides a generalization of the

'-arch=<arch> -code=code,...' option
combination for specifying nvcc behavior with
respect to code generation. Where use of the
previous options generates different code for a
fixed virtual architecture, option '--generate-
code' allows multiple nvopencc invocations,
iterating over different virtual architectures. In
fact, -arch=<arch> -code=<code>,...' is
equivalent to '--generate-code.
arch=<arch>,code=<code>,...'.

'--generate-code' options may be repeated for
different virtual architectures.

Allowed keywords for this option: 'arch','code'.

--export-dir file -dir Specify the name of a directory to which all

device code images will be copied, intended as
a device code repository that can be inspected
by the CUDA driver at application runtime
when it occurs in the appropriate device code
search paths („dir‟ should be in
CUDA_DEVCODE_PATH).

This repository can either be a directory, or a
zip file. In either case, nvcc will maintain a
directory structure in order to facilitate code
lookup by the CUDA driver.

When this option is specified with the name of
a nonexisting file, then this file will be created
as a directory.

--maxrregcount amount -maxrregcount Specify the maximum amount of registers that
GPU functions can use.

Until a function-specific limit, a higher value
will generally increase the performance of
individual GPU threads that execute this
function. However, because thread registers are
allocated from a global register pool on each
GPU, a higher value of this option will also
reduce the maximum thread block size, thereby
reducing the amount of thread parallelism.
Hence, a good maxrregcount value is the result
of a trade-off.

If this option is not specified, then no
maximum is assumed. Otherwise the specified
value will be rounded to the next multiple of 4
registers until the GPU specific maximum of
128 registers.

Generic tool options

--help -h Print help information on this tool.

--version -V Print version information on this tool.

--options-file file,… -optf Include command line options from specified
file.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 17
October 2011

Phase options
The following table lists some useful options to lower level compilation tools:

-Xcompiler, -Xlinker See host compiler
documentation

-Xptxas -v Print code generation statistics.

-Xopencc -LIST:source=on Include source code in generated ptx

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 18
October 2011

The CUDA Compilation Trajectory

This chapter explains the internal structure of the various CUDA compilation
phases. These internals can usually be ignored unless one wants to understand, or
„manually‟ rerun, the compilation steps corresponding to phases. Such command
replay is useful during debugging of CUDA applications, when intermediate files
need be inspected or modified. It is important to note that this structure reflects the
current way in which nvcc implements its phases; it may significantly change with
new releases of the CUDA Toolkit.

The following section illustrates how internal steps can be made visible by nvcc, and
rerun. After that, a translation diagram of the .cu to .cu.cpp.ii phase is listed. All
other CUDA compilations are variants in some form of another of the .cu to C++
transformation.

Listing and rerunning nvcc steps

Intermediate steps can be made visible by options –v and -dryrun. In addition, option
–keep might be specified to retain temporary files, and also to give them slightly
more meaningful names. The following sample command lists the intermediate
steps for a CUDA compilation:

 nvcc –cuda x.cu --compiler-bindir=c:/mvs/vc/bin -keep –dryrun

This command results in a listing as the one shown at the end of this section.

Depending on the actual command shell that is used, the displayed commands are
„almost‟ executable: the DOS command shell, and the Linux shells sh and csh each
have slightly different notations for assigning values to environment variables.

The command list contains the following categories, which in the example below are
alternately shown in normal print and boldface (see also sections 0 and 0):

1. Definition of standard variables _HERE_ and _SPACE_

2. Environment assignments resulting from executing nvcc.profile

3. Definition of Visual Studio installation macros (derived from –compiler-
bindir)

4. Environment assignments resulting from executing vsvars32.bat

5. Commands generated by nvcc.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 19
October 2011

#$ _SPACE_=

#$ _HERE_=c:\sw\gpgpu\bin\win32_debug

#$ TOP=c:\sw\gpgpu\bin\win32_debug/../..

