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 Introduction 

Overview 

CUDA programming model 
The CUDA Toolkit targets a class of applications whose control part runs as a 
process on a general purpose computer (Linux, Windows), and which use one or 
more NVIDIA GPUs as coprocessors for accelerating SIMD parallel jobs. Such 
jobs are „self- contained‟, in the sense that they can be executed and completed by a 
batch of GPU threads entirely without intervention by the „host‟ process, thereby 
gaining optimal benefit from the parallel graphics hardware. 

Dispatching GPU jobs by the host process is supported by the CUDA Toolkit in 
the form of remote procedure calling. The GPU code is implemented as a collection 
of functions in a language that is essentially „C‟, but with some annotations for 
distinguishing them from the host code, plus annotations for distinguishing different 
types of data memory that exists on the GPU. Such functions may have parameters, 
and they can be „called‟ using a syntax that is very similar to regular C function 
calling, but slightly extended for being able to specify the matrix of GPU threads 
that must execute the „called‟ function. During its life time, the host process may 
dispatch many parallel GPU tasks. See Figure 1. 

CUDA sources 
Hence, source files for CUDA applications consist of a mixture of conventional 
C++ „host‟ code, plus GPU „device‟ (i.e. GPU-) functions. The CUDA compilation 
trajectory separates the device functions from the host code, compiles the device 
functions using proprietary NVIDIA compilers/assemblers, compiles the host code 
using a general purpose C/C++ compiler that is available on the host platform, and 
afterwards embeds the compiled GPU functions as load images in the host object 
file. In the linking stage, specific CUDA runtime libraries are added for supporting 
remote SIMD procedure calling and for providing explicit GPU manipulation such 
as allocation of GPU memory buffers and host-GPU data transfer. 

Purpose of nvcc 
This compilation trajectory involves several splitting, compilation, preprocessing, 
and merging steps for each CUDA source file, and several of these steps are subtly 
different for different modes of CUDA compilation (such as compilation for device 
emulation, or the generation of device code repositories).  It is the purpose of the 
CUDA compiler driver nvcc to hide the intricate details of CUDA compilation from 
developers.  Additionally, instead of being a specific CUDA compilation driver, 
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nvcc mimics the behavior of the GNU compiler gcc: it accepts a range of 
conventional compiler options, such as for defining macros and include/library 
paths, and for steering the compilation process. All non-CUDA compilation steps 
are forwarded to a general purpose C compiler that is supported by nvcc, and on 
Windows platforms, where this compiler is an instance of the Microsoft Visual 
Studio compiler, nvcc will translate its options into appropriate „cl‟ command 
syntax. This extended behavior plus „cl‟ option translation is intended for support of 
portable application build and make scripts across Linux and Windows platforms. 

Supported host compilers 

Nvcc will use the following compilers for host code compilation: 

On Linux platforms:  The GNU compiler, gcc 

On Windows platforms:  The Microsoft Visual Studio compiler, cl 

On both platforms, the compiler found on the current execution search path will be 
used, unless nvcc option –compiler-bindir is specified (see page 13). 

Supported build environments 

Nvcc can be used in the following build environments: 

Linux   Any shell 

Windows DOS shell 

Windows CygWin shells, use nvcc‟s drive prefix options (see page 14). 

Windows MinGW shells, use nvcc‟s drive prefix options (see page 14). 

 

Although a variety of POSIX style shells is supported on Windows, nvcc will still 
assume the Microsoft Visual Studio compiler for host compilation. Use of gcc is not 
supported on Windows.
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#define ACOS_TESTS      (5) 

#define ACOS_THREAD_CNT (128) 

#define ACOS_CTA_CNT    (96) 

 

struct acosParams { 

    float *arg; 

    float *res; 

    int n; 

}; 

 

__global__ void acos_main (struct acosParams parms) 

{ 

    int i; 

    int totalThreads = gridDim.x * blockDim.x; 

    int ctaStart = blockDim.x * blockIdx.x; 

    for (i = ctaStart + threadIdx.x; i < parms.n; i += totalThreads) { 

        parms.res[i] = acosf(parms.arg[i]); 

    } 

} 

 

int main (int argc, char *argv[]) 

{ 

    volatile float acosRef; 

    float* acosRes = 0; 

    float* acosArg = 0; 

    float* arg = 0; 

    float* res = 0; 

    float t; 

    struct acosParams funcParams; 

    int errors; 

    int i; 

 

    cudaMalloc ((void **)&acosArg, ACOS_TESTS * sizeof(float)); 

    cudaMalloc ((void **)&acosRes, ACOS_TESTS * sizeof(float)); 

     

    arg = (float *) malloc (ACOS_TESTS * sizeof(arg[0])); 

    res = (float *) malloc (ACOS_TESTS * sizeof(res[0])); 

 

    cudaMemcpy (acosArg, arg, ACOS_TESTS * sizeof(arg[0]),  

                cudaMemcpyHostToDevice); 

     

    funcParams.res = acosRes; 

    funcParams.arg = acosArg; 

    funcParams.n = opts.n; 

 

    acos_main<<<ACOS_CTA_CNT,ACOS_THREAD_CNT>>>(funcParams); 

 

    cudaMemcpy (res, acosRes, ACOS_TESTS * sizeof(res[0]),  

                cudaMemcpyDeviceToHost); 

   

   

            Figure 1: Example of CUDA source file 



 The CUDA compiler driver nvcc 

    

 

 

nvcc.pdf v4.1  4 
October 2011  

 

Compilation Phases 

Nvcc identification macro 

Nvcc predefines the macro __CUDACC__. This macro can be used in sources to 
test whether they are currently being compiled by nvcc. 

Nvcc phases 

A compilation phase is the a logical translation step that can be selected by 
command line options to nvcc. A single compilation phase can still be broken up by 
nvcc into smaller steps, but these smaller steps are „just‟ implementations of the 
phase: they depend on seemingly arbitrary capabilities of the internal tools that nvcc 
uses, and all of these internals may change with a new release of the CUDA Toolkit 
Hence, only compilation phases are stable across releases, and although nvcc 
provides options to display the compilation steps that it executes, these are for 
debugging purposes only and must not be copied and used into build scripts. 

Nvcc phases are selected by a combination of command line options and input file 
name suffixes, and the execution of these phases may be modified by other command 
line options. In phase selection, the input file suffix defines the phase input, while 
the command line option defines the required output of the phase. 

The following paragraphs will list the recognized file name suffixes and the 
supported compilation phases. A full explanation of the nvcc command line options 
can be found in the next chapter. 

Supported input file suffixes 

The following table defines how nvcc interprets its input files 

.cu CUDA source file, containing host code and device functions 

.cup Preprocessed CUDA source file, containing host code and device functions 

.c „C‟ source file 

.cc, .cxx, .cpp C++ source file 

.gpu Gpu intermediate file (see 0) 

.ptx Ptx intermeditate assembly file (see 0) 
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.o, .obj Object file 

.a, .lib Library file 

.res Resource file 

.so Shared object file 

Notes: 

 Nvcc does not make any distinction between object, library or resource files. It 
just passes files of these types to the linker when the linking phase is executed.  

 Nvcc deviates from gcc behavior with respect to files whose suffixes are 
„unknown‟ (i.e., that do not occur in the above table): instead of assuming that 
these files must be linker input, nvcc will generate an error. 

Supported phases 

The following table specifies the supported compilation phases, plus the option to 
nvcc that enables execution of this phase. It also lists the default name of the output 
file generated by this phase, which will take effect when no explicit output file name 
is specified using option –o: 

CUDA compilation to C/C++ 
source file 

-cuda .c/.cpp appended to source file name, as in 
x.cu.c/x.cu.cpp.ii. This output file can be compiled by 
the host compiler that was  used by nvcc to 
preprocess the .cu file 

C/C++ preprocesing -E < result on standard output > 

C/C++ compilation to object 
file 

-c Source file name with suffix replaced by “o” on 
Linux,  or “obj” on Windows 

Cubin generation from CUDA 
source files 

-cubin Source file name with suffix replaced by “cubin” 

Cubin generation from .gpu 
intermediate files 

-cubin Source file name with suffix replaced by “cubin” 

Cubin generation from Ptx 
intermediate files. 

-cubin Source file name with suffix replaced by “cubin” 

Ptx generation from CUDA 
source files 

-ptx Source file name with suffix replaced by “ptx” 

Ptx generation from .gpu 
intermediate files 

-ptx Source file name with suffix replaced by “ptx” 

Fatbin generation from source, 
ptx or cubin files 

-fatbin Source file name with suffix replaced by “fatbin” 

Gpu generation from CUDA 
source files 

-gpu Source file name with suffix replaced by “gpu” 

Linking an executable, or dll < no phase 
option > 

a.out on Linux, or a.exe on Windows 

Constructing an object file 
archive, or library 

-lib a.a on Linux, or a.lib on Windows 

„Make‟ dependency generation -M < result on standard output > 
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Running an executable -run - 

 

Notes: 

 The last phase in this list is more of a convenience phase. It allows running the 
compiled and linked executable without having to explicitly set the library path 
to the CUDA dynamic libraries. Running using nvcc will automatically set the 
environment variables that are specified in nvcc.profile (see page 8) prior to 
starting the executable. 

 Files with extension .cup are assumed to be the result of preprocessing CUDA 
source files, by nvcc commands as “nvcc –E x.cu –o x.cup”, or “nvcc –E x.cu > 
x.cup”.  
Similar to regular compiler distributions, such as Microsoft Visual Studio or gcc, 
preprocessed source files are the best format to include in compiler bug reports. 
They are most likely to contain all information necessary for reproducing the 
bug. 

 

Supported phase combinations 

The following phase combinations are supported by nvcc: 

 CUDA compilation to object file. 
This is a combination of CUDA Compilation and C compilation, and invoked by 
option –c. 

 Preprocessing is usually implicitly performed as first step in compilation phases 

 Unless a phase option is specified, nvcc will compile and link all its input files 

 When –lib is specified, nvcc will compile all its input files, and store the resulting 
object files into the specified archive/library. 

Keeping intermediate phase files 

Nvcc will store intermediate results by default into temporary files that are deleted 
immediately before nvcc completes. The location of the temporary file directories 
that are used are, depending on the current platform, as follows: 

Windows temp directory Value of environment variable TEMP, or c:/Windows/temp 

Linux temp directory /tmp 

Options –keep or –save-temps (these options are equivalent) will instead store these 
intermediate files in the current directory, with names as described in the table on 
page 5.  
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Cleaning up generated files 

All files generated by a particular nvcc command can be cleaned up by repeating the 
command, but with additional option –clean. This option is particularly useful after 
using –keep, because the keep option usually leaves quite an amount of intermediate 
files around. 

Example: 

 nvcc acos.cu –keep 

 nvcc acos.cu –keep –clean  

Because using –clean will remove exactly what the original nvcc command created, 
it is important to exactly repeat all of the options in the original command. For 
instance, in the above example, omitting –keep, or adding –c will have different 
cleanup effects. 

Use of platform compiler 

A general purpose C compiler is needed by nvcc in the following situations: 

1. During non-CUDA phases (except the run phase), because these phases will 
be forwarded by nvcc to this compiler 

2. During CUDA phases, for several preprocessing stages (see also chapter  
“The CUDA Compilation Trajectory”). 

On Linux platforms, the compiler is assumed to be „gcc‟, or „g++‟ for linking. On 
Windows platforms, the compiler is assumed to be „cl‟. The compiler executables are 
expected to be in the current executable search path, unless option --compiler-bindir is 
specified, in which case the value of this option must be the name of the directory in 
which these compiler executables reside. 

„Proper‟ compiler installations 
On both Linux and Windows, „properly‟ installed compilers have some form of 
„internal knowledge‟ that enables them to locate system include files, system libraries 
and dlls,  include files and libraries related the compiler installation itself, and 
include files and libraries that implement libc and libc++.  

A properly installed gcc compiler has this knowledge built in, while a properly 
installed Microsoft Visual Studio compiler has this knowledge available in a batch 
script vsvars.bat, at a known place in its installation tree. This script must be executed 
prior to running the cl compiler, in order to place the correct settings into specific 
environment variables that the cl compiler recognizes. 

On Windows platforms, nvcc will locate vsvars.bat via the specified --compiler-bindir 
and execute it so that these environment variables become available. 

On Linux platforms, nvcc will always assume that the compiler is properly installed. 
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Non „proper‟ compiler installations 
The platform compiler can still be „improperly‟ used, but in this case the user of 
nvcc is responsible for explicitly providing the correct include and library paths on 
the nvcc command line. Especially using gcc compilers, this requires intimate 
knowledge of gcc and Linux system issues, and these may vary over different gcc 
distributions. Therefore, this practice is not recommended. 

Nvcc.profile 

Nvcc expects a configuration file nvcc.profile in the directory where the nvcc 
executable itself resides. This profile contains a sequence of assignments to 
environment variables which are necessary for correct execution of executables that 
nvcc invokes. Typical is extending the variables PATH, LD_LIBRARY_PATH with 
the bin and lib directories in the CUDA Toolkit installation. 

The single purpose of nvcc.profile is to define the directory structure of the CUDA 
release tree to nvcc. It is not intended as a configuration file for nvcc users. 

Syntax 
Lines containing all spaces, or lines that start with zero or more spaces followed by a 
„#‟ character are considered comment lines. All other lines in nvcc.profile must have 
settings of either of the following forms: 

name = <text> 

name ?= <text> 

name += <text> 

name =+ <text> 

Each of these three forms will cause an assignment to environment variable name: 
the specified text string will be macro- expanded (see next section) and assigned 
(„=‟), or conditionally assigned („?=‟), or prepended („+=‟), or appended („=+‟).  

Environment variable expansion 
The assigned text strings may refer to the current value of environment variables by 
either of the following syntax: 

 %name% DOS style 

 $(name)  „make‟ style 

_HERE_, _SPACE_ 
Prior to evaluating nvcc.profile, nvcc defines _HERE_ to be directory path in 
which the profile file was found. Depending on how nvcc was invoked, this may be 
an absolute path or a relative path. 

Similarly, nvcc will assign a single space string to _SPACE_. This variable can be 
used to enforce separation in profile lines such as: 
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 INCLUDES += -I../common $(_SPACE_) 

Omitting the _SPACE_ could cause „glueing‟ effects such as „–I../common-Iapps‟ 
with previous values of INCLUDES. 