#$ BINDIR=c:\sw\gpgpu\bin\win32_debug

#$

COMPILER_EXPORT=c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export

/win32_debug

#$

PATH=c:\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:

\cygwin\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;

c:\WINDOWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program

Files\Microsoft SQL Server\90\Tools\binn\;c:\Program

Files\Perforce;C:\cygwin\lib\lapack

#$

PATH=c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debu

g/open64/bin;c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/wi

n32_debug/bin;c:\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32

_debug;C:\cygwin\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X

11R6\bin;c:\WINDOWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Progra

m Files\Microsoft SQL Server\90\Tools\binn\;c:\Program

Files\Perforce;C:\cygwin\lib\lapack

#$ INCLUDES="-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" "-

Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"

#$ INCLUDES="-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"

#$ LIBRARIES= "c:\sw\gpgpu\bin\win32_debug/cuda.lib"

"c:\sw\gpgpu\bin\win32_debug/cudart.lib"

#$ PTXAS_FLAGS=

#$ OPENCC_FLAGS=-Werror

#$ VSINSTALLDIR=c:/mvs/vc/bin/..

#$ VCINSTALLDIR=c:/mvs/vc/bin/..

#$ FrameworkDir=c:\WINDOWS\Microsoft.NET\Framework

#$ FrameworkVersion=v2.0.50727

#$ FrameworkSDKDir=c:\MVS\SDK\v2.0

#$ DevEnvDir=c:\MVS\Common7\IDE

#$

PATH=c:\MVS\Common7\IDE;c:\MVS\VC\BIN;c:\MVS\Common7\Tools;c:\MVS\Common7\

Tools\bin;c:\MVS\VC\PlatformSDK\bin;c:\MVS\SDK\v2.0\bin;c:\WINDOWS\Microso

ft.NET\Framework\v2.0.50727;c:\MVS\VC\VCPackages;c:\sw\gpgpu\bin\win32_deb

ug/../../../compiler/gpgpu/export/win32_debug/open64/bin;c:\sw\gpgpu\bin\w

in32_debug/../../../compiler/gpgpu/export/win32_debug/bin;c:\sw\gpgpu\bin\

win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:\cygwin\usr\local\bin

;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;c:\WINDOWS\system32;c

:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program Files\Microsoft SQL

Server\90\Tools\binn\;c:\Program Files\Perforce;C:\cygwin\lib\lapack

#$

INCLUDE=c:\MVS\VC\ATLMFC\INCLUDE;c:\MVS\VC\INCLUDE;c:\MVS\VC\PlatformSDK\i

nclude;c:\MVS\SDK\v2.0\include;

#$

LIB=c:\MVS\VC\ATLMFC\LIB;c:\MVS\VC\LIB;c:\MVS\VC\PlatformSDK\lib;c:\MVS\SD

K\v2.0\lib;

#$

LIBPATH=c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;c:\MVS\VC\ATLMFC\LIB

#$

PATH=c:/mvs/vc/bin;c:\MVS\Common7\IDE;c:\MVS\VC\BIN;c:\MVS\Common7\Tools;c

:\MVS\Common7\Tools\bin;c:\MVS\VC\PlatformSDK\bin;c:\MVS\SDK\v2.0\bin;c:\W

INDOWS\Microsoft.NET\Framework\v2.0.50727;c:\MVS\VC\VCPackages;c:\sw\gpgpu

\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/open64/bin;c:\

sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/bin;c:

\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:\cygwin

\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;c:\WIND

OWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program

Files\Microsoft SQL Server\90\Tools\binn\;c:\Program

Files\Perforce;C:\cygwin\lib\lapack

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 20
October 2011

#$ cudafe -E -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include" -D__CUDACC__

-C --preinclude "cuda_runtime.h" -o "x.cpp1.ii" "x.cu"

#$ cudafe "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. --

gen_c_file_name "x.cudafe1.c" --gen_device_file_name "x.cudafe1.gpu" --

include_file_name x.fatbin.c --no_exceptions -tused "x.cpp1.ii"

#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include" -D__CUDACC__

-C -o "x.cpp2.i" "x.cudafe1.gpu"

#$ cudafe --c "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. --

gen_c_file_name "x.cudafe2.c" --gen_device_file_name "x.cudafe2.gpu" --

include_file_name x.fatbin.c "x.cpp2.i"

#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include" -D__GNUC__ -

D__CUDABE__ -o "x.cpp3.i" "x.cudafe2.gpu"

#$ nvopencc -Werror "x.cpp3.i" -o "x.ptx"

#$ ptxas -arch=sm_10 "x.ptx" -o "x.cubin"

#$ filehash --skip-cpp-directives -s "" "x.cpp3.i" > "x.cpp3.i.hash"