 

Variables interpreted by nvcc itself 
The following variables are used by nvcc itself: 

compiler-bindir   The default value of the directory in which the host compiler resides (see Section 0). 
This value can still be overridden by command line option --compiler-bindir 

INCLUDES  This string extends the value of nvcc command option –Xcompiler. It is intended for 
defining additional include paths. It is in actual compiler option syntax, i.e. gcc syntax 
on Linux and cl syntax on Windows. 

LIBRARIES This string extends the value of nvcc command option –Xlinker. It is intended for 
defining additional libraries and library search paths. It is in actual compiler option 
syntax, i.e. gcc syntax on Linux and cl syntax on Windows. 

PTXAS_FLAGS This string extends the value of nvcc command option –Xptxas. It is intended for 
passing optimization options to the CUDA internal tool ptxas. 

OPENCC_FLAGS This string extends the value of nvcc command line option –Xopencc. It is intended 
to pass optimization options to the CUDA internal tool nvopencc. 
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Example of profile 
 

 

 

 

 

 

# 

# nvcc and nvcc.profile are in the bin directory of the 

# cuda installation tree. Hence, this installation tree 

# is „one up‟: 

# 

TO P           = $(_HERE_)/.. 

 

# 

# Define the cuda include directories:  

# 

INCLUDES  +=  -I$(TOP)/include -I$(TOP)/include/cudart ${_SPACE_} 

 

# 

# Extend dll search path to find cudart.dll and cuda.dll 

# and add these two libraries to the link line 

# 

PATH         += $(TOP)/lib; 

LIBRARIES    =+ ${_SPACE_} -L$(TOP)/lib -lcuda -lcudart 

# 

# Extend the executable search path to find the 

# cuda internal tools: 

# 

PATH         += $(TOP)/open64/bin:$(TOP)/bin: 

 

# 

# Location of M icrosoft Visual Studio compiler 

# 

compiler-bindir  = c:/mvs/bin 

 

# 

# No special optimization flags for device code compilation: 

# 

PTXAS_FLAGS    +=  
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Nvcc Command Options 

Command option types and notation 

Nvcc recognizes three types of command options: boolean (flag-) options, single 
value options, and list (multivalued-) options.  

Boolean options do not have an argument: they are either specified on a command 
line or not. Single value options must be specified at most once, and list 
(multivalued-) options may be repeated. Examples of each of these option types are, 
respectively: -v (switch to verbose mode), -o (specify output file), and –I (specify 
include path). 

Single value options and list options must have arguments, which must follow the 
name of the option itself by either one of more spaces or an equals character. In 
some cases of compatibility with gcc (such as –I, -l and -L), the value of the option 
may also immediately follow the option itself, without being separated by spaces.  
The individual values of multivalued options may be separated by commas in a 
single instance of the option, or the option may be repeated, or any combination of 
these two cases.  

Hence, for the two sample options mentioned above that may take values, the 
following notations are legal: 

-o file 

-o=file 

-Idir1,dir2   -I=dir3  -I dir4,dir5 

The option type in the tables in the remainder of this section can be recognized as 
follows: boolean options do not have arguments specified in the first column, while 
the other two types do. List options can be recognized by the repeat indicator “,…” 
at the end of the argument. 

Each option has a long name and a short name, which can be used interchangedly. 
These two variants are distinguished by the number of hyphens that must precede 
the option name: long names must be preceded by two hyphens, while short names 
must be preceded by a single hyphen. An example of this is the long alias of –I, 
which is --include-path. 
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Long options are intended for use in build scripts, where size of the option is less 
important than descriptive value. In contrast, short options are intended for 
interactive use. For nvcc, this distinction may be of dubious value, because many of 
its options are well known compiler driver options, and the names of many other 
single- hyphen options were already chosen before nvcc was developed (and not 
especially short). However, the distinction is a useful convention, and the „short‟ 
options names may be shortened in future releases of the CUDA Toolkit. 

Long options are described in the first columns of the options tables, and short 
options occupy the second columns. 

Command option description 

Options for specifying the compilation phase 

Options of this category specify up to which stage the input files must be compiled.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--cuda -cuda Compile all .cu input files to .cu.cpp.ii output. 

--cubin -cubin Compile all .cu/.gpu/.ptx input files to device- 

only .cubin files. This step discards the host 
code for each .cu input file. 

--ptx -ptx Compile all .cu/.gpu input files to device- only 

.ptx files. This step discards the host code for 
each .cu input file. 

--gpu -gpu Compile all .cu  input files to device- only .gpu 

files. This step discards the host code for each 
.cu input file. 

--fatbin -fatbin Compile all .cu/.gpu/.ptx/.cubin input files to 

device-only .fatbin files.  This step discards the 
host code for each .cu input file. 

--preprocess -E Preprocess all .c/.cc/.cpp/.cxx/.cu input files. 

--generate-dependencies -M  Generate for the one .c/.cc/.cpp/.cxx/.cu 
input file (more than one are not allowed in 
this step) a dependency file that can be 
included in a make file. 

--compile -c Compile each .c/.cc/.cpp/.cxx/.cu input file 
into an object file. 

--link -link This option specifies the default behavior: 
compile and link all inputs. 

--lib -lib Compile all input files into object files (if 
necessesary), and add the results to the 
specified library output  file. 

--run -run This option compiles and links all inputs into 
an executable, and executes it. Or, when the 
input is a single executable, it is executed 
without any compilation. This step is intended 
for developers who do not want to be 
bothered with setting the necessary CUDA dll 
search paths (these will be set temporarily by 
nvcc according to the definitions in 
nvcc.profile). 
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File and path specifications 

--output-file file -o Specify name and location of the output file. 

Only a single input file is allowed when this 
option is present in nvcc non- 
linking/archiving mode. 

--pre-include include-file,… -include Specify header files that must be preincluded 
during preprocessing or compilation. 

--library  library-file,… -l Specify libraries to be used in the linking stage. 

The libraries are searched for on the library 
search paths that have been specified using 
option '-L'. 

--define-macro macrodef,… -D Specify macro definitions for use during 
preprocessing or compilation 

--undefine-macro macrodef,… -U Undefine a macro definition 

--include-path include-path,… -I Specify include search paths. 

--sy stem-include include-
path,… 

-isy stem Specify system include search paths. 

--library -path library-path,… -L Specify library search paths. 

--output-directory directory -odir Specify the directory of the output file. This 

option is intended for letting the dependency 
generation step (--generate-dependencies) 
generate a rule that defines the target object file 
in the proper directory. 

--compiler-bindir directory -ccbin Specify the directory in which the host 

compiler executable (Microsoft Visual Studio 
cl, or a gcc derivative) resides. By default, this 
executable is expected in the current executable 
search path. 

 

Options altering compiler/linker behavior 
--profile -pg Instrument generated code/executable for use 

by gprof (Linux only). 

--debug level -g Generate debug-able code. 

--dev ice-debug -G Generate debug-able device code 

--optimize level -O  Generate optimized code. 

--shared -shared Generate a shared library during linking. Note: 

when other linker options are required for 
controlling dll generation, use option –Xlinker. 

--machine -m Specify 32 vs. 64 bit architecture. 

 

Options for passing specific phase options 
These allow for passing specific options directly to the internal compilation tools 
that nvcc encapsulates, without burdening nvcc with too-detailed knowledge on 
these tools. A table of useful sub-tool options can be found at the end of this 
chapter. 

--compiler-options options,… -Xcompiler Specify options directly to the 
compiler/preprocessor. 

--linker-options options,… -Xlinker Specify options directly to the linker. 
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--cudafe-options -Xcudafe Specify options directly to cudafe. 

--opencc-options options,… -Xopencc Specify options directly to nvopencc, typically 
for steering nvopencc optimization. 

--ptxas-options options,… -Xptxas Specify options directly to the ptx optimizing 
assembler. 

 

Options for guiding the compiler driver 
--dry run -dry run Do not execute the compilation commands 

generated by nvcc. Instead, list them. 

--verbose -v  List the compilation commands generated by 

this compiler driver, but do not suppress their 
execution. 

--keep -keep Keep all intermediate files that are generated 
during internal compilation steps. 

--save-temps -save-temps This option is an alias of --keep. 

--dont-use-profile -noprof Don‟t use the nvcc.profile file to guide the 
compilation. 

--clean-targets -clean This option reverses the behaviour of nvcc. 

When specified, none of the compilation 
phases will be executed. Instead, all of the non- 
temporary files that nvcc would otherwise 
create will be deleted. 

--run-args arguments,… -run-args Used in combination with option -R, to specify 
command line arguments for the executable. 

--input-drive-prefix prefix -idp On Windows platforms, all command line 

arguments that refer to file names must be 
converted to Windows native format before 
they are passed to pure Windows executables. 
This option specifies how the 'current' 
development environment represents absolute 
paths. Use '-idp /cygwin/' for CygWin build 
environments, and '-idp /' for Mingw. 

--dependency-drive-prefix 
prefix 

-ddp On Windows platforms, when generating 

dependency files (option -M), all file names 
must be converted to whatever the used 
instance of 'make' will recognize. Some 
instances of 'make' have trouble with the colon 
in absolute paths in native Windows format, 
which depends on the environment in which 
this 'make' instance has been compiled. Use '-
ddp /cygwin/' for a CygWin make, and '-ddp /' 
for Mingw. Or leave these file names in native 
Windows format by specifying nothing. 

--drive-prefix prefix -dp Specifies <prefix> as both input-drive-prefix 
and dependency-drive-prefix. 

 

Options for steering CUDA compilation 
--use_fast_math -use_fast_math Make use of fast math library.  –use_fast_math 

implies -ftz=true -prec-div=false -prec-
sqrt=false –fmad=true 

--ftz -ftz The –ftz option controls single precision 

denormals support. When –ftz=false, 
denormals are supported and with -ftz=true, 
denormals are flushed to 0. 
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--prec-div  -prec-div  The –prec-div option controls single precision 

division.. With –prec-div=true, the division is 
IEEE compliant, with –prec-div=false, the 
division is approximate 

--prec-sqrt -prec-sqrt The –prec-sqrt option controls single precision 

square root. With –prec-sqrt=true, the square 
root is IEEE compliant, with –prec-sqrt=false, 
the square root is approximate 

--entries entry,… -e In case of compilation of ptx or gpu files to 

cubin: specify the global entry functions for 
which code must be generated. By default, code 
will be generated for all entries. 

--fmad -fmad Enables (disables) the contraction of floating-

point multiplies and adds/subtracts into 
floating-point multiply-add operations (FMAD, 
FFMA, or DFMA). The default is -fmad=true. 

Options for steering GPU code generation 
 

--gpu-architecture gpuarch
  

-arch Specify the name of the NVIDIA GPU to 

compile for. This can either be a „real‟ GPU, or 
a „virtual‟ ptx architecture. Ptx code represents 
an intermediate format that can still be further 
compiled and optimized for, depending on the 
ptx version, a specific class of actual GPUs . 

The architecture specified by this option is the 
architecture that is assumed by the compilation 
chain up to the ptx stage, while the 
architecture(s) specified with the –code option 
are assumed by the last, potentially runtime, 
compilation stage. 

Currently supported compilation architectures 
are: virtual architectures compute_10, 
compute_11, compute_12, compute_13 plus 
GPU architectures sm_10, sm_11,  sm_12 and 
sm_13 that implement these. 

--gpu-code gpuarch,… -code Specify  the name of the NVIDIA GPU to 
generate code for. 

Unless option –export-dir is specified (see 
below), nvcc embeds a compiled code image in 
the executable for each specified „code‟ 
architecture, which is a true binary load image 
for each „real‟ architecture, and ptx code for 
each virtual architecture. 

During runtime, such embedded ptx code will 
be dynamically compiled by the CUDA runtime 
system if no binary load image is found for the 
„current‟ GPU. 

Architectures specified for options –arch and –
code may be virtual as well as real, but the 
„code‟ architectures must be compatible with 
the „arch‟ architecture. When the  code option 
is used, the value for the –arch option must b a 
virtual ptx architecture. 

For instance,  „arch‟=compute_13 is not 
compatible with „code‟=sm_10, because the 
earlier compilation stages will assume the 
availability of compute_13 features that are not 
present on sm_10. 

This option defaults to the value of option „-
arch‟. Currently supported GPU architectures: 
sm_10, sm_11, sm_12 and sm_13. 
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--generate-code -gencode This option provides a generalization of the  

'-arch=<arch> -code=code,...' option 
combination for specifying nvcc behavior with 
respect to code generation. Where use of the 
previous options generates different code for a 
fixed virtual architecture, option '--generate-
code' allows multiple nvopencc invocations, 
iterating over different virtual architectures. In 
fact,  -arch=<arch> -code=<code>,...' is 
equivalent to '--generate-code. 
arch=<arch>,code=<code>,...'. 

'--generate-code' options may be repeated for 
different virtual architectures. 

Allowed keywords for this option:  'arch','code'. 

--export-dir file -dir Specify the name of a directory to which all 

device code images will be copied, intended as 
a device code repository that can be inspected 
by the CUDA driver at application runtime 
when it occurs in the appropriate device code 
search paths („dir‟ should be in 
CUDA_DEVCODE_PATH). 

This repository can either be a directory, or a 
zip file. In either case, nvcc will maintain a 
directory structure in order to facilitate code 
lookup by the CUDA driver.  

When this option is specified with the name of 
a nonexisting file, then this file will be created 
as a directory. 

--maxrregcount amount -maxrregcount Specify the maximum amount of registers that 
GPU functions can use.  

Until a function-specific limit, a higher value 
will generally increase the performance of 
individual GPU threads that execute this 
function. However, because thread registers are 
allocated from a global register pool on each 
GPU, a higher value of this option will also 
reduce the maximum thread block size, thereby 
reducing the amount of thread parallelism. 
Hence, a good maxrregcount value is the result 
of a trade-off. 

If this option is not specified, then no 
maximum is assumed. Otherwise the specified 
value will be rounded to the next multiple of 4 
registers until the GPU specific maximum of 
128 registers. 

 

 

Generic tool options 

--help -h Print help information on this tool. 

--version -V  Print version information on this tool. 