#$ fatbin --key="x@xxxxxxxxxx" --source-name="x.cu" --usage-mode="" --

embedded-fatbin="x.fatbin.c" --image=profile=sm_10,file=x.cubin

#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include" -o "x.cu.c"

"x.cudafe1.c"

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 21
October 2011

Full CUDA compilation trajectory

fatbin

cpp

.gpu

.cubin or ptx text

.fatbin (embedded fat code data structure)

.cu.c

-Xptxas

options

cpp

cudafe

cpp

cudafe

.cu

.gpu

cpp

.c

host code

.gpu

nvopencc
-Xopencc

options...

filehash

Application independent

device code name

.fatbin (external device code repository)

-ext,-int,-dir

options

-arch

option

-code

optionptxas

.ptx

ptxas

.ptx

Figure 2: CUDA compilation from .cu to .cu.cpp.ii

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 22
October 2011

The CUDA phase converts a source file coded in the extended CUDA language,
into a regular ANSI C++ source file that can be handed over to a general purpose
C++ compiler for further compilation and linking. The exact steps that are followed
to achieve this are displayed in Figure 2.

Compilation flow
In short, CUDA compilation works as follows: the input program is separated by
the CUDA front end (cudafe), into C/C++ host code and the .gpu device code.
Depending on the value(s) of the –code option to nvcc, this device code is further
translated by the CUDA compilers/assemblers into CUDA binary (cubin) and/or
into intermediate ptx code. This code is merged into a device code descriptor which
is included by the previously separated host code. This descriptor will be inspected
by the CUDA runtime system whenever the device code is invoked („called‟) by the
host program, in order to obtain an appropriate load image for the current GPU.

CUDA frontend
In the current CUDA compilation scheme, the CUDA front end is invoked twice.
The first step is for the actual splitup of the .cu input into host and device code. The
second step is a technical detail (it performs dead code analysis on the .gpu
generated by the first step), and it might disappear in future releases.

Preprocessing
The trajectory contains a number of preprocessing steps. The first of these, on the
.cu input, has the usual purpose of expanding include files and macro invocations
that are present in the source file. The remaining preprocessing steps expand CUDA
system macros in („C‟-) code that has been generated by preceding CUDA
compilation steps. The last preprocessing step also merges the results of the
previously diverged compilation flow.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 23
October 2011

Sample Nvcc Usage

The following lists a sample makefile that uses nvcc for portability across Windows
and Linux.

O n windows, store location of Visual Studio compiler

into the env ironment. This will be picked up by nvcc,

even without explicitly being passed.

O n Linux, use whatever gcc is in the current path

(so leave compiler-bindir undefined):

ifdef O N_WINDOWS

 export compiler-bindir := c:/mvs/bin

endif

Similar for OPENCC_FLAGS and PTXAS_FLAGS.

These are simply passed via the environment:

export O PENCC_FLAGS :=

export PTXAS_FLAGS := -fastimul

cuda and C/C++ compilation rules, with

dependency generation:

%.o : %.cpp

$(NVCC) -c %^ $(CFLAGS) -o $@

$(NVCC) -M % ̂$(CFLAGS) > $@.dep

%.o : %.c

$(NVCC) -c %^ $(CFLAGS) -o $@

$(NVCC) -M % ̂$(CFLAGS) > $@.dep

%.o : %.cu

$(NVCC) -c %^ $(CFLAGS) -o $@

$(NVCC) -M % ̂$(CFLAGS) > $@.dep

Pick up generated dependency files, and

add /dev /null because gmake does not consider

an empty list to be a list:

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 24
October 2011

include $(w ildcard *.dep) /dev/null

Define the application;

for each object file, there must be a

corresponding .c or .cpp or .cu file:

O BJECTS = a.o b.o c.o

APP = app

$(APP) : $(OBJECTS)

 $(NVCC) $(OBJECTS) $(LDFLAGS) -o $@

C leanup:

clean :

 $(RM) $(OBJECTS) *.dep

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 25
October 2011

GPU Compilation

This chapter describes the GPU compilation model that is maintained by nvcc, in
cooperation with the CUDA driver. It goes through some technical sections, with
concrete examples at the end.

GPU Generations

In order to allow for architectural evolution, NVIDIA GPUs are released in
different generations. New generations introduce major improvements in
functionality and/or chip architecture, while GPU models within the same
generation show minor configuration differences that „moderately‟ affect
functionality, performance, or both.