--options-file file,… -optf Include command line options from specified 
file. 
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Phase options 
The following table lists some useful options to lower level compilation tools: 

-Xcompiler, -Xlinker See host compiler 
documentation 

 

-Xptxas -v  Print code generation statistics. 

-Xopencc -LIST:source=on Include source code in generated ptx 
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The CUDA Compilation Trajectory 

This chapter explains the internal structure of the various CUDA compilation 
phases. These internals can usually be ignored unless one wants to understand, or 
„manually‟ rerun, the compilation steps corresponding to phases. Such command 
replay is useful during debugging of CUDA applications, when intermediate files 
need be inspected or modified. It is important to note that this structure reflects the 
current way in which nvcc implements its phases; it may significantly change with 
new releases of the CUDA Toolkit. 

The following section illustrates how internal steps can be made visible by nvcc, and 
rerun. After that, a translation diagram of the .cu to .cu.cpp.ii phase is listed. All 
other CUDA compilations are variants in some form of another of the .cu to C++ 
transformation. 

Listing and rerunning nvcc steps 

Intermediate steps can be made visible by options –v and -dryrun. In addition, option 
–keep might be specified to retain temporary files, and also to give them slightly 
more meaningful names. The following sample command lists the intermediate 
steps for a CUDA compilation: 

     nvcc –cuda  x.cu  --compiler-bindir=c:/mvs/vc/bin  -keep –dryrun 

This command results in a listing as the one shown at the end of this section.  

Depending on the actual command shell that is used, the displayed commands are  
„almost‟ executable: the DOS command shell, and the Linux shells sh and csh each 
have slightly different notations for assigning values to environment variables.  

The command list contains the following categories, which in the example below are 
alternately shown in normal print and boldface (see also sections 0 and 0):  

1. Definition of standard variables _HERE_ and _SPACE_ 

2. Environment assignments resulting from executing nvcc.profile 

3. Definition of Visual Studio installation macros (derived from –compiler-
bindir) 

4. Environment assignments resulting from executing vsvars32.bat 

5. Commands generated by nvcc. 
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#$ _SPACE_=  

#$ _HERE_=c:\sw\gpgpu\bin\win32_debug 

 

#$ TOP=c:\sw\gpgpu\bin\win32_debug/../.. 

#$ BINDIR=c:\sw\gpgpu\bin\win32_debug 

#$ 

COMPILER_EXPORT=c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export

/win32_debug 

#$ 

PATH=c:\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:

\cygwin\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;

c:\WINDOWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program 

Files\Microsoft SQL Server\90\Tools\binn\;c:\Program 

Files\Perforce;C:\cygwin\lib\lapack 

#$ 

PATH=c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debu

g/open64/bin;c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/wi

n32_debug/bin;c:\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32

_debug;C:\cygwin\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X

11R6\bin;c:\WINDOWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Progra

m Files\Microsoft SQL Server\90\Tools\binn\;c:\Program 

Files\Perforce;C:\cygwin\lib\lapack 

#$ INCLUDES="-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" "-

Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   

#$ INCLUDES="-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude"                    "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" 

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   

#$ LIBRARIES=  "c:\sw\gpgpu\bin\win32_debug/cuda.lib" 

"c:\sw\gpgpu\bin\win32_debug/cudart.lib" 

#$ PTXAS_FLAGS= 

#$ OPENCC_FLAGS=-Werror   

 

#$ VSINSTALLDIR=c:/mvs/vc/bin/.. 

#$ VCINSTALLDIR=c:/mvs/vc/bin/.. 

 

#$ FrameworkDir=c:\WINDOWS\Microsoft.NET\Framework 

#$ FrameworkVersion=v2.0.50727 

#$ FrameworkSDKDir=c:\MVS\SDK\v2.0 

#$ DevEnvDir=c:\MVS\Common7\IDE 

#$ 

PATH=c:\MVS\Common7\IDE;c:\MVS\VC\BIN;c:\MVS\Common7\Tools;c:\MVS\Common7\

Tools\bin;c:\MVS\VC\PlatformSDK\bin;c:\MVS\SDK\v2.0\bin;c:\WINDOWS\Microso

ft.NET\Framework\v2.0.50727;c:\MVS\VC\VCPackages;c:\sw\gpgpu\bin\win32_deb

ug/../../../compiler/gpgpu/export/win32_debug/open64/bin;c:\sw\gpgpu\bin\w

in32_debug/../../../compiler/gpgpu/export/win32_debug/bin;c:\sw\gpgpu\bin\

win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:\cygwin\usr\local\bin

;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;c:\WINDOWS\system32;c

:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program Files\Microsoft SQL 

Server\90\Tools\binn\;c:\Program Files\Perforce;C:\cygwin\lib\lapack 

#$ 

INCLUDE=c:\MVS\VC\ATLMFC\INCLUDE;c:\MVS\VC\INCLUDE;c:\MVS\VC\PlatformSDK\i

nclude;c:\MVS\SDK\v2.0\include; 

#$ 

LIB=c:\MVS\VC\ATLMFC\LIB;c:\MVS\VC\LIB;c:\MVS\VC\PlatformSDK\lib;c:\MVS\SD

K\v2.0\lib; 

#$ 

LIBPATH=c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;c:\MVS\VC\ATLMFC\LIB 

#$ 

PATH=c:/mvs/vc/bin;c:\MVS\Common7\IDE;c:\MVS\VC\BIN;c:\MVS\Common7\Tools;c

:\MVS\Common7\Tools\bin;c:\MVS\VC\PlatformSDK\bin;c:\MVS\SDK\v2.0\bin;c:\W

INDOWS\Microsoft.NET\Framework\v2.0.50727;c:\MVS\VC\VCPackages;c:\sw\gpgpu

\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/open64/bin;c:\

sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/bin;c:

\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:\cygwin

\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;c:\WIND

OWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program 

Files\Microsoft SQL Server\90\Tools\binn\;c:\Program 

Files\Perforce;C:\cygwin\lib\lapack 
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#$ cudafe -E  -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS  "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude"                    "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" 

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include"  -D__CUDACC__ 

-C  --preinclude "cuda_runtime.h" -o "x.cpp1.ii" "x.cu"  

#$ cudafe "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude"                    "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" 

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   -I. --

gen_c_file_name "x.cudafe1.c" --gen_device_file_name "x.cudafe1.gpu" --

include_file_name x.fatbin.c --no_exceptions -tused  "x.cpp1.ii"  

#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS  "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude"                    "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" 

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include"  -D__CUDACC__ 

-C  -o "x.cpp2.i" "x.cudafe1.gpu"  

#$ cudafe --c "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude"                    "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" 

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   -I. --

gen_c_file_name "x.cudafe2.c" --gen_device_file_name "x.cudafe2.gpu" --

include_file_name x.fatbin.c  "x.cpp2.i"  

#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS  "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude"                    "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" 

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include"  -D__GNUC__ -

D__CUDABE__  -o "x.cpp3.i" "x.cudafe2.gpu"  

#$ nvopencc  -Werror   "x.cpp3.i"  -o "x.ptx" 

#$ ptxas  -arch=sm_10 "x.ptx"  -o "x.cubin"  

#$ filehash --skip-cpp-directives -s "" "x.cpp3.i" > "x.cpp3.i.hash" 

#$ fatbin --key="x@xxxxxxxxxx" --source-name="x.cu" --usage-mode="" --

embedded-fatbin="x.fatbin.c" --image=profile=sm_10,file=x.cubin  

#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -

DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS  "-

Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/in

clude"                    "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" 

"-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart"   -I. "-

Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-

Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include"  -o "x.cu.c" 

"x.cudafe1.c"  
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Full CUDA compilation trajectory 
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Figure 2: CUDA compilation from .cu to .cu.cpp.ii 
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The CUDA phase converts a source file coded in the extended CUDA language, 
into a regular ANSI C++ source file that can be handed over to a general purpose 
C++ compiler for further compilation and linking. The exact steps that are followed 
to achieve this are displayed in Figure 2. 

Compilation flow 
In short, CUDA compilation works as follows: the input program is separated by 
the CUDA front end (cudafe), into C/C++ host code and the .gpu device code. 
Depending on the value(s) of the –code option to nvcc, this device code is further 
translated by the CUDA compilers/assemblers into  CUDA binary (cubin) and/or 
into intermediate ptx code. This code is merged into a device code descriptor  which 
is included by the previously separated host code. This descriptor will be inspected 
by the CUDA runtime system whenever the device code is invoked („called‟) by the 
host program, in order to obtain an appropriate load image for the current GPU. 

CUDA frontend 
In the current CUDA compilation scheme, the CUDA front end is invoked twice. 
The first step is for the actual splitup of the .cu input into host and device code. The 
second step is a technical detail (it performs dead code analysis on the .gpu 
generated by the first step), and it might disappear in future releases.  

Preprocessing 
The trajectory contains a number of preprocessing steps. The first of these, on the 
.cu  input, has the usual purpose of expanding include files and macro invocations 
that are present in the source file. The remaining preprocessing steps expand CUDA 
system macros in („C‟-) code that has been generated by preceding CUDA 
compilation steps. The last preprocessing step also merges the results of the 
previously diverged compilation flow. 
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Sample Nvcc Usage 

The following lists a sample makefile that uses nvcc for portability across Windows 
and Linux. 

 

# 

# O n windows, store location of Visual Studio compiler 

# into the env ironment. This will be picked up by nvcc, 

# even without explicitly  being passed. 

# O n Linux, use whatever gcc is in the current path 

# (so leave compiler-bindir undefined): 

# 

ifdef O N_WINDOWS 

    export compiler-bindir := c:/mvs/bin 

endif 

 

 

# 

# Similar for OPENCC_FLAGS and PTXAS_FLAGS. 

# These are simply passed via the environment: 

# 

export O PENCC_FLAGS :=  

export PTXAS_FLAGS  := -fastimul 

 

 

# 

# cuda and C/C++ compilation rules, with 

# dependency  generation: 

# 

%.o : %.cpp 

$(NVCC) -c %^ $(CFLAGS) -o $@ 

$(NVCC) -M %  ̂$(CFLAGS)  > $@.dep 

 

%.o : %.c 

$(NVCC) -c %^ $(CFLAGS) -o $@ 

$(NVCC) -M %  ̂$(CFLAGS)  > $@.dep 

 

%.o : %.cu 

$(NVCC) -c %^ $(CFLAGS) -o $@ 

$(NVCC) -M %  ̂$(CFLAGS)  > $@.dep 

 

 

# 

# Pick up generated dependency files, and  

# add /dev /null because gmake does not consider 

# an empty list to be a list: 
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# 

include  $(w ildcard *.dep) /dev/null 

 

 

# 

# Define the application;  

# for each object file, there must be a 

# corresponding .c or .cpp or .cu file: 

# 

O BJECTS = a.o    b.o    c.o 

APP     = app 

 

$(APP) : $(OBJECTS) 

 $(NVCC) $(OBJECTS) $(LDFLAGS) -o $@ 

 

 

# 

# C leanup: 

# 

clean :  

 $(RM) $(OBJECTS) *.dep 
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GPU Compilation 

This chapter describes the GPU compilation model that is maintained by nvcc, in 
cooperation with the CUDA driver. It goes through some technical sections, with 
concrete examples at the end. 

GPU Generations 

In order to allow for architectural evolution, NVIDIA GPUs are released in 
different generations. New generations introduce major improvements in 
functionality and/or chip architecture, while GPU models within the same 
generation show minor configuration differences that „moderately‟ affect 
functionality, performance, or both. 

Binary compatibility of GPU applications is not guaranteed across different 
generations. For example, a CUDA application that has been compiled for a Tesla 
GPU will very likely not run on a next generation graphics card (and vice versa). 
This is because the Tesla instruction set and instruction encodings is different from 
FERMI, which in turn will probably be substantially different from those of the 
next generation GPU. 

V1 (Tesla)

 - sm_10

 - sm_11

 - sm_12

 - sm_13 

V2 (Next generation)

 - sm_20

 - .. ?? ..            

V3 (??)

 - .. ?? .. 

V4 (??)

 - .. ?? ..    
 

Because they share the basic instruction set, binary compatibility within one GPU 
generation, however, can under certain conditions guaranteed. This is the case 
between two GPU versions that do not show functional differences at all (for 
instance when one version is a scaled down version of the other), or when one 
version is functionally included in the other. An example of the latter is the „base‟ 
Tesla version sm_10 whose functionality is a subset of all other Tesla versions: any 
code compiled for sm_10 will run on all other Tesla GPUs. 
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GPU feature list 

The following table lists the names of the current GPU architectures, annotated 
with the functional capabilities that they provide. There are other differences, such 
as amounts of register and processor clusters, that only affect execution 
performance.   

In the CUDA naming scheme, GPUs are named sm_xy, where x denotes the GPU 
generation number, and y the version in that generation. Additionally, to facilitate 
comparing GPU capabilities,  CUDA attempts to choose its GPU names such that 
if x1y1 <= x2y2 then all non- ISA related capabilities of sm_x1y1 are included in those 
of sm_x2y2. From this it indeed follows that sm_10 is the „base‟ Tesla model, and it 
also explains why higher entries in the tables are always functional extensions to the 
lower entries. This is denoted by the plus sign in the table. Moreover, if we abstract 
from the instruction encoding, it implies that sm_10 ‟s functionality will continue to 
be included in all later GPU generations. As we will see next, this property will be 
the foundation for application compatibility support by nvcc. 

sm_10 ISA_1 

Basic features 

sm_11 + atomic memory operations on global memory 

sm_12 + atomic memory operations on shared memory 

+ vote instructions 

sm_13 + double precision floating point support 

sm_20 + FERMI support 

Application compatibility 

Binary code compatibility over CPU generations, together with a published 
instruction set architecture is the usual mechanism for ensuring that distributed 
applications „out there in the field‟ will continue to run on newer versions of the 
CPU when these become mainstream. 

This situation is different for GPUs, because NVIDIA cannot guarantee binary 
compatibility without sacrificing regular opportunities for GPU improvements. 
Rather, as is already conventional in the graphics programming domain, nvcc relies 
on a two stage compilation model for ensuring application compatibility with future 
GPU generations.  