Binary compatibility of GPU applications is not guaranteed across different
generations. For example, a CUDA application that has been compiled for a Tesla
GPU will very likely not run on a next generation graphics card (and vice versa).
This is because the Tesla instruction set and instruction encodings is different from
FERMI, which in turn will probably be substantially different from those of the
next generation GPU.

V1 (Tesla)

 - sm_10

 - sm_11

 - sm_12

 - sm_13

V2 (Next generation)

 - sm_20

 - .. ?? ..

V3 (??)

 - .. ?? ..

V4 (??)

 - .. ?? ..

Because they share the basic instruction set, binary compatibility within one GPU
generation, however, can under certain conditions guaranteed. This is the case
between two GPU versions that do not show functional differences at all (for
instance when one version is a scaled down version of the other), or when one
version is functionally included in the other. An example of the latter is the „base‟
Tesla version sm_10 whose functionality is a subset of all other Tesla versions: any
code compiled for sm_10 will run on all other Tesla GPUs.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 26
October 2011

GPU feature list

The following table lists the names of the current GPU architectures, annotated
with the functional capabilities that they provide. There are other differences, such
as amounts of register and processor clusters, that only affect execution
performance.

In the CUDA naming scheme, GPUs are named sm_xy, where x denotes the GPU
generation number, and y the version in that generation. Additionally, to facilitate
comparing GPU capabilities, CUDA attempts to choose its GPU names such that
if x1y1 <= x2y2 then all non- ISA related capabilities of sm_x1y1 are included in those
of sm_x2y2. From this it indeed follows that sm_10 is the „base‟ Tesla model, and it
also explains why higher entries in the tables are always functional extensions to the
lower entries. This is denoted by the plus sign in the table. Moreover, if we abstract
from the instruction encoding, it implies that sm_10 ‟s functionality will continue to
be included in all later GPU generations. As we will see next, this property will be
the foundation for application compatibility support by nvcc.

sm_10 ISA_1

Basic features

sm_11 + atomic memory operations on global memory

sm_12 + atomic memory operations on shared memory

+ vote instructions

sm_13 + double precision floating point support

sm_20 + FERMI support

Application compatibility

Binary code compatibility over CPU generations, together with a published
instruction set architecture is the usual mechanism for ensuring that distributed
applications „out there in the field‟ will continue to run on newer versions of the
CPU when these become mainstream.

This situation is different for GPUs, because NVIDIA cannot guarantee binary
compatibility without sacrificing regular opportunities for GPU improvements.
Rather, as is already conventional in the graphics programming domain, nvcc relies
on a two stage compilation model for ensuring application compatibility with future
GPU generations.

Virtual architectures

GPU compilation is performed via an intermediate representation, PTX ([…]),
which can be considered as assembly for a virtual GPU architecture. Contrary to an
actual graphics processor, such a virtual GPU is defined entirely by the set of

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 27
October 2011

capabilities, or features, that it provides to the application. In particular, a virtual
GPU architecture provides a (largely) generic instruction set, and binary instruction
encoding is a non-issue because PTX programs are always represented in text
format.

Hence, a nvcc compilation command always uses two architectures: a compute
architecture to specify the virtual intermediate architecture, plus a „real‟ GPU
architecture to specify the intended processor to execute on. For such an nvcc
command to be valid, the „real‟ architecture must be an implementation (someway
or another) of the virtual architecture. This is further explained below.

The chosen virtual architecture is more of a statement on the GPU capabilities that
the application requires: using a „smallest‟ virtual architecture still allows a „widest‟
range of actual architectures for the second nvcc stage. Conversely, specifying a
virtual architecture that provides features unused by the application unnecessarily
restricts the set of possible GPUs that can be specified in the second nvcc stage.

From this it follows that the virtual compute architecture should always be chosen as
„low‟ as possible, thereby maximizing the actual GPUs to run on. The „real‟ sm
architecture should be chosen as „high‟ as possible (assuming that this always
generates better code), but this is only possible with knowledge of the actual GPUs
on which the application is expected to run. As we will see later, in the situation of
just in time compilation, where the driver has this exact knowledge: the runtime
GPU is the one on which the program is about to be launched/executed.

x.cu (device code part)

x.ptx

x.cubin

Stage 2 (ptxas)

Cuda device driver

Execute

Stage 1 (nvopencc)

n
v

c
c

Virtual compute

architecture

Real sm

architecture

Virtual architecture feature list

compute_10 Basic features

compute_11 + atomic memory operations on global memory

compute_12 + atomic memory operations on shared memory

+ vote instructions

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 28
October 2011

compute_13 + double precision floating point support

Compute_20 + FERMI support

The above table lists the currently defined virtual architectures. As it appears, this
table shows a 1-1 correspondence to the table of actual GPUs listed earlier in this
chapter. The only difference except for the architecture names is that the ISA
specification is missing for the compute architectures.