Virtual architectures 

GPU compilation is performed via an intermediate representation, PTX ([…]), 
which can be considered as assembly for a virtual GPU architecture. Contrary to an 
actual graphics processor, such a virtual GPU is defined entirely by the set of 
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capabilities, or features, that it provides to the application. In particular, a virtual 
GPU architecture provides a (largely) generic instruction set, and binary instruction 
encoding is a non-issue because PTX programs are always represented in text 
format. 

Hence, a nvcc compilation command always uses two architectures: a compute 
architecture to specify the virtual intermediate architecture, plus a „real‟ GPU 
architecture to specify the intended processor to execute on. For such an nvcc 
command to be valid, the „real‟ architecture must be an implementation (someway 
or another) of the virtual architecture. This is further explained below. 

The chosen virtual architecture is more of a statement on the GPU capabilities that 
the application requires: using a „smallest‟ virtual architecture still allows a „widest‟ 
range of actual architectures for the second nvcc stage. Conversely, specifying a 
virtual architecture that provides features unused by the application unnecessarily 
restricts the set of possible GPUs that can be specified in the second nvcc stage. 

From this it follows that the virtual compute architecture should always be chosen as 
„low‟ as possible, thereby maximizing the actual GPUs to run on. The „real‟ sm 
architecture should be chosen as „high‟ as possible (assuming that this always 
generates better code), but this is only possible with knowledge of the actual GPUs 
on which the application is expected to run. As we will see later, in the situation of 
just in time compilation, where the driver has this exact knowledge: the runtime 
GPU is the one on which the program is about to be launched/executed. 

x.cu (device code part)

x.ptx

x.cubin

Stage 2 (ptxas)

Cuda device driver

Execute

Stage 1 (nvopencc)

n
v

c
c

Virtual compute

architecture

Real sm

architecture

 

Virtual architecture feature list 

compute_10 Basic features 

compute_11 + atomic memory operations on global memory 

compute_12 + atomic memory operations on shared memory 

+ vote instructions 
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compute_13 + double precision floating point support 

Compute_20 + FERMI support 

The above table lists the currently defined virtual architectures. As it appears, this 
table shows a 1-1 correspondence to the table of actual GPUs listed earlier in this 
chapter. The only difference except for the architecture names is that the ISA 
specification is missing for the compute architectures.  

However, this correspondence is misleading, and might degrade when new GPU 
architectures are introduced and also due to development of the CUDA compiler. 

First, a next generation architecture might not provide any functional 
improvements, in which case the list of „real‟ architectures will be extended (because 
we must be able to generate code for this architecture), but no new compute 
architecture is necessary.  

Second, it may be decided to let the compiler emulate certain „higher‟ grade features 
on „lower‟ grade GPUs. For example, this might be done for double precision 
floating point support. In this case double precision based applications will run on 
all „real‟ GPU architectures, though with considerably lower performance on the 
models that do not provide native double support. Such double precision emulation 
is here used merely as an example (it currently is not actually considered), but the 
CUDA compiler already does emulation for features that are considered „basic‟ 
though not natively supported: integer division and 64 bit integer arithmetic. 
Because integer division and 64 bit integer support are part of the basic feature set, 
they will not explicitly show up in the features tables. 

Feature emulation might have two different consequences for the virtual 
architecture table: the feature might be silently added to a lower grade virtual 
architecture (as has happened for integer division and 64 bit arithmetic), or it could 
be kept in a separate virtual architecture. For instance if we were to emulate double 
precision floating point on an sm_10, then keeping the virtual architecture 
compute_13 would make sense because of the drastic performance consequences: 
applications would then have to explicitly „enable‟ it during nvcc compilation and 
there would therefore be no danger of unwittingly using it on lower grade GPUs. 
Either way, the following nvcc command would become valid (which currently is 
not the case): 

nvcc x.cu -arch=compute_13 -code=sm_10 

The two cases of feature implementation are further illustrated below: 
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Further mechanisms 

Clearly, compilation staging in itself does not help towards the goal of application 
compatibility with future GPUs. For this we need the two other mechanisms by the 
CUDA SDK: just in time compilation (JIT) and device code repositories. 

Just in time compilation 
The compilation step to an actual GPU binds the code to one generation of GPUs.  
Within that generation, it involves a choice between GPU „coverage‟ and possible 
performance. For example, for Tesla, compiling to sm_10 allows the code to run on 
all Tesla versions, but compiling to sm_13 would probably yield better code. 
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By specifying a virtual code architecture instead of a „real‟ GPU, nvcc postpones the 
second compilation stage until application runtime, at which the target GPU is 
exactly known. For instance, the command below allows generation of exactly 
matching GPU binary code, when the application is launched on ansm_10, an 
sm_13, and even a later architecture 

nvcc x.cu -arch=compute_10 -code=compute_10 

The disadvantage of just in time compilation is increased application startup delay, 
but this can be alleviated by letting the CUDA driver use a compilation cache (see 
next chapter) which is persistent over multiple runs of the applications. 

Device code repositories 
A different solution to overcome startup delay by JIT while still allowing execution 
on newer GPUs is to specify multiple code instances, as in 

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13 

This command generates exact code for two Tesla variants, plus ptx code for use by 
JIT in case a next- generation GPU is encountered. Nvcc organizes its device code 
in device code repositories, which are able to hold multiple translations of the same 
GPU source code. At runtime, the CUDA driver will select the most appropriate 
translation when the device function is launched. Device code repositories are 
explained in more detail in the next chapter. 

 

Nvcc examples 

Base notation 
Nvcc provides the options –arch and –code for specifying the target architectures for 
both translation stages. Except for allowed short hands described below, the –arch 
option takes a single value, which must be the name of a virtual compute 
architecture, while option  –code takes a list of values which must all be the names of 
actual GPUs. Nvcc will perform a stage 2 translation for each of these GPUs, and 
will embed the result in the result of compilation (which usually is a host object file 
or executable). 

Example: 

nvcc x.cu -arch=compute_10 -code=sm_10,sm_13 

 

Nvcc allows a number of short hands for simple cases: 

Shorthand 1 
-code arguments can be virtual architectures. In this case the stage 2 translation will 
be omitted for such virtual architecture, and the stage 1 PTX result will be 
embedded instead. At application launch, and in case the driver does not find a 
better alternative, the stage 2 compilation will be invoked by the driver with the 
PTX as input. 
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Example: 

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13 

Shorthand 2 
The -arch option can be omitted, in which case it defaults to the „closest‟ virtual 
architecture that is implemented by the GPU that is specified with the –code option. 
In case multiple GPUs are specified as code architecture, this default virtual 
architecture must be unique over all these GPUs. 

Example: 

nvcc x.cu -code=sm_13 

nvcc x.cu -code=compute_10 

are short hands for 

nvcc x.cu –arch=compute_10 -code=sm_13 

nvcc x.cu –arch=compute_10 -code=compute_10 

 

Shorthand 3 
The -code option can be omitted. Only in this case, the –arch value can be a non- 
virtual architecture. The –code values default to the „closest‟ virtual architecture that 
is implemented by the GPU specified with –arch, plus the –arch value itself (in case 
the –arch value is a virtual architecture then these two are the same, resulting in a 
single –code default). After that, the effective –arch value will be the „closest‟ virtual 
architecture: 

Example: 

nvcc x.cu -arch=sm_13 

nvcc x.cu -arch=compute_10 

are short hands for 

nvcc x.cu –arch=compute_13 -code=sm_13,compute_13 

nvcc x.cu –arch=compute_10 -code=compute_10 

Shorthand 4 
Both –arch and -code options can be omitted.  

Example: 

nvcc x.cu  

is short hand for 

nvcc x.cu –arch=compute_10 -code=sm_10,compute_10 

 

Extended notation 
The options –arch and –code can be used in all cases where code is to be generated 
for one or more GPUs using a common virtual architecture. This will cause a single 
invocation of nvcc stage 1 (that is, preprocessing and generation of virtual PTX 
assembly code), followed by a compilation stage 2 (binary code generation) repeated 
for each specified GPU.  
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Using a common virtual architecture means that all assumed GPU features are fixed 
for the entire nvcc compilation. For instance, the following nvcc command assumes 
no double precision floating point support for both the sm_10 code and the sm_13 
code: 

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13 

Sometimes it is necessary to perform different GPU code generation steps, 
partitioned over different architectures. This is possible using nvcc option –gencode, 
which then must be used instead of a –arch/-code combination. 

Unlike option –arch, option –gencode may be repeated on the nvcc command line.  It 
takes sub-options arch and code, which must not be confused with their main option 
equivalents, but behave similarly. If repeated architecture compilation is used, then 
the device code must use conditional compilation based on the value of the 
architecture identification macro __CUDA_ARCH__, which is described in the 
next section. 

 

For example, the following assumes absence of double precision support for the 
sm_10 and sm_11 code, but full support for sm_: 

nvcc x.cu \ 

-gencode arch=compute_10,code=sm_10 \ 

-gencode arch=compute_10,code=sm_11 \ 

-gencode arch=compute_13,code=sm_13 

 

Or, leaving actual GPU code generation to the JIT compiler in the CUDA 

driver: 

nvcc x.cu \ 

-gencode arch=compute_10,code=compute_10 \ 

-gencode arch=compute_13,code=compute_13 

 

The code sub-options can be combined, but for technical reasons must then be 
quoted, which causes a slightly less pleasant syntax: 

nvcc x.cu \ 

-gencode arch=compute_10,code=\’sm_10,sm_11\’ \ 

-gencode arch=compute_12,code=\’sm_12,sm_13\’ 

 

Virtual architecture identification macro 
The architecture identification macro __CUDA_ARCH__ will be assigned a three-
digit value string xy0 (ending in a literal „0‟) during each nvcc compilation stage 1 
that compiles for compute_xy.  

This macro can be used in the implementation of GPU functions for determining 
the virtual architecture for which it is „currently‟ being compiled.  The host code (the 
non- GPU code) must not depend on it. 
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Device code repositories 

With the existence of multiple NVIDIA GPU architectures, it is not always 
predictable at compile time on what type of GPU the application will run. The 
importance of this issue is directly proportional to the number of different GPUs. 

Nvcc, together with the CUDA runtime system, provides the following mechanisms 
for dealing with this: 

1. Storing more than one generated code instance embedded in the executable. 

2. Allowing ptx intermediate representations as generated code 

3. Maintaining device code repositories external to the executable, in directory 
trees, or in zip files. 

4. More than one compiled code instance for the same device code occurring in 
the CUDA source allows the CUDA runtime system to select an instance that 
is compatible with the current GPU, which is the GPU on which the runtime 
system is about to launch the the code. If more than one compatible code 
instances are found, then the runtime system can select the „most 
appropriate‟, and in case the most appropriate code instance is still ptx 
intermediate code, the runtime system may decide to compile it for the 
current GPU. Ptx intermediate code is especially useful for distributed 
libraries, such as cublas. 

5. External code repositories allow finetuning as more of the compilation 
environment becomes known: because such repositories are directory trees in 
an open format (normal directory or zip format), any ptx code that it contains 
can be „hand- compiled‟ after distribution. One particular way of such 
finetuning is to use runtime compilation while enabling a device code 
translation cache: this will result in a new code repository, or it will extend an 
existing one. 

External device code structure 

The structure of device code repositories will be automatically created and 
maintained by nvcc, during static compilation, and by the CUDA runtime system 
whenever it is storing compiled ptx code into a translation cache. 
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Generating code in an external repository 

External code repositories can be populated using nvcc option –dir. By using this 
options, either all device code can be embedded in the produced object files and 
executables, or all device code can be stored in an external repository. 

For example, consider the following nvcc compilation commands: 

1. nvcc acos.cu –o acos.out 

2. nvcc acos.cu –o a.out –arch compute_10 

3. nvcc acos.cu –o a.out –arch compute_10 –code compute_10,sm_10,sm_13 

4. nvcc acos.cu –o a.out –arch compute_10 –code compute_10,sm_10,sm_13  -
dir=a.out.devcode  

 

These commands have the following effects: 

1. Generate sm_10 code binary code embedded in the executable (default value 
for option –arch) 

2. Generate compute_10 intermediate ptx code, embedded in the executable. 
Unless the CUDA driver finds matching binary code at runtime in a code 
repository file, this code will be compiled at application startup. 

3. Generate a mix of compiled code alternatives for the CUDA driver to choose 
from, still embedded in the executable. 

4. Generate the same mix of code alternatives, but this time store all of the 
generated code in the external repository file, called a.out.devcode. No device 
code is embedded in the executable itself.  When starting executable a.out, the 
CUDA driver will automatically search for a device code repository in the 
environment variable CUDA_DEVCODE_PATH.  So if a.out.devcode is in 
CUDA_DEVCODE_PATH, then the device code will be found. 

 

Using code repositories by the CUDA runtime system 

While running an executable E, the CUDA runtime system can be instructed to 
search device code repositories, in the following ways: 

By defining environment variable CUDA_DEVCODE_PATH to a colon- (Linux), 
or semicolon- (Windows) separated list of repository file names. For each name R in 
this list, the CUDA runtime will search in R for the device code. 

 By defining the device code translation cache (see next). 

Enabling the device code translation cache 

By default, the result of any runtime compiled ptx code will be used for the lifetime 
of the process that compiles it, and then discarded. Runtime compilation is intended 
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to be an escape situation, but in case it occurs, it might be desirable to keep the 
result for later invocations of the executable. 

This can be achieved by defining the environment variable 
CUDA_DEVCODE_CACHE to the name of a selected code repository. When 
defined, the CUDA runtime system will add the result of runtime compiled code to 
this repository, after creating it as a directory  when it did not exist before.  

Additionally, CUDA_DEVCODE_CACHE will be placed on the repository search 
list. 
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Miscellaneous nvcc usage 

Printing code generation statistics 

A summary on the amount of used registers and the amount of memory needed per 
compiled device function can be printed by passing option –v to ptxas: 

nvcc -Xptxas –v acos.cu 

ptxas info   : Compiling entry function 'acos_main' 

ptxas info   : Used 4 registers, 60+56 bytes lmem, 44+40 bytes smem,  

                             20 bytes cmem[1], 12 bytes cmem[14] 

 

As shown in the above example, the amounts of local and shared memory are listed 
by two numbers each. First number represents the total size of all the variables 
declared in that memory segment and the second number represents the amount of 
system allocated data. The amount and location of system allocated data as well as 
the allocation of constant variables to constant banks is profile specific.  For 
constant memory, the total space allocated in that bank is shown. 
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