However, this correspondence is misleading, and might degrade when new GPU
architectures are introduced and also due to development of the CUDA compiler.

First, a next generation architecture might not provide any functional
improvements, in which case the list of „real‟ architectures will be extended (because
we must be able to generate code for this architecture), but no new compute
architecture is necessary.

Second, it may be decided to let the compiler emulate certain „higher‟ grade features
on „lower‟ grade GPUs. For example, this might be done for double precision
floating point support. In this case double precision based applications will run on
all „real‟ GPU architectures, though with considerably lower performance on the
models that do not provide native double support. Such double precision emulation
is here used merely as an example (it currently is not actually considered), but the
CUDA compiler already does emulation for features that are considered „basic‟
though not natively supported: integer division and 64 bit integer arithmetic.
Because integer division and 64 bit integer support are part of the basic feature set,
they will not explicitly show up in the features tables.

Feature emulation might have two different consequences for the virtual
architecture table: the feature might be silently added to a lower grade virtual
architecture (as has happened for integer division and 64 bit arithmetic), or it could
be kept in a separate virtual architecture. For instance if we were to emulate double
precision floating point on an sm_10, then keeping the virtual architecture
compute_13 would make sense because of the drastic performance consequences:
applications would then have to explicitly „enable‟ it during nvcc compilation and
there would therefore be no danger of unwittingly using it on lower grade GPUs.
Either way, the following nvcc command would become valid (which currently is
not the case):

nvcc x.cu -arch=compute_13 -code=sm_10

The two cases of feature implementation are further illustrated below:

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 29
October 2011

compute_M

sm_L sm_M sm_H

L : low grade

M : medium grade

H : high grade

‘natural’ feature

implementation

feature

implementation by

emulation

: implements

Further mechanisms

Clearly, compilation staging in itself does not help towards the goal of application
compatibility with future GPUs. For this we need the two other mechanisms by the
CUDA SDK: just in time compilation (JIT) and device code repositories.

Just in time compilation
The compilation step to an actual GPU binds the code to one generation of GPUs.
Within that generation, it involves a choice between GPU „coverage‟ and possible
performance. For example, for Tesla, compiling to sm_10 allows the code to run on
all Tesla versions, but compiling to sm_13 would probably yield better code.

x.cu (device code part)

Stage 1 (nvopencc)

Cuda device driver

Execute

x.ptx

x.cubin

n
v

c
c

Stage 2 (ptxas)

Virtual compute

architecture

Real sm

architecture

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 30
October 2011

By specifying a virtual code architecture instead of a „real‟ GPU, nvcc postpones the
second compilation stage until application runtime, at which the target GPU is
exactly known. For instance, the command below allows generation of exactly
matching GPU binary code, when the application is launched on ansm_10, an
sm_13, and even a later architecture

nvcc x.cu -arch=compute_10 -code=compute_10

The disadvantage of just in time compilation is increased application startup delay,
but this can be alleviated by letting the CUDA driver use a compilation cache (see
next chapter) which is persistent over multiple runs of the applications.

Device code repositories
A different solution to overcome startup delay by JIT while still allowing execution
on newer GPUs is to specify multiple code instances, as in

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13

This command generates exact code for two Tesla variants, plus ptx code for use by
JIT in case a next- generation GPU is encountered. Nvcc organizes its device code
in device code repositories, which are able to hold multiple translations of the same
GPU source code. At runtime, the CUDA driver will select the most appropriate
translation when the device function is launched. Device code repositories are
explained in more detail in the next chapter.

Nvcc examples

Base notation
Nvcc provides the options –arch and –code for specifying the target architectures for
both translation stages. Except for allowed short hands described below, the –arch
option takes a single value, which must be the name of a virtual compute
architecture, while option –code takes a list of values which must all be the names of
actual GPUs. Nvcc will perform a stage 2 translation for each of these GPUs, and
will embed the result in the result of compilation (which usually is a host object file
or executable).

Example:

nvcc x.cu -arch=compute_10 -code=sm_10,sm_13

Nvcc allows a number of short hands for simple cases:

Shorthand 1
-code arguments can be virtual architectures. In this case the stage 2 translation will
be omitted for such virtual architecture, and the stage 1 PTX result will be
embedded instead. At application launch, and in case the driver does not find a
better alternative, the stage 2 compilation will be invoked by the driver with the
PTX as input.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 31
October 2011

Example:

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13

Shorthand 2
The -arch option can be omitted, in which case it defaults to the „closest‟ virtual
architecture that is implemented by the GPU that is specified with the –code option.
In case multiple GPUs are specified as code architecture, this default virtual
architecture must be unique over all these GPUs.

Example:

nvcc x.cu -code=sm_13

nvcc x.cu -code=compute_10

are short hands for

nvcc x.cu –arch=compute_10 -code=sm_13

nvcc x.cu –arch=compute_10 -code=compute_10

Shorthand 3
The -code option can be omitted. Only in this case, the –arch value can be a non-
virtual architecture. The –code values default to the „closest‟ virtual architecture that
is implemented by the GPU specified with –arch, plus the –arch value itself (in case
the –arch value is a virtual architecture then these two are the same, resulting in a
single –code default). After that, the effective –arch value will be the „closest‟ virtual
architecture:

Example:

nvcc x.cu -arch=sm_13

nvcc x.cu -arch=compute_10

are short hands for

nvcc x.cu –arch=compute_13 -code=sm_13,compute_13

nvcc x.cu –arch=compute_10 -code=compute_10

Shorthand 4
Both –arch and -code options can be omitted.

Example:

nvcc x.cu

is short hand for

nvcc x.cu –arch=compute_10 -code=sm_10,compute_10

Extended notation
The options –arch and –code can be used in all cases where code is to be generated
for one or more GPUs using a common virtual architecture. This will cause a single
invocation of nvcc stage 1 (that is, preprocessing and generation of virtual PTX
assembly code), followed by a compilation stage 2 (binary code generation) repeated
for each specified GPU.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 32
October 2011

Using a common virtual architecture means that all assumed GPU features are fixed
for the entire nvcc compilation. For instance, the following nvcc command assumes
no double precision floating point support for both the sm_10 code and the sm_13
code:

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13

Sometimes it is necessary to perform different GPU code generation steps,
partitioned over different architectures. This is possible using nvcc option –gencode,
which then must be used instead of a –arch/-code combination.

Unlike option –arch, option –gencode may be repeated on the nvcc command line. It
takes sub-options arch and code, which must not be confused with their main option
equivalents, but behave similarly. If repeated architecture compilation is used, then
the device code must use conditional compilation based on the value of the
architecture identification macro __CUDA_ARCH__, which is described in the
next section.

For example, the following assumes absence of double precision support for the
sm_10 and sm_11 code, but full support for sm_:

nvcc x.cu \

-gencode arch=compute_10,code=sm_10 \

-gencode arch=compute_10,code=sm_11 \

-gencode arch=compute_13,code=sm_13

Or, leaving actual GPU code generation to the JIT compiler in the CUDA

driver:

nvcc x.cu \

-gencode arch=compute_10,code=compute_10 \

-gencode arch=compute_13,code=compute_13

The code sub-options can be combined, but for technical reasons must then be
quoted, which causes a slightly less pleasant syntax:

nvcc x.cu \

-gencode arch=compute_10,code=\’sm_10,sm_11\’ \

-gencode arch=compute_12,code=\’sm_12,sm_13\’

Virtual architecture identification macro
The architecture identification macro __CUDA_ARCH__ will be assigned a three-
digit value string xy0 (ending in a literal „0‟) during each nvcc compilation stage 1
that compiles for compute_xy.

This macro can be used in the implementation of GPU functions for determining
the virtual architecture for which it is „currently‟ being compiled. The host code (the
non- GPU code) must not depend on it.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 33
October 2011

Device code repositories

With the existence of multiple NVIDIA GPU architectures, it is not always
predictable at compile time on what type of GPU the application will run. The
importance of this issue is directly proportional to the number of different GPUs.

Nvcc, together with the CUDA runtime system, provides the following mechanisms
for dealing with this:

1. Storing more than one generated code instance embedded in the executable.

2. Allowing ptx intermediate representations as generated code

3. Maintaining device code repositories external to the executable, in directory
trees, or in zip files.

4. More than one compiled code instance for the same device code occurring in
the CUDA source allows the CUDA runtime system to select an instance that
is compatible with the current GPU, which is the GPU on which the runtime
system is about to launch the the code. If more than one compatible code
instances are found, then the runtime system can select the „most
appropriate‟, and in case the most appropriate code instance is still ptx
intermediate code, the runtime system may decide to compile it for the
current GPU. Ptx intermediate code is especially useful for distributed
libraries, such as cublas.

5. External code repositories allow finetuning as more of the compilation
environment becomes known: because such repositories are directory trees in
an open format (normal directory or zip format), any ptx code that it contains
can be „hand- compiled‟ after distribution. One particular way of such
finetuning is to use runtime compilation while enabling a device code
translation cache: this will result in a new code repository, or it will extend an
existing one.

External device code structure

The structure of device code repositories will be automatically created and
maintained by nvcc, during static compilation, and by the CUDA runtime system
whenever it is storing compiled ptx code into a translation cache.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 34
October 2011

Generating code in an external repository

External code repositories can be populated using nvcc option –dir. By using this
options, either all device code can be embedded in the produced object files and
executables, or all device code can be stored in an external repository.

For example, consider the following nvcc compilation commands:

1. nvcc acos.cu –o acos.out

2. nvcc acos.cu –o a.out –arch compute_10

3. nvcc acos.cu –o a.out –arch compute_10 –code compute_10,sm_10,sm_13

4. nvcc acos.cu –o a.out –arch compute_10 –code compute_10,sm_10,sm_13 -
dir=a.out.devcode

These commands have the following effects:

1. Generate sm_10 code binary code embedded in the executable (default value
for option –arch)

2. Generate compute_10 intermediate ptx code, embedded in the executable.
Unless the CUDA driver finds matching binary code at runtime in a code
repository file, this code will be compiled at application startup.

3. Generate a mix of compiled code alternatives for the CUDA driver to choose
from, still embedded in the executable.

4. Generate the same mix of code alternatives, but this time store all of the
generated code in the external repository file, called a.out.devcode. No device
code is embedded in the executable itself. When starting executable a.out, the
CUDA driver will automatically search for a device code repository in the
environment variable CUDA_DEVCODE_PATH. So if a.out.devcode is in
CUDA_DEVCODE_PATH, then the device code will be found.

Using code repositories by the CUDA runtime system

While running an executable E, the CUDA runtime system can be instructed to
search device code repositories, in the following ways:

By defining environment variable CUDA_DEVCODE_PATH to a colon- (Linux),
or semicolon- (Windows) separated list of repository file names. For each name R in
this list, the CUDA runtime will search in R for the device code.

 By defining the device code translation cache (see next).

Enabling the device code translation cache

By default, the result of any runtime compiled ptx code will be used for the lifetime
of the process that compiles it, and then discarded. Runtime compilation is intended

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 35
October 2011

to be an escape situation, but in case it occurs, it might be desirable to keep the
result for later invocations of the executable.

This can be achieved by defining the environment variable
CUDA_DEVCODE_CACHE to the name of a selected code repository. When
defined, the CUDA runtime system will add the result of runtime compiled code to
this repository, after creating it as a directory when it did not exist before.

Additionally, CUDA_DEVCODE_CACHE will be placed on the repository search
list.

 The CUDA compiler driver nvcc

nvcc.pdf v4.1 36
October 2011

Miscellaneous nvcc usage

Printing code generation statistics

A summary on the amount of used registers and the amount of memory needed per
compiled device function can be printed by passing option –v to ptxas:

nvcc -Xptxas –v acos.cu

ptxas info : Compiling entry function 'acos_main'

ptxas info : Used 4 registers, 60+56 bytes lmem, 44+40 bytes smem,

 20 bytes cmem[1], 12 bytes cmem[14]

As shown in the above example, the amounts of local and shared memory are listed
by two numbers each. First number represents the total size of all the variables
declared in that memory segment and the second number represents the amount of
system allocated data. The amount and location of system allocated data as well as
the allocation of constant variables to constant banks is profile specific. For
constant memory, the total space allocated in that bank is shown.

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
O THER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change w ithout notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
w ithout express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks
of the respective companies with which they are associated.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